Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2527-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2527-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hypersaline tidal flats as important “blue carbon” systems: a case study from three ecosystems
Dylan R. Brown
CORRESPONDING AUTHOR
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
Humberto Marotta
Ecosystems and Global Change Laboratory (LEMG-UFF), International Laboratory of Global Change (LINCGlobal), Biomass and Water Management Research Center (NAB), Universidade Federal Fluminense, Av. Edmundo March, s/n extdegree, Niterói, RJ, 24210-310, Brazil
Graduate Program in Geosciences (Environmental Geochemistry), Department of Geochemistry, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
Physical Geography Laboratory (LAGEF-UFF), Department of Geography, Graduate Program in Geography, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no., Niterói, RJ, 24210-346, Brazil
Roberta B. Peixoto
Ecosystems and Global Change Laboratory (LEMG-UFF), International Laboratory of Global Change (LINCGlobal), Biomass and Water Management Research Center (NAB), Universidade Federal Fluminense, Av. Edmundo March, s/n extdegree, Niterói, RJ, 24210-310, Brazil
Graduate Program in Geosciences (Environmental Geochemistry), Department of Geochemistry, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
Alex Enrich-Prast
Ecosystems and Global Change Laboratory (LEMG-UFF), International Laboratory of Global Change (LINCGlobal), Biomass and Water Management Research Center (NAB), Universidade Federal Fluminense, Av. Edmundo March, s/n extdegree, Niterói, RJ, 24210-310, Brazil
Department of Thematic Studies – Environmental Change, Linköping University, 581 83, Linköping, Sweden
Department of Botany, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
Glenda C. Barroso
Graduate Program in Geosciences (Environmental Geochemistry), Department of Geochemistry, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
Mario L. G. Soares
Laboratory For Mangrove Studies (NEMA-UERJ), International Laboratory of Global Change (LINCGlobal) and Interdisciplinary Observatory on Climate Change (OIMC-UERJ), Department of Biological Oceanography, Faculty of Oceanography, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, sala 4019-E, Rio de Janeiro, RJ, 20550-900, Brazil
Wilson Machado
Graduate Program in Geosciences (Environmental Geochemistry), Department of Geochemistry, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
Alexander Pérez
Graduate Program in Geosciences (Environmental Geochemistry), Department of Geochemistry, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
Laboratorio de Biogeociencias, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Centro de Investigación para el Desarrollo Integral y Sostenible (CIDIS), Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, Lima, Peru.
Joseph M. Smoak
School of Geosciences, University of South Florida, St. Petersburg, FL 33701, USA
Luciana M. Sanders
Southern Cross GeoScience, Southern Cross University, P.O. Box 157, Lismore, NSW, 2480, Australia
Stephen Conrad
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
James Z. Sippo
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
Southern Cross GeoScience, Southern Cross University, P.O. Box 157, Lismore, NSW, 2480, Australia
School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW, 2480, Australia
Isaac R. Santos
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Damien T. Maher
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
Southern Cross GeoScience, Southern Cross University, P.O. Box 157, Lismore, NSW, 2480, Australia
School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW, 2480, Australia
Christian J. Sanders
National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 201100, P.R. China
Related authors
No articles found.
Johannes Dittmann, Damien T. Maher, Scott G. Johnston, Douglas R. Tait, Paula Gomez Alvarez, Alistar Grinham, Katrin Sturm, and Luke C. Jeffrey
EGUsphere, https://doi.org/10.5194/egusphere-2025-5594, https://doi.org/10.5194/egusphere-2025-5594, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Reservoir dead trees (‘ghost forests’) are an overlooked methane (CH4) source in standing freshwaters. We measured CH4 fluxes from 34 trees at multiple stem heights, alongside aquatic CH4 fluxes and physicochemistry, across two field campaigns. Ghost forest CH4 fluxes were highest near reservoir inflows, with tree CH4 contributing extra emissions of 14–15 % on top of the commonly quantified pathways of ebullition and diffusion.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Cited articles
Adame, M. F., Reef, R., Grinham, A., Holmes, G., and Lovelock, C. E.: Nutrient exchange of extensive cyanobacterial mats in an arid subtropical wetland, Mar. Freshw. Res., 63, 457–467, 2012.
