Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats
Marie Barbieux
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Alexandre Mignot
Mercator Ocean, 31520 Ramonville-Saint-Agne, France
Collin Roesler
Earth and Oceanographic Science, Bowdoin College, Brunswick, Maine
04011, USA
Hervé Claustre
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Bernard Gentili
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Vincent Taillandier
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Fabrizio D'Ortenzio
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Hubert Loisel
Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, 59000 Lille, France
Antoine Poteau
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Edouard Leymarie
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Christophe Penkerc'h
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Catherine Schmechtig
OSU Ecce Terra, UMS 3455, Sorbonne Université, CNRS, 4
place Jussieu, 75252 Paris CEDEX 05, France
Annick Bricaud
Laboratoire d'Océanographie de
Villefranche (LOV), Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Related authors
No articles found.
Wilhem Riom, Nicolas Mayot, Alexandre Mignot, Vincent Taillandier, and Fabrizio D'Ortenzio
State Planet Discuss., https://doi.org/10.5194/sp-2025-4, https://doi.org/10.5194/sp-2025-4, 2025
Preprint under review for SP
Short summary
Short summary
Over the ocean, phytoplankton (the microscopic algae at the basis of the marine foodweb) present characteristic cyclical patterns modulated by the passage of seasons. Climate change is modifying the marine environment and these seasonal cycles. This study presents a method that identifies the geographical displacement of these cycles applied over the last 30 years of satellite observations. It suggests that cycles normally typical of low latitude regions are extending towards high latitudes.
Alain Fumenia, Hubert Loisel, Rick A. Reynolds, and Dariusz Stramski
Biogeosciences, 22, 2461–2484, https://doi.org/10.5194/bg-22-2461-2025, https://doi.org/10.5194/bg-22-2461-2025, 2025
Short summary
Short summary
Particulate organic nitrogen (PON) plays a central role in ocean biogeochemistry, yet limited in situ data hinder a full understanding of PON variability and associated processes. Measurements of optical properties offer an alternative for assessing PON across diverse marine environments. Our analysis reveals strong relationships between PON and optical properties, supporting a promising means to assess PON from optical measurements performed in situ or conducted from remote-sensing platforms.
Xavier Durrieu de Madron, Paul Blin, Mireille Pujo-Pay, Vincent Taillandier, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3436, https://doi.org/10.5194/egusphere-2024-3436, 2024
Short summary
Short summary
This study investigated the effects of salt fingering on particle and solute distribution in the Tyrrhenian Sea. Density interfaces associated with thermohaline staircases slow the settling of suspended particles and promote aggregation. This affects particle size distribution and creates nutrient and oxygen gradients, affecting microbial activity and nutrient cycling. The research highlights the potential role of salt fingers in deep ocean biogeochemical processes.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Cited articles
Ahn, Y.-H., Bricaud, A., and Morel, A.: Light backscattering efficiency and
related properties of some phytoplankters, Deep-Sea Res. Pt. A, 39,
1835–1855, https://doi.org/10.1016/0198-0149(92)90002-B, 1992.
Allen, J. I., Somerfield, P. J., and Siddorn, J.: Primary and bacterial
production in the Mediterranean Sea: a modelling study, J. Mar. Syst.,
33/34, 473–495, https://doi.org/10.1016/S0924-7963(02)00072-6, 2002.
Álvarez, E., Morán, X. A. G., López-Urrutia, Á., and
Nogueira, E.: Size-dependent photoacclimation of the phytoplankton community
in temperate shelf waters (southern Bay of Biscay), Mar. Ecol. Prog. Ser.,
543, 73–87, https://doi.org/10.3354/meps11580, 2016.
Antoine, D., Morel, A., and André, J.-M.: Algal pigment distribution and
primary production in the eastern Mediterranean as derived from coastal zone
color scanner observations, J. Geophys. Res, 100, 16193–16209,
https://doi.org/10.1029/95JC00466, 1995.
Antoine, D., André, J.-M., and Morel, A.: Oceanic primary production: 2.
Estimation at global scale from satellite (Coastal Zone Color Scanner)
chlorophyll, Global Biogeochem. Cy., 10, 57–69,
https://doi.org/10.1029/95GB02832, 1996.
Antoine, D., D'Ortenzio, F., Hooker, S. B., Bécu, G., Gentili, B.,
Tailliez, D., and Scott, A. J.: Assessment of uncertainty in the ocean
reflectance determined by three satellite ocean color sensors (MERIS,
SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE
project), J. Geophys. Res., 113, 1–22,
https://doi.org/10.1029/2007JC004472, 2008.
Barber, R. T. and Hitling, A. K.: History of the study of plankton
productivity, in: Phytoplankton Productivity: Carbon assimilation in marine
and freshwater ecosystems, edited by: Williams, P. J. L. B., Thomas, D. N.,
and Reynolds, C. S., Blackwell Science, Oxford, 16–43,
https://doi.org/10.1002/9780470995204, 2002.
Barbieux, M., Uitz, J., Bricaud, A., Organelli, E., Poteau, A., Schmechtig,
C., Gentili, B., Penkerc'h, C., Leymarie, E., D'Ortenzio, F., and Claustre,
H.: Assessing the variability in the relationship between the particulate
backscattering coefficient and the chlorophyll a concentration from a global
Biogeochemical-Argo database, J. Geophys. Res., 123, 1229–1250,
https://doi.org/10.1002/2017JC013030, 2018.
Barbieux, M., Uitz, J., Bricaud, A., Organelli, E., Poteau, A., Schmechtig, C., Gentili, B., Penkerc'h, C., Leymarie, E., D'Ortenzio, F., and Claustre, H.: Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll a concentration from a global Biogeochemical-Argo database, J. Geophys. Res., 123, 1229–1250, https://doi.org/10.1002/2017JC013030, 2018.
