Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3903-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Jutta E. Wollenburg
CORRESPONDING AUTHOR
Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar- und Meeresforschung, Bremerhaven, 27570, Germany
Jelle Bijma
Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar- und Meeresforschung, Bremerhaven, 27570, Germany
Charlotte Cremer
Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar- und Meeresforschung, Bremerhaven, 27570, Germany
Ulf Bickmeyer
Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar- und Meeresforschung, Bremerhaven, 27570, Germany
Zora Mila Colomba Zittier
Alfred-Wegener-Institut Helmholtz-Zentrum für
Polar- und Meeresforschung, Bremerhaven, 27570, Germany
Related authors
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning A. Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past, 21, 753–772, https://doi.org/10.5194/cp-21-753-2025, https://doi.org/10.5194/cp-21-753-2025, 2025
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter remobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in widespread erosion and transport of permafrost materials to the ocean but that erosion is mitigated by regional dense sea-ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning A. Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past, 21, 753–772, https://doi.org/10.5194/cp-21-753-2025, https://doi.org/10.5194/cp-21-753-2025, 2025
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter remobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in widespread erosion and transport of permafrost materials to the ocean but that erosion is mitigated by regional dense sea-ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Cited articles
Alexander, S. P. and DeLaca, T. E.: Feeding adaptations of the
foraminiferan Cibicides refulgens living epizoi-cally and parasitically on
the Antarctic scallop Adamussium colbecki, Biol. Bull., 173,
136–159, 1987.
Angell, R. W.: Test morphogenesis (chamber formation) in the foraminifer
Spiroloculina hyalina Schulze, J. Foramin. Res., 10, 89–101,
1980.
Bé, A. W. H., Hemleben, C., Anderson, O. R., and Spindler, M.: Chamber
formation in planktonic foraminifera, Micropaleontology, 25, 294–307, 1979.
Bernhard, J. M., Newkirk, S. G., and Bowser, S. S.: Towards a Non-Terminal
Viability Assay for Foraminiferan Protists, J. Eukaryot. Microbiol., 42, 357–367, 1995.
Bowser, S. S. and DeLaca, T. E.: Rapid intracellular motility and dynamic
membrane events in an Antarctic foraminifer, Cell Biol. Int. Rep., 9, 901–910, 1985.
Bowser, S. S. and Travis, J. L.: Reticulopodia: Structural and behavioural
basis for the suprageneric placement of Granuloreticulosan protists, J. Foramin. Res., 32, 440–442, 2002.
Bowser, S. S., Israel, H. A., McGee-Russell, S. M., and Rieder, C. L.: Surface
transport properties of reticulopodia: Do intra-cellular and extracellular
motility share a common mechanism?, Cell Biol. Int. Rep., 8,
1051–1063, 1984.
Bowser, S. S., Travis, J. L., and Rieder, C. L.: Microtubules associate with
actin-containing filaments at discrete sites along the ventral surface of
Allogromia reticulopods, J. Cell Sci., 89, 297–307, 1988.
Cedhagen, T. and Frimanson, H.: Temperature dependence of pseudopodial
organelle transport in seven species of foraminifera and its functional
consequences, J. Foramin. Res., 32, 434–439, 2002.
Cushman, J. A.: Foraminifera; their classification and economic use, Cushman
Laboratory for Foraminiferal, Research, Sharon, Mass., 491 pp., 1928.
De Nooijer, L., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106,
15374–15378, 2009.
de Nooijer, L. J., Spero, H. J., Erez, J., Bijma, J., and Reichart, G. J.:
Biomineralization in perforate foraminifera, Earth-Sci. Rev., 135,
48–58, 2014.
Dujardin, G.: Observations nouvelles sur les Céphalopodes
microscopiques, Annales des Sciences Naturelles, Paris (Seconde Série,
Zoologie), 3, 108–109, 1835a.
Dujardin, G.: Observations nouvelles sur les prétendus Céphalopodes
microscopiques, Annales des Sciences Naturelles, Paris (Seconde Série,
Zoologie), 3, 312–316, 1835b.
Dujardin, G.: Observations sur les rhizopodes et les infusoires,
L'Académie des Sciences Paris, Comptes Rendus, 1, 343–377, 1835c.
Dujardin, G.: Recherches sur les organismes inférieures, Annales des
Sciences Naturelles, Zoologie, 4, 347–377, 1835d.
Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their
Implications for Paleoceanographic Proxies, Rev. Mineral.
Geochem., 54, 115–149, 2003.
Goldstein, S. J.: Foraminifera: A biological overview, in: Modern
Foraminifera, edited by: Gupta Sen, B. K., Kluwer Academic Publishers, Dordrecht, 37–55,
1999.
Goleń, J., Tyszka, J., Bickmeyer, U., and Bijma, J.: SiR-actin-labelled granules in foraminifera: patterns, dynamics, and hypotheses, Biogeosciences, 17, 995–1011, https://doi.org/10.5194/bg-17-995-2020, 2020.
Hancock, L. G., Walker, S. E., Pérez-Huerta, A., and Bowser, S. S.:
Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic
Scallop Host with Their Carbonate Biomass Contributions, PLOS ONE, 10,
e0132534, https://doi.org/10.1371/journal.pone.0132534, 2015.