Albuquerque, A. G. B. M., Ferreira, T. O., Cabral, R. L., Nóbrega, G. N., Romero, R. E., Meireles, A. J. d. A., and Otero, X. L.: Hypersaline tidal flats (apicum ecosystems): the weak link in the tropical wetlands chain, Environ. Rev., 22, 99-109, 2013.
Albuquerque, A., Ferreira, T., Nóbrega, G., Romero, R., Júnior, V. S., Meireles, A., and Otero, X.: Soil genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semi-arid estuary (Ceará, Brazil), Soil Res., 52, 140–154, 2014.
Alongi, D. M.: Mangrove forests: resilience, protection from tsunamis, and responses to global climate change, Estuar. Coast. Shelf Sci., 76, 1–13, 2008.
Alongi, D. M.: Dissolved iron supply limits early growth of estuarine mangroves, Ecology, 91, 3229–3241, 2010.
Alongi, D., Pfitzner, J., Trott, L., Tirendi, F., Dixon, P., and Klumpp, D.: Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China, Estuar. Coast. Shelf Sci., 63, 605–618, 2005.
Appleby, P. G. and Oldfield, F.: Application of lead-210 to sedimentation studies, in: Uranium Series Disequilibrium: Application to Earth, Marine and Environmental Science, edited by: Ivanovich, M., and Harmon, S., Oxford Science Publications, 731–783, 1992.
Ashton, E. C.: The impact of shrimp farming on mangrove ecosystems, CAB Rev.: Persp. Agr. Vet. Sci. Nut. Nat. Res., 3, https://doi.org/10.1079/PAVSNNR20083003, 2008.
Barnett, A., Méléder, V., Dupuy, C., and Lavaud, J.: The vertical migratory rhythm of intertidal microphytobenthos in sediment depends on the light photoperiod, intensity, and spectrum: Evidence for a positive effect of blue wavelengths, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.00212, 2020.
Bento, L., Masuda, L. S. M., Peixoto, R. B., and Enrich-Prast, A.: Regulation in the metabolism and community structure of a tropical salt flat after rainfall, J. Coast. Res., 33, 304–308, 2017.
Breithaupt, J. L., Smoak, J. M., Smith, T. J., Sanders, C. J., and Hoare, A.: Organic carbon burial rates in mangrove sediments: Strengthening the global budget, Global Biogeochem. Cy., 26, https://doi.org/10.1002/2014JG002715, 2012.
Breithaupt, J. L., Smoak, J. M., Smith, T. J., and Sanders, C. J.: Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades, J. Geophys. Res.-Biogeo., 119, https://doi.org/10.1002/2014JG002715, 2014.
Bureau of Meteorology: Climate statistics for Australian locations, available at: http://www.bom.gov.au/climate/averages/tables/cw_029028.shtml (last access: 12 December 2019), 2019.
Burford, M., Valdez, D., Curwen, G., Faggotter, S., Ward, D., and Brien, K. O.: Inundation of saline supratidal mudflats provides an important source of carbon and nutrients in an aquatic system, Mar. Ecol. Prog. Ser., 545, 21–33, 2016.
Chairi, R., Derenne, S., Abdeljaoued, S., and Largeau, C.: Sediment cores representative of contrasting environments in salt flats of the Moknine continental sabkha (Eastern Tunisia): sedimentology, bulk features of organic matter, alkane sources and alteration, Org. Geochem., 41, 637–652, 2010.
Conesa, H., María-Cervantes, A., Álvarez-Rogel, J., and González-Alcaraz, M: Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement, Sci. Total Environ., 409, 4470–4479, 2011.