Barbieux, M., Uitz, J., Gentili, B., Pasqueron de Fommervault, O., Mignot,
A., Poteau, A., Schmechtig, C., Taillandier, V., Leymarie, E., Penkerc'h,
C., D'Ortenzio, F., Claustre, H., and Bricaud, A.: Bio-optical
characterization of subsurface chlorophyll maxima in the Mediterranean Sea
from a Biogeochemical-Argo float database, Biogeosciences, 16, 1321–1342,
https://doi.org/10.5194/bg-16-1321-2019, 2019.
Barnes, M. and Antoine, D.: Proxies of community production derived from
the diel variability of particulate attenuation and backscattering
coefficients in the northwest mediterranean sea, Limnol. Oceanogr., 59,
2133–2149, https://doi.org/10.4319/lo.2014.59.6.2133, 2014.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic
ecosystems under weak mixing conditions – A theoretical investigation,
Prog. Oceanogr., 75, 771–796, https://doi.org/10.1016/j.pocean.2007.09.002,
2007.
Behrenfeld, M. J. and Boss, E.: The beam attenuation to chlorophyll ratio:
an optical index of phytoplankton physiology in the surface ocean?, Deep-Sea
Res. Pt. I, 50, 1537–1549, https://doi.org/10.1016/j.dsr.2003.09.002, 2003.
Behrenfeld, M. J. and Boss, E.: Beam attenuation and chlorophyll
concentration as alternative optical indices of phytoplankton biomass, J.
Mar. Res., 64, 431–451, https://doi.org/10.1357/002224006778189563, 2006.
Behrenfeld, M. J., Marañón, E., Siegel, D. A., and Hooker, S. B.:
Photoacclimation and nutrient-based model of light-saturated photosynthesis
for quantifying oceanic primary production, Mar. Ecol. Prog. Ser., 228,
103–117, https://doi.org/10.3354/meps228103, 2002.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19, 1–14, https://doi.org/10.1029/2004GB002299, 2005.
Bernard, S., Probyn, T. A., and Quirantes, A.: Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry, Biogeosciences Discuss., 6, 1497–1563, https://doi.org/10.5194/bgd-6-1497-2009, 2009.
Bethoux, J. P., Morin, P., Madec, C., and Gentili, B.: Phosphorus and
nitrogen behaviour in the Mediterranean Sea, Deep-Sea Res., 39, 1641–1654,
https://doi.org/10.1016/0198-0149(92)90053-V, 1992.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability
in algal biomass and primary production in the Mediterranean Sea, as derived
from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, GB1005,
https://doi.org/10.1029/2003GB002034, 2004.
Boss, E. and Zaneveld, J. R. V.: The effect of bottom substrate on
inherent optical properties: Evidence of biogeochemical processes, Limnol.
Oceanogr., 48, 346–354, https://doi.org/10.4319/lo.2003.48.1_part_2.0346, 2003.
Boss, E., Pegau, W. S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G.,
and Baratange, F.: Particulate backscattering ratio at LEO 15 and its use to
study particle composition and distribution, J. Geophys. Res., 109, C01014,
https://doi.org/10.1029/2002JC001514, 2004.
Bricaud, A., Morel, A., and Prieur, L.: Absorption by dissolved organic
matter of the sea (yellow substance) in the UV and visible domains, Limnol.
Oceanogr., 26, 43–53, https://doi.org/10.4319/lo.1981.26.1.0043, 1981.
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A.
M., and Rehm, E.: High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep-Sea Res. Pt. I, 58, 1031–1039,
https://doi.org/10.1016/j.dsr.2011.07.007, 2011.
Briggs, N., Guðmundsson, K., Cetinić, I., D'Asaro, E., Rehm, E.,
Lee, C., and Perry, M. J.: A multi-method autonomous assessment of primary
productivity and export efficiency in the springtime North Atlantic,
Biogeosciences, 15, 4515–4532, https://doi.org/10.5194/bg-15-4515-2018,
2018.
Brunet C., Casotti R., Vantrepotte V., and Conversano F.: Vertical
variability and diel dynamics of picophytoplankton in the Strait of Sicily,
Mediterranean Sea, in summer, Mar. Ecol. Prog. Ser., 346, 15–26,
https://doi.org/10.3354/meps07017, 2007.
Brunet, C., Casotti, R., and Vantrepotte, V.: Phytoplankton diel and
vertical variability in photobiological responses at a coastal station in
the Mediterranean Sea, J. Plank Res., 30, 645–654, https://doi.org/10.1093/plankt/fbn028, 2008.
Casotti, R., Landolfi, A., Brunet, C., D'Ortenzio, F., Mangoni, O., and
Ribera d'Alcalaì, M.: Composition and dynamics of the phytoplankton of the
Ionian Sea (eastern Mediterranean), J. Geophys. Res., 108, 1–19,
https://doi.org/10.1029/2002JC001541, 2003.
Cetinić, I., Perry, M. J., Briggs, N. T., Kallin, E., D'Asaro, E. A.,
and Lee, C. M.: Particulate organic carbon and inherent optical properties
during 2008 North Atlantic Bloom Experiment, J. Geophys. Res., 117, 1–18,
https://doi.org/10.1029/2011JC007771, 2012.
Cetinić, I., Perry, M. J., D'Asaro, E., Briggs, N., Poulton, N.,
Sieracki, M. E., and Lee, C. M.: A simple optical index shows spatial and
temporal heterogeneity in phytoplankton community composition during the
2008 North Atlantic Bloom Experiment, Biogeosciences, 12, 2179–2194,
https://doi.org/10.5194/bg-12-2179-2015, 2015.
Chavez, F. P., Messié, M., and Pennington, J. T.: Marine Primary
Production in Relation to Climate Variability and Change, Annu. Rev. Mar.
Sci., 3, 227–260, https://doi.org/10.1146/annurev.marine.010908.163917,
2013.
Claustre, H.: The trophic status of various oceanic provinces as revealed by
phytoplankton pigment signatures, Limnol. Oceanogr., 39, 1206–1210,
https://doi.org/10.4319/lo.1994.39.5.1206, 2014.