Hedley, R. H.: The Biology of Foraminifera, in: International Review of
General and Experimental Zoology, edited by: Felts, W. J. L. and Harrison, R. J., Elsevier, 45 pp., 1964.
Heinz, P., Geslin, E., and Hemleben, C.: Laboratory observations of benthic
foraminiferal cysts, Mar. Biol. Res., 1, 149–159, 2005.
Hunt, A. S. and Corliss, B. H.: Distribution and microhabitats of living
(stained) benthic foraminifera from the Canadian Arctic Archipelago, Mar. Micropaleontol., 20, 321–345, 1993.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V.: A conceptual
model explaining benthic foraminiferal microhabitats, Mar.
Micropaleontol., 26, 3–15, 1995.
Lee, A. J. and Anderson, O. R.: The biology of foraminifera, Academic Press,
University of California, 368 pp., 1991.
Lee, J. J.: An illustrated guide to protozoa, Society of Protozoologists,
Lawrence, Kansas, 629 pp., 1985.
Linke, P. and Lutze, G. F.: Microhabitat preferences of benthic
foraminifera – a static concept or a dynamic adaptation to optimize food
acquisition?, Mar. Micropaleontol., 20, 215–234, 1993.
Lipps, J. H.: Biotic interactions in benthic foraminifera, in: Biotic
interactions in recent and fossil benthic communities, edited by: Teves, M. J. J. and McCall, P. L., Topics in Geobiology, Springer, Boston, MA, 331–376, 1983.
Lutze, G. F., Thiel, H.: Epibenthic foraminifera from elevated
microhabitats: Cibicides wuellerstorfi and Planulina ariminnensis, J. Foramin. Res., 19, 153–158, 1989.
Nyholm, K. G.: Morphogenesis and Biology of the Foraminifer Cibicides
Lobatulus, Almqvist & Wiksell, 157–196, 1962.
Rinaldi, R. A. and Jahn, T. L.: Shadowgraphs of protoplasmic movement in
Allogromia laticollaris and a correlation of this movement to striated
muscle contraction, Protoplasma, 58, 369–390, 1964.
Röttger, R.: Die Ektoplasmahülle von Heterostegina depressa
(Foraminifera:Nummulitidae), Mar. Biol., 21, 127–138, 1973.
Röttger, R.: The Larger Foraminifer Heterostegina depressa –
Organization and Growth of the Megalospheric Generation, IWF, https://doi.org/10.3203/IWF/C-1451, 1982.
Schönfeld, J.: A new benthic foraminiferal proxy for near-bottom current
velocities in the Gulf of Cadiz, northeastern Atlantic Ocean, Deep-Sea Res. Pt. I, 49, 1853–1875, 2002.
Schultze, M. J. S.: Über den Organismus der Polythalamien
(Foraminiferen), nebst Bemerkungen über die Rhizopoden im Allgemeinen,
Leipzig, 88 pp., 1854.
Schweizer, M., Pawlowski, J., Kouwenhoven, T., van der Zwaan, B.: Molecular
phylogeny of common cibicidids and related rotaliida (foraminifera) based on
small subunit rDNA sequences, J. Foramin. Res., 39, 300–315,
2009.
Travis, J. L. and Bowser, S. S.: A new model of reticulopodial motility and
shape: Evidence for a microtubule-based motor and an actin skeleton, Cell
Motility, 6, 2–14, 1986.
Travis, J. L., Welnhofer, E. A., and Orokos, D. D.: Autonomous
reorganization of foraminiferan reticulopodia, J. Foramin. Res., 32, 425–433, 2002.
Tyszka, J., Bickmeyer, U., Raitzsch, M., Bijma, J., Kaczmarek, K., Mewes,
A., Topa, P., and Janse, M.: Form and function of F-actin during
biomineralization revealed from live experiments on foraminifera,
P. Natl. Acad. Sci. USA, 116, 4111, https://doi.org/10.1073/pnas.1810394116, 2019.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to
carbon flux and primary production in the Arctic Ocean, Mar. Micropaleontol., 40, 189–231, 2000.
Wollenburg, J. E., Kuhnt, W., and Mackensen, A.: Changes in Arctic Ocean
paleoproductivity and hydrography during the last 145 kyr: the benthic
foraminiferal record, Paleoceanography, 16, 65–77, 2001.
Wollenburg, J. E. and Mackensen, A.: Living benthic foraminifers from the
central Arctic Ocean: faunal composition, standing stock and diversity,
Mar. Micropaleontol., 34, 153–185, 1998a.
Wollenburg, J. E. and Mackensen, A.: On the vertical distribution of living
(rose bengal stained) benthic foraminifers in the Arctic Ocean, J. Foramin. Res., 28, 268–285, 1998b.
Wollenburg, J. E., Raitzsch, M., and Tiedemann, R.: Novel high-pressure
culture experiments on deep-sea benthic foraminifera – Evidence for
methane seepage-related δ13C of Cibicides wuellerstorfi, Mar. Micropaleontol., 117, 47–64, 2015.
Wollenburg, J. E., Zittier, Z. M. C., and Bijma, J.: Insight into deep-sea
life – Cibicidoides pachyderma substrate and pH-dependent behaviour
following disturbance, Deep-Sea Res. Pt. I, 138, 34–45, 2018.
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting...
Altmetrics
Final-revised paper
Preprint