Conrad, S. R., Santos, I. R., White, S., and Sanders, C. J.: Nutrient and trace metal fluxes into estuarine sediments linked to historical and expanding agricultural activity (Hearnes Lake, Australia), Estuar. Coasts, 42, 944–957, 2019.
Costanzo, S. D., Udy, J., Longstaff, B., and Jones, A.: Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia, Mar. Pollut. Bull., 51, 212–217, 2005.
Estevam, R. M. E.: Os manguezais de Guaratiba Frente às mudanças climáticas globais: análise da influência da variabilidade climática sobre a dinâmica de comunidades pioneiras, Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Meio Ambiente, 99, 2019.
Estrada, G. C. D., Soares, M. L. G., de Oliveira Chaves, F., and Cavalcanti, V. F.: Analysis of the structural variability of mangrove forests through the physiographic types approach, Aquat. Bot., 111, 135–143, 2013.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., and Fox, H. E.: A global map of human impact on marine ecosystems, Science, 319, 948–952, 2008.
Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., and Saintilan, N.: Review of the ecosystem service implications of mangrove encroachment into salt marshes, Global Change Biol., 23, 3967–3983, 2017.
Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., and Duarte, C. M.: Sequestration of macroalgal carbon: the elephant in the Blue Carbon room, Biol. Lett., 14, https://doi.org/10.1098/rsbl.2018.0236, 2018.
Krauss, K. W., Noe, G. B., Duberstein, J. A., Conner, W. H., Stagg, C. L., Cormier, N., Jones, M. C., Bernhardt, C. E., Graeme Lockaby, B., and From, A. S.: The role of the upper tidal estuary in wetland blue carbon storage and flux, Global Biogeochem. Cy., 32, 817–839, 2018.
Laviale, M., Barnett, A., Ezequiel, J., Lepetit, B., Frankenbach, S., Méléder, V., Serôdio, J., and Lavaud, J.: Response of intertidal benthic microalgal biofilms to a coupled light-temperature stress: evidence for latitudinal adaptation along the Atlantic coast of Southern Europe, Environ. Microbiol., 17, 3662–3677, 2015.
Leopold, A., Marchand, C., Deborde, J., Chaduteau, C., and Allenbach, M.: Influence of mangrove zonation on CO2 fluxes at the sediment-air interface (New Caledonia), Geoderma, 202–203, 62–70, 2013.
Leopold, A., Marchand, C., Deborde, J., and Allenbach, M.: Temporal variability of CO2 fluxes at the sediment–air interface in mangroves (New Caledonia), Sci. Total Environ., 502, 617–626, 2015.
Lin, W. J., Wu, J., and Lin, H. J.: Contribution of unvegetated tidal flats to coastal carbon flux, Global Change Biol., 26, 3443–3454, 2020.
Lovelock, C. E.: Soil respiration and belowground carbon allocation in mangrove forests, Ecosystems, 11, 342–354, 2008.
Lovelock, C. E. and Duarte, C. M.: Dimensions of Blue Carbon and emerging perspectives, Biol. Lett., 15, 2019.
Lovelock, C. E., Grinham, A., Adame, M. F., and Penrose, H. M.: Elemental composition and productivity of cyanobacterial mats in an arid zone estuary in north Western Australia, Wetl. Ecol. Manag., 18, 37–47, 2010.
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., and Lavery, P. S.: The future of Blue Carbon science, Nat. Commun., 10, 1–13, 2019.
Marchand, C., Lallier-Vergès, E., and Allenbach, M.: Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia), J. Soils Sediments., 11, 529–541, 2011.
Martinez-Porchas, M. and Martinez-Cordova, L. R.: World aquaculture: Environmental impacts and troubleshooting alternatives, Sci. World J., 9, https://doi.org/10.1100/2012/389623, 2012.
Masuda, L. and Enrich-Prast, A.: Benthic microalgae community response to flooding in a tropical salt flat, Braz. J. Biol., 76, 577–582, 2016.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, 2011.