Claustre, H., Morel, A., Babin , M., Cailliau, C., Marie, D., Marty, J.-C., Tailliez, D., and Vaulot, D.: Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications, J. Geophys. Res., 104, 3401–3422, https://doi.org/10.1029/98JC01334, 1999.
Claustre, H., Bricaud, A., Babin, M., Bruyant, F., Guillou, L., Le Gall, F.,
Marie, D., and Partensky, F.: Diel variations in Prochlorococcus optical
properties, Limnol. Oceanogr., 47, 1637–1647,
https://doi.org/10.4319/lo.2002.47.6.1637, 2002.
Claustre, H., Huot, Y., Obernosterer, I., Gentili, B., Tailliez, D., and
Lewis, M.: Gross community production and metabolic balance in the South
Pacific Gyre, using a non intrusive bio-optical method, Biogeosciences, 5,
463–474, https://doi.org/10.5194/bg-5-463-2008, 2008.
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean with Biogeochemical-Argo, Annual Rev. Mar. Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-010956, 2020.
Cloern, J. E.: The relative importance of light and nutrient limitation of
phytoplankton growth: A simple index of coastal ecosystem sensitivity to
nutrient enrichment, Aquat. Ecol., 33, 3–16,
https://doi.org/10.1023/A:1009952125558, 1999.
Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A.,
D'Ortenzio, F., Gentili, B., and Schmechtig, C.: Deep chlorophyll maxima in
the global ocean: occurrences, drivers and characteristics, Global
Biogeochem. Cy., 35, e2020GB006759, https://doi.org/10.1029/2020GB006759,
2021.
Corno, G., Letelier, R. M., Abbott, M. R., and Karl, D. M.: Assessing primary
production variability in the North Pacific Subtropical Gyre: A comparison
of Fast Repetition Rate Fluorometry and 14C measurements, J. Phycol.,
42, 51–60, https://doi.org/10.1111/j.1529-8817.2006.00163.x, 2005.
Crombet, Y., Leblanc, K., Quéguiner, B., Moutin, T., Rimmelin, P., Ras,
J., Claustre, H., Leblond, N., Oriol, L., and Pujo-Pay, M.: Deep silicon
maxima in the stratified oligotrophic Mediterranean Sea, Biogeosciences, 8,
459–475, https://doi.org/10.5194/bg-8-459-2011, 2011.
Cullen, J. J.: The deep chlorophyll maximum: comparing vertical profiles of
chlorophyll a, Can. J. Fish. Aquat. Sci., 39, 791–803,
https://doi.org/10.1139/f82-108, 1982.
Cullen, J. J.: Subsurface chlorophyll maximum layers: enduring enigma or
mystery solved?, Anni. Rev. Mar. Sci., 7, 207–239,
https://doi.org/10.1146/annurev-marine-010213-135111, 2015.
Cullen, J. J. and Lewis, M. R.: Biological processes and optical
measurements near the sea surface: Some issues relevant to remote sensing,
J. Geophys. Res., 100, 13255–13266, https://doi.org/10.1029/95JC00454,
1995.
Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T.: Photosynthetic
characteristics and estimated growth rates indicate grazing is the proximate
control of primary production in the equatorial Pacific, J. Geophys. Res.,
97, 639–654, https://doi.org/10.1029/91JC01320, 1992.
Dandonneau, Y.: Measurement of in situ profiles of primary production using
an automated sampling and incubation device, ICES Mar. Sci. Sym., 197,
172–180, 1993.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res., 109, 1–20,
https://doi.org/10.1029/2004JC002378, 2004.
del Giorgio P. A. and Duarte C. M.: Respiration in the open ocean, Nature,
420, 37984, https://doi.org/10.1038/nature01165, 2002.
Di Cicco, A., Sammartino, M., Marullo, S., and Santoleri, R.: Regional
empirical algorithms for an improved identification of phytoplankton
functional types and size classes in the Mediterranean Sea using satellite
data, Front. Mar. Sci., 4126, 1–18, https://doi.org/10.3389/fmars.2017.00126, 2017.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the
Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148,
https://doi.org/10.5194/bg-6-139-2009, 2009.
Duarte, C. M. and Agusti S.: The CO2 balance of unproductive aquatic
ecosystems, Science, 281, 5374,
https://doi.org/10.1126/science.281.5374.234, 1998.
Dubinsky, Z. and Stambler, N.: Photoacclimation processes in phytoplankton:
mechanisms, consequences, and applications, Aquat. Microb. Ecol.,
56, 163–176, https://doi.org/10.3354/ame01345, 2009.
Dugdale, R. C. and Wilkerson, F. P.: Nutrient sources and primary
production in the Eastern Mediterranean, Oceanol. Acta, No. SP, 1988.
Durand, M. D. and Olson, R. J.: Contributions of phytoplankton light
scattering and cell concentration changes to diel variations in beam
attenuation in the equatorial pacific from flow cytometric measurements of
pico-, ultra and nanoplankton, Deep-Sea Res. Pt. II, 43, 891–906,
https://doi.org/10.1016/0967-0645(96)00020-3, 1996.
Durand, M. D. Green, R. E., Sosik, H. M., and Olson, R. J.: Diel Variations
in Optical Properties of Micromonas Pusilla (Prasinophyceae), J. Phycol.,
38, 1132–1142, https://doi.org/10.1046/j.1529-8817.2002.02008.x, 2002.
Estapa, M. L., Buesseler, K., Boss, E., and Gerbi, G.: Autonomous,
high-resolution observations of particle flux in the oligotrophic ocean,
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013,
2013.
Falkowski, P. G.: Ocean Science: The power of plankton, Nature, 483,
S17–S20, https://doi.org/10.1038/483S17a, 2012.
Fennel, K. and Boss, E.: Subsurface maxima of phytoplankton and
chlorophyll: Steady-state solutions from a simple model, Limnol. Oceanogr.,
48, 1521–1534, https://doi.org/10.4319/lo.2003.48.4.1521, 2003.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: integrating terrestrial and oceanic
components, Science, 281, 237–240,
https://doi.org/10.1126/science.281.5374.237, 1998.
