Articles | Volume 18, issue 11
Biogeosciences, 18, 3445–3465, 2021
Biogeosciences, 18, 3445–3465, 2021

Research article 10 Jun 2021

Research article | 10 Jun 2021

Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle

Lorenz Gfeller et al.

Related subject area

Biogeochemistry: Soils
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004,,, 2021
Short summary
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779,,, 2021
Short summary
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171,,, 2021
Short summary
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073,,, 2021
Short summary
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786,,, 2021
Short summary

Cited articles

Abgottspon, F., Bigalke, M., and Wilcke, W.: Fast colloidal and dissolved release of trace elements in a carbonatic soil after experimental flooding, Geoderma, 259–260, 156–163,, 2015. 
Aiken, G. R., Hsu-Kim, H., and Ryan, J. N.: Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids, Environ. Sci. Technol., 45, 3196–3201,, 2011. 
Åkerblom, S., Meili, M., Bringmark, L., Johansson, K., Kleja, D. B., and Bergkvist, B.: Partitioning of Hg Between Solid and Dissolved Organic Matter in the Humus Layer of Boreal Forests, Water Air Soil Poll., 189, 239–252,, 2008. 
Allard, B. and Arsenie, I.: Abiotic reduction of mercury by humic substances in aquatic system: An important process for the mercury cycle, Water Air Soil Poll., 56, 457–464,, 1991. 
AMAP/UN Environment: Technical Background Report for the Global Mercury Assessment 2018, Arctic Monitoring and Assessment Programme, Oslo, Norway, UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland, 426 pp., 2019. 
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Final-revised paper