Ouyang, X. and Lee, S. Y.: Updated estimates of carbon accumulation rates in coastal marsh sediments, Biogeosciences, 11, 5057–5071, https://doi.org/10.5194/bg-11-5057-2014, 2014.
Paerl, H. W., Pinckney, J. L., and Steppe, T. F.: Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments, Environ. Microbiol., 2, 11–26, 2000.
Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Powell, C. E., Bociu, I., Clark, B. C., and Smoak, J. M.: Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA, Estuar. Coasts., 41, 1496–1510, 2018.
Raven, J.: Blue carbon: past, present and future, with emphasis on macroalgae, Biol. Lett., 14, https://doi.org/10.1098/rsbl.2018.0336, 2018.
Ravichandran, M., Baskaran, M., Santschi, P. H., and Bianchi, T. S.: Geochronology of sediments in the Sabine-Neches estuary, Texas, USA, Chem. Geol., 125, 291–306, 1995.
Reef, R., Feller, I. C., and Lovelock, C. E.: Nutrition of mangroves, Tree Physiol., 30, 1148–1160, 2010.
Rezende, C., Pfeiffer, W., Martinelli, L., Tsamakis, E., Hedges, J., and Keil, R.: Lignin phenols used to infer organic matter sources to Sepetiba Bay – RJ, Brasil, Estuar. Coast. Shelf Sci., 87, 479–486, 2010.
Ridd, P. and Stieglitz, T.: Dry season salinity changes in arid estuaries fringed by mangroves and saltflats, Estuar. Coast. Shelf Sci., 54, 1039–1049, 2002.
Rosentreter, J., Maher, D. T., Ho, D., Call, M., Barr, J., and Eyre, B. E.: Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries, Limnol. Oceanogr., 62, 561–578, 2017.
Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., and Krauss, K. W.: Mangrove expansion and salt marsh decline at mangrove poleward limits, Global Change Biol., 20, 147–157, 2014.
Sanders, C. J., Eyre, B. E., Santos, I. R., Machado, W., Luiz-Silva, W., Smoak, J. M., Breithaupt, J. L., Ketterer, M. E., Sanders, L., Marotta, H., and Silva-Filho, E.: Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland, Geophys. Res. Lett., 41, 2475–2480, 2014.
Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., and Santos, I. R.: Are global mangrove carbon stocks driven by rainfall?, J. Geophys. Res.-Biogeo., 121, 2600–2609, 2016a.
Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., and Megonigal, J. P.: Limits on carbon sequestration in arid blue carbon ecosystems, Ecol. Appl., 27, 859–874, 2017.
Serrano, O., Lovelock, C. E., Atwood, T. B., et al.: Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun., 10, 1–10, 2019.
Shen, C., Zhang, C., Xin, P., Kong, J., and Li, L.: Salt dynamics in coastal marshes: Formation of hypersaline zones, Water Resour. Res., 54, 3259–3276, 2018.
Soares, M. L. G., Chaves, F. D. O., Estrada, G. C. D., and Fernandez, V.: Mangrove forests associated with salt flats: A case study from southeast Brazil, Braz. J. Oceanogr., 65, 102–115, 2017.
Trevathan-Tackett, S. M., Kelleway, J., Macreadie, P. I., Beardall, J., Ralph, P., and Bellgrove, A.: Comparison of marine macrophytes for their contributions to blue carbon sequestration, Ecology, 96, 3043–3057, 2015.
Xie, Y., Wang, L., Liu, X., Li, X., Wang, Y., and Huang, B.: Contrasting responses of intertidal microphytobenthos and phytoplankton biomass and taxonomic composition to the nutrient loads in the Jiulong River Estuary, Phycol. Res., 67, 152-163, 2019.
Short summary
Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. This study shows that HTFs are important carbon and nutrient sinks which may be significant given their extensive coverage. Our findings highlight a previously unquantified carbon as well as a nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.
Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring...
Altmetrics
Final-revised paper
Preprint