Fitzwater, S. E., Knauer, G. A., and Martin, J. H.: Metal contamination and its
effect on primary production measurements, Limnol. Oceanogr., 27, 44–551,
https://doi.org/10.4319/lo.1982.27.3.0544, 1982.
Fumihiko, A., Turki, A., Pascual, A., et al.: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) [data set], https://doi.org/10.17882/42182, 2021.
Gardner, W. D., Mishonov, A. V., and Richardson, M. J.: Global POC
concentrations from in-situ and satellite data, Deep-Sea Res. Pt. II, 53,
718–740, https://doi.org/10.1016/j.dsr2.2006.01.029, 2006.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll
a ratio in microalgae and cyanobacteria: Implications for physiology and
growth of phytoplankton, New Phytol., 106, 1–34,
https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987.
Geider, R. J., MacIntyre, H. L., and Kana T. M.: Dynamic model of
phytoplankton growth and acclimation: Responses of the balanced growth rate
and the chlorophyll a : carbon ratio to light, nutrient-limitation and
temperature, Mar. Ecol. Prog. Ser., 148, 187–200,
https://doi.org/10.3354/meps148187, 1997.
Gernez, P., Antoine, D., and Huot, Y.: Diel cycles of the particulate beam
attenuation coefficient under varying trophic conditions in the northwestern
Mediterranean Sea: Observations and modeling, Limnol. Oceanogr., 56, 17–36,
https://doi.org/10.4319/lo.2011.56.1.0017, 2011.
Gitelson, A., Karnieli, A., Goldman, N., Yacobi, Y. Z., and Mayo, M.:
Chlorophyll estimation in the Southeastern Mediterranean using CZCS images:
adaptation of an algorithm and its validation, J. Mar. Syst., 9, 283–290,
https://doi.org/10.1016/S0924-7963(95)00047-X, 1996.
Guieu, C., D'Ortenzio, F., Dulac, F., Taillandier, V., Doglioli, A.,
Petrenko, A., Barrillon, S., Mallet, M., Nabat, P., and Desboeufs, K.:
Introduction: Process studies at the air–sea interface after atmospheric
deposition in the Mediterranean Sea – objectives and strategy of the
PEACETIME oceanographic campaign (May–June 2017), Biogeosciences, 17,
5563–5585, https://doi.org/10.5194/bg-17-5563-2020, 2020a.
Guieu, C., Desboeufs, K., Albani, S., Alliouane, S., Aumont, O., Barbieux, M., Barrillon, S., Baudoux, A.-C., Berline, L., Bhairy, N., Bigeard, E., Bloss, M., Bressac, M., Brito, J., Carlotti, F., de Lieg, G., Dinasquet, J., Djaoudi, K., Doglioli, A., D'Ortenzio, F., Doussin, J.-F., Duforet, L., Dulac, F., Dutay, J.-C., Engel, A., Feliu-Brito, G., Ferre, H., Formenti, P., Fu, F., Garcia, D., Garel, M., Gazeau, F., Giorio, C., Gregori, G., Grisoni, J.-M., Guasco, S., Guittonneau, J., Haëntjens, N., Heimburger, L.-E., Helias, S., Jacquet, S., Laurent, B., Leblond, N., Lefevre, D., Mallet, M., Marañón, E., Nabat, P., Nicosia, A., Obernosterer, I., Perez Lorenzo, M., Petrenko, A., Pulido-Villena, E., Raimbault, P., Ridame, C., Riffault, V., Rougier, G., Rousselet, L., Roy-Barman, M., Saiz-Lopez, A., Schmechtig, C., Sellegri, K., Siour, G., Taillandier, V., Tamburini, C., Thyssen, M., Tovar-Sanchez, A., Triquet, S., Uitz, J., Van Wambeke, F., Wagener, T., and Zaencker, B.: Biogeochemical dataset collected during
the PEACETIME cruise, SEANOE [data set], https://doi.org/10.17882/75747, 2020b.
González, N., Anadón, R., Mouriño, B., Fernández, E., Sinha,
B., Escánez, J., and de Armas, D.: The metabolic balance of the
planktonic community in the North Atlantic Subtropical Gyre: The role of
mesoscale instabilities, Limnol. Oceanogr., 46, 946–952,
https://doi.org/10.4319/lo.2001.46.4.0946, 2001.
González, N., Anadón, R., and Marañón, E.: Large-scale
variability of planktonic net community metabolism in the Atlantic Ocean:
Importance of temporal changes in oligotrophic subtropical waters, Mar.
Ecol. Progr. Ser., 233, 21–30, https://doi.org/10.3354/meps233021, 2002.
Gordon, H. R. and McCluney, W. R.: Estimation of the Depth of Sunlight
Penetration in the Sea for Remote Sensing, Appl. Opt., 14, 413–416,
https://doi.org/10.1364/AO.14.000413, 1975.
Hense, I. and Beckmann, A.: Revisiting subsurface chlorophyll and
phytoplankton distributions, Deep-Sea Res. Pt. I, 55, 1193–1199,
https://doi.org/10.1016/j.dsr.2008.04.009, 2008.
Jacquet, S., Lennon, J.-F., Marie, D., and Vaulot, D.: Picoplankton
population dynamics in coastal waters of the northwestern Mediterranean Sea,
Limnol. Oceanogr., 43, 1916–1931,
https://doi.org/10.4319/lo.1998.43.8.1916, 1998.
Juranek, L. W. and Quay, P. D.: In vitro and in situ gross primary and net
community production in the North Pacific Subtropical Gyre using labeled and
natural abundance isotopes of dissolved O2, Glob. Biogeochem. Cy., 19, GB3009,
https://doi.org/10.1029/2004GB002384, 2005.
Karl, D. M., Laws, E. A., Morris, P., Williams, P. J. L. B, and Emerson, S.:
Metabolic balance of the open sea, Nature, 426, 32–32,
https://doi.org/10.1038/426032a, 2003.
Kemp, A. E. S. and Villareal, T. A.: High diatom production and export in
stratified waters – A potential negative feedback to global warming, Prog.
Oceanogr., 119, 4–23, https://doi.org/10.1016/j.pocean.2013.06.004, 2013.
Kemp, A. E. S. and Villareal, T. A.: The case of the diatoms and the
muddled mandalas: Time to recognize diatom adaptations to stratified waters,
Prog. Oceanogr., 167, 138–149, https://doi.org/10.1016/j.pocean.2018.08.002,
2018.
Kheireddine, M. and Antoine, D.: Diel variability of the beam attenuation
and backscattering coefficients in the northwestern Mediterranean Sea
(BOUSSOLE site), J. Geophys. Res., 119, 5465–5482,
https://doi.org/10.1002/2014JC010007, 2014.
Kiefer, D. A., Olson, R. J., and Holm-Hansen, O.: Another look at the
nitrite and chlorophyll maxima in the central North Pacific, Deep-Sea Res.,
23, 1199–1208, https://doi.org/10.1016/0011-7471(76)90895-0, 1976.
Kolber, Z. S. and Falkowski, P. G.: Use of active fluorescence to estimate
phytoplankton photosynthesis in-situ, Limnol. Oceanogr., 38, 1646–1665,
1993.
Lacroix, G. and Nival, P.: Influence of meteorological variability on
primary production dynamics in the Ligurian Sea (NW Mediterranean Sea) with
a 1D hydrodynamic/biological model, J. Mar. Syst., 16, 23–50,
https://doi.org/10.1016/S0924-7963(97)00098-5, 1998.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P., Ribera
d'Alcalà, M., Lavezza, R., Houpert, L., and Prieur, L.: Enhancing the
comprehension of mixed layer depth control on the Mediterranean
phytoplankton phenology, J. Geophys. Res.-Ocean., 118, 3416–3430,
2013.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H.,
Sauzède, R., and Gacic, M.: On the vertical distribution of the
chlorophyll a concentration in the Mediterranean Sea: a basin-scale and
seasonal approach, Biogeosciences, 12, 5021–5039,
https://doi.org/10.5194/bg-12-5021-2015, 2015.
Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R.: Light driven
seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of
the North Pacific Subtropical Gyre, Limnol. Oceanogr., 2, 508–519,
https://doi.org/10.4319/lo.2004.49.2.0508, 2004.
Litaker, R. W., Warner, V., Rhyne, C. F., Duke, C. S., Kenney, B. E., Ramus, J.,
and Tester, P. A.: Effect of diel and interday variations in light on the
cell division pattern and in situ growth rates of the bloom-forming
dinoflagellate Heterocapsa triquetra, Mar. Ecol. Prog. Ser., 232, 63–74,
https://doi.org/10.3354/MEPS232063, 2002.
Loisel, H. and Morel, A.: Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnol. Oceanogr., 5, 847–858, https://doi.org/10.4319/lo.1998.43.5.0847, 1998.
Loisel, H., Mériaux, X., Berthon, J.-F., and Poteau, A.: Investigation of
the optical backscattering to scattering ratio of marine particles in
relation to their biogeochemical composition in the eastern English Channel
and southern North Sea, Limnol. Oceanogr., 52, 739–752,
https://doi.org/10.4319/lo.2007.52.2.0739, 2007.
Loisel, H., Vantrepotte, V., Norkvist, K., Mériaux, X., Kheireddine, M.,
Ras, J., Pujo-Pay, M., Combet, Y., Leblanc, K., Dall'Olmo, G., Mauriac, R.,
Dessailly, D., and Moutin, T.: Characterization of the bio-optical anomaly
and diurnal variability of particulate matter, as seen from scattering and
backscattering coefficients, in ultra-oligotrophic eddies of the
Mediterranean Sea, Biogeosciences, 8, 3295–3317,
https://doi.org/10.5194/bg-8-3295-2011, 2011.
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate
of global primary production in the ocean from satelite radiometer data, J.
Plank. Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
Magazzu, G. and Decembrini, F.: Primary production, biomass and abundance
of phototrophic picoplankton in the Mediterranean Sea: A review, Aquat.
Microb. Ecol., 9, 97–104, https://doi.org/10.3354/ame009097, 1995.
Marañón, E., Van Wambeke, F., Uitz, J., Boss, E. S., Dimier, C.,
Dinasquet, J., Engel, A., Haëntjens, N., Pérez-Lorenzo, M.,
Taillandier, V., and Zäncker, B.: Deep maxima of phytoplankton biomass,
primary production and bacterial production in the Mediterranean Sea,
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021,
2021.
Marra, J., Langdon, C., and Knudson, C. A.: Primary production, water column
changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed
Layers site (59∘ N, 21∘ W) in the northeast Atlantic
Ocean, J. Geophys. Res., 100, 6633–6643, https://doi.org/10.1029/94JC01127,
1995.
Marty, J. C. and Chiavérini, J.: Hydrological changes in the Ligurian
Sea (NW Mediterranean, DYFAMED site) during 1995–2007 and biogeochemical
consequences, Biogeosciences, 7, 2117–2128,
https://doi.org/10.5194/bg-7-2117-2010, 2010.
Marty, J. C., Chiaveìrini, J., Pizay, M. D., and Avril, B.: Seasonal and
interannual dynamics of nutrients and phytoplankton pigments in the western
Mediterranean Sea at the DYFAMED time- series station (1991–1999), Deep-Sea
Res. Pt. II, 49, 1965–1985, https://doi.org/10.1016/S0967-0645(02)00022-X,
2002.
Mayot, N., D'Ortenzio, F., Ribera d'Alcalà, M., Lavigne, H., and
Claustre, H.: Interannual variability of the Mediterranean trophic regimes
from ocean color satellites, Biogeosciences, 13, 1901–1917,
https://doi.org/10.5194/bg-13-1901-2016, 2016.
McClain, C. R., Signorini, S. R., and Christian, J. R.: Subtropical gyre
variability observed by ocean-color satellites, Deep-Sea Res. Pt. II, 51,
281–301, https://doi.org/10.1016/j.dsr2.2003.08.002, 2004.
McGillicuddy Jr., D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci., 8–1, 125–159,
2016.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing,
X.: Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 856–876,
https://doi.org/10.1002/2013GB004781, 2014.
Minas, H. J.: La distribution de l'oxygeÌne en relation avec la production
primaire en Meìditerraneìe Nord-Occidentale, Mar. Biol., 7, 181–204,
https://doi.org/10.1007/BF00367489, 1970.
Morel, A.: Light and marine photosynthesis: a spectral model with
geochemical and climatological implications, Prog. Oceanogr., 26, 263–306,
https://doi.org/10.1016/0079-6611(91)90004-6, 1991.
Morel, A. and André, J.-M.: Pigment distribution and primary production
in the western Mediterranean as derived and modeled from coastal zone color
scanner observations, J. Geophys. Res., 96, 12685–12698,
https://doi.org/10.1029/91JC00788, 1991.
Morel, A., Antoine, D., Babin, M., and Dandonneau, Y.: Measured and modeled
primary production in the northeast Atlantic (EUMELI JGOFS program): the
impact of natural variations in photosynthetic parameters on model
predictive skill, Deep-Sea Res. Pt. I, 43, 1273–1304,
https://doi.org/10.1016/0079-6611(91)90004-6, 1996.
Moutier, W., Duforêt-Gaurier, L., Thyssen, M., Loisel, H., Mériaux,
X., Courcot, L., Dessailly, D., Rêve, M.-H., Grégori, G., Alvain,
S., Barani, A., Brutier, L., and Dugrnne, M.: Evolution of the scattering
properties of phytoplankton cells from flow cytometry measurements, PLOS
ONE, 12, e0181180, https://doi.org/10.1371/journal.pone.0181180, 2017.
Neukermans, G., Loisel, H., Mériaux, X., Astoreca, R., and McKee, D.: In
situ variability of mass-specific beam attenuation and backscattering of
marine particles with respect to particle size, density, and composition,
Limnol. Oceanogr., 57, 124–144, https://doi.org/10.4319/lo.2012.57.1.0124,
2012.
Nielsen, E. S.: The Use of radio-active carbon (C14) for measuring
organic production in the sea, ICES J. Mar. Sci., 18, 117–140,
https://doi.org/10.1093/icesjms/18.2.117, 1952.
Organelli, E., Bricaud, A., Antoine, D., and Matsuoka, A.: Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site), Deep-Sea Res., 91, 72–85, https://doi.org/10.1016/j.dsr.2014.05.003, 2014.
Organelli, E., Barbieux, M., Claustre, H., Schmechtig, C., Poteau, A.,
Bricaud, A., Boss, E., Briggs, N., Dall'Olmo, G., D'Ortenzio, F., Leymarie,
E., Mangin, A., Obolensky, G., Penkerc'h, C., Prieur, L., Roesler, C.,
Serra, R., Uitz, J., and Xing, X.: Two databases derived from BGC-Argo float
measurements for marine biogeochemical and bio-optical applications, Earth
Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, 2017.
Organelli, E., Dall'Olmo, G., Brewin, R. J. W., Taran, G., Boss, E., and
Bricaud, A.: The open-ocean missing backscattering is in the structural
complexity of particles, Nat. Commun., 9, 5439,
https://doi.org/10.1038/s41467-018-07814-6, 2018.
Oubelkheir, K. and Sciandra, A.: Diel variations in particle stocks in the
oligotrophic waters of the Ionian Sea (Mediterranean), J. Mar. Syst., 74,
1–2, https://doi.org/10.1016/j.jmarsys.2008.02.008, 2008.
Oubelkheir, K., Claustre, H., Sciandra, A., and Babin, M.: Bio-optical and
biogeochemical properties of different trophic regimes in oceanic waters,
Limnol. Oceanogr., 50, 1795–1809,
https://doi.org/10.4319/lo.2005.50.6.1795, 2005.
Pasqueron de Fommervault, O., Migon, C., D'Ortenzio, F., Ribera
d'Alcalà, M., and Coppola, L.: Temporal variability of nutrient
concentrations in the northwestern Mediterranean Sea (DYFAMED time-series
station), Deep-Sea Res. Pt. I, 100, 1–12,
https://doi.org/10.1016/j.dsr.2015.02.006, 2015.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, L03618,
https://doi.org/10.1029/2007GL031745, 2008.
Quay, P. D., Peacock, C., Björkman, K., and Karl, D. M.: Measuring
primary production rates in the ocean: Enigmatic results between incubation
and non-incubation methods at Station ALOHA, Glob. Biogeochem. Cy., 24, GB3014,
https://doi.org/10.1029/2009GB003665, 2010.
Ras, J., Claustre, H., and Uitz, J.: Spatial variability of phytoplankton
pigment distributions in the Subtropical South Pacific Ocean: comparison
between in situ and predicted data, Biogeosciences, 5, 353–369,
https://doi.org/10.5194/bg-5-353-2008, 2008.
Regaudie-de-Gioux, A., Lasternas, S., Agustí, S., and Duarte, C. M.:
Comparing marine primary production estimates through different methods and
development of conversion equations, Frontiers, 1, 19,
https://doi.org/10.3389/fmars.2014.00019, 2014.
Roesler, C. S. and Boss, E.: In Situ Measurement of the Inherent Optical
Properties (IOPs) and Potential for Harmful Algal Bloom Detection and
Coastal Ecosystem Observations, in: Real-time coastal observing systems for marine ecosystem dynamics and
harmful algal blooms: Theory, instrumentation and modelling, edited by: Babin, M., Roesler, C. S., and Cullen, J.
J., UNESCO, ISBN 978-92-3-104042-9, 2008.
Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E.,
Briggs, N., Bricaud, A., Schmechtig, C., Poteau, A., D'Ortenzio, F., Ras,
J., Drapeau, S., Haëntjens, N., and Barbieux, M.: Recommendations for
obtaining unbiased chlorophyll estimates from in situ chlorophyll
fluorometers: A global analysis of WET Labs ECO sensors, Limnol.
Oceanogr.-Meth., 15, 572–585, https://doi.org/10.1002/lom3.10185, 2017.
Saba, V. S., Friedrichs, M. A. M., Carr, M.-E., Antoine, D., Armstrong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, L., Bruggeman, j., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J. K., Morel, A., O'Reilly, J., Salihoglu, B., Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T. K., and Yool, A.: Challenges of
modeling depth-integrated marine primary productivity over multiple decades:
A case study at BATS and HOT, Glob. Biogeochem. Cy., 24, GB3020, https://doi.org/10.1029/2009GB003655, 2010.
Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma,
I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J.
W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly,
J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters,
K., and Westberry, T. K.: An evaluation of ocean color model estimates of
marine primary productivity in coastal and pelagic regions across the globe,
Biogeosciences, 8, 489–503, https://doi.org/10.5194/bg-8-489-2011, 2011.
Sarmiento, J. L. and Siegenthaler, U.: New production and the global carbon
cycle, in: Primary productivity and biogeochemical cycles in the sea,
Environmental Science Research, edited by: Falkowski, P. G.,
Woodhead A. D., and Vivirito K., Springer, Boston, MA, Vol. 43,
https://doi.org/10.1007/978-1-4899-0762-2_18, 1992.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A.
C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V.,
Spall, S. A., and Stouffer, R.: Response of ocean ecosystems to climate
warming, Global Biogeochem. Cy., 18, 1–23,
https://doi.org/10.1029/2003GB002134, 2014.
Sathyendranath, S., Longhurst, A., Caverhill, C. M., and Platt, T.:
Regionally and Seasonally Differentiated Primary Production in the North
Atlantic, Deep-Sea Res. Pt. I, 42, 1773–1802,
https://doi.org/10.1016/0967-0637(95)00059-F, 1995.
Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H.,
Forget, M.-H., Maass, H., and Platt, T.: Carbon-to-chlorophyll ratio and
growth rate of phytoplankton in the sea, Mar. Ecol. Prog. Ser., 383, 73–84,
https://doi.org/10.3354/meps07998 2009.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., and Boss, E.:
Processing Bio-Argo chlorophyll a concentration at the DAC Level, Argo Data
Management, 1–22, https://doi.org/10.13155/39468, 2015.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., Dall'Olmo, G., and
Boss, E.: Processing Bio-Argo particle backscattering at the DAC level
Version, Argo Data Management, 1–13, https://doi.org/10.13155/39459, 2016.
Serret, P., Fernandez, E., Sostres, J. A., and Anadon, R.: Seasonal
compensation of microbial production and respiration in a temperate sea,
Mar. Ecol. Prog. Ser., 187, 43–57, https://doi.org/10.3354/meps187043,
1999.
Siegel, D. A., Dickey, T.D., Washburn, L., Hamilton, M. K., and Mitchell, B.
G: Optical determination of particulate abundance and production variations
in the oligotrophic ocean, Deep-Sea Res. Pt. A, 36, 211–222,
https://doi.org/10.1016/0198-0149(89)90134-9, 1989.
Signorini, S. R., Franz B. A., and McClain C. R.: Chlorophyll variability in
the oligotrophic gyres: mechanisms, seasonality and trends, Front. Mar.
Sci., 2, 1, https://doi.org/10.3389/fmars.2015.00001, 2015.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera
d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open
Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586,
https://doi.org/10.5194/bg-7-1543-2010, 2010.
Slade, W. H. and Boss, E.: Spectral attenuation and backscattering as
indicators of average particle size, Applied Opt., 54, 7264–7277,
https://doi.org/10.1364/AO.54.007264, 2015.
Smyth, T. J., Pemberton, K. L. , Aiken, J., and Geider, R. J.: A methodology
to determine primary production and phytoplankton photosynthetic parameters
from Fast Repetition Rate Fluorometry, J. Plank. Res., 26, 1337–1350,
https://doi.org/10.1093/plankt/fbh124, 2004.
Stramska, M. and Dickey, T. D.: Variability of bio-optical properties of
the upper ocean associated with diel cycles in phytoplankton population, J.
Geophys. Res., 97, 17873–17887, https://doi.org/10.1029/92JC01570, 1992.
Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the
open ocean, Prog. Oceanogr., 28, 343–383,
https://doi.org/10.1016/0079-6611(91)90032-H, 1991.
Stramski, D. and Reynolds, R. A.: Diel variations in the optical properties
of a marine diatom, Limnol. Oceanogr., 38, 1347–1364,
https://doi.org/10.4319/lo.1993.38.7.1347, 1993.
Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell, B. G.: Estimation of
particulate organic carbon in the ocean from satellite remote sensing,
Science, 285, 239–242, https://doi.org/10.1126/science.285.5425.239, 1999.
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical
properties of the ocean based on the detailed composition of the planktonic
community, Appl. Opt., 40, 2929–2945, https://doi.org/10.1364/AO.40.002929,
2001.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R.,
Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B.
A., and Claustre, H.: Relationships between the surface concentration of
particulate organic carbon and optical properties in the eastern South
Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201,
https://doi.org/10.5194/bg-5-171-2008, 2008.
Stramski, S., Boss, E., Bogucki, D., and Voss., K. J.: The role of seawater
constituents in light backscattering in the ocean, Prog. Oceanogr., 61,
27–56, https://doi.org/10.1016/j.pocean.2004.07.001, 2004.
Suggett, D. J., Macintyre, H. L., and Geider, R. J.: Evaluation of
biophysical and optical determinations of light absorption by photosystem II
in phytoplankton, Limnol. Oceanogr. Meth., 316–332,
https://doi.org/10.4319/lom.2004.2.316, 2004.
Sullivan, J., Twardowski, M., Ronald, S., Zaneveld, J. V., and Moore, C. C.:
Measuring optical backscattering in water, in: Light scattering reviews,
edited by: Kokhanovsky, A. A., Springer, Berlin, 7, 189–224, 2013.
Taillandier, V., Wagener, T., D'Ortenzio, F., Mayot, N., Legoff, H., Ras,
J., Coppola, L., Pasqueron de Fommervault, O., Schmechtig, C., Diamond, E.,
Bittig, H., Lefevre, D., Leymarie, E., Poteau, A., and Prieur, L.:
Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo
network during a cruise with RV Tethys 2 in May 2015, Earth Syst. Sci. Data,
10, 627–641, https://doi.org/10.5194/essd-10-627-2018, 2018.
Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W.,
Psarra, S., Ruddy, G., Stutt, E. D., Tselepides, A., and Van Wambeke, F.:
Relationship between primary producers and bacteria in an oligotrophic sea –
The Mediterranean and biogeochemical implications, Mar. Ecol. Progr. Ser.,
193, 11–18, https://doi.org/10.3354/meps193011, 2000.
Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H.,
and Zaneveld, J. R. V.: A model for estimating bulk refractive index from
the optical backscattering ratio and the implications for understanding
particle composition in case I and case II waters, J. Geophys. Res., 106,
14129–14142, https://doi.org/10.1029/2000JC000404, 2001.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res., 111, 1–23,
https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phyto- plankton
class-specific primary production in the world's oceans: Seasonal and
interannual variability from satellite observations, Global Biogeochem. Cy.,
24, 1–19, https://doi.org/10.1029/2009gb003680, 2010.
Uitz, J., Stramski, D., Gentili, B., D'Ortenzio, F., and Claustre, H.:
Estimates of phytoplankton class-specific and total primary production in
the Mediterranean Sea from satellite ocean color observations, Global
Biogeochem. Cy., 26, 1–10, https://doi.org/10.1029/2011gb004055, 2012.
Ulloa, O., Sathyendranath, S., and Platt, T.: Effect of the particle-size
distribution on the backscattering ratio in seawater, Appl. Opt., 33,
7070–7077, https://doi.org/10.1364/AO.33.007070, 1994.
Vaulot, D. and Marie, D.: Diel variability of photosynthetic picoplankton
in the equatorial Pacific, J. Geophys. Res., 104, 3297–3310,
https://doi.org/10.1029/98JC01333, 1999.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J.-C.:
Phytoplankton pigment distribution in relation to upper thermocline
circulation in the eastern Mediterranean Sea during winter, J. Geophys.
Res., 106, 19939–19956, https://doi.org/10.1029/1999JC000308, 2001.
Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based
primary productivity modeling with vertically resolved photoacclimation,
Global Biogeoch. Cy., 222, 1–18, https://doi.org/10.1029/2007GB003078,
2008.
Westberry, T. K. Dall'Olmo, G., Boss, E., Behrenfeld, M., and Moutin, T.:
Coherence of particulate beam attenuation and backscattering coefficients in
diverse open ocean environments, Opt. Express, 18, 15419–15425,
https://doi.org/10.1364/OE.18.015419, 2010.
White, A. E., Barone, B., Letelier, R. M., and Karl, D. M.: Productivity
diagnosed from the diel cycle of particulate carbon in the North Pacific
Subtropical Gyre, Geophys. Res. Lett., 44, 3752–3760,
https://doi.org/10.1002/2016GL071607, 2017.
Whitmire, A. L., Boss, E., Cowles, T. J., and Pegau, W. S.: Spectral
variability of the particulate backscattering ratio, Opt. Express, 15,
7019–7031, https://doi.org/10.1364/OE.15.007019, 2007.
Williams, P. J. leB. and Jenkinson, N. W.: A transportable microprocessor
controlled precise Winkler titration suitable for field station and
shipboard use, Limnol. Oceanogr., 27, 576–584,
https://doi.org/10.4319/lo.1982.27.3.0576, 1982.
Williams, P. J. leB. and Purdie, D. A.: In vitro and in situ derived rates
of gross production, net community production and respiration of oxygen in
the oligotrophic subtropical gyre of the North Pacific Ocean, Deep-Sea Res.
Pt. A, 38, 891–910, https://doi.org/10.1016/0198-0149(91)90024-A, 1991.
Williams, P. J. leB.: On the definition of plankton production terms, in:
Measurement of primary production from the molecular to the global scale,
edited by: Li, W. K. and Maestrini, Proceedings of a Symposium held in La Rochelle, 21–24 April 1992, ICES Marine Science Symposia, 197, ICES: Copenhagen, 287 pp., 1993.
Williams, P. J. leB., Morris, P. J., and Karl, D. M.: Net community
production and metabolic balance at the oligotrophic ocean site, station
ALOHA, Deep-Sea Res. Pt. I, 51, 1563–1578,
https://doi.org/10.1016/j.dsr.2004.07.001, 2004.
Xing, X., Claustre, H., Blain, S., D'Ortenzio, F., Antoine, D., Ras, J.,
and Guinet, C.: Quenching correction for in vivo chlorophyll fluorescence
acquired by autonomous platforms: A case study with instrumented elephant
seals in the Kerguelen region (Southern Ocean), Limnol. Oceanogr.-Meth., 10,
483–495, https://doi.org/10.4319/lom.2012.10.483, 2012.
Yentsch, C. S. and Phinney, D. A.: A bridge between ocean optics and
microbial ecology, Limnol. Oceanogr., 34, 1694–1705,
https://doi.org/10.4319/lo.1989.34.8.1694, 1989.
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: Effect of
salinity, Opt. Express, 17, 5698–5710,
https://doi.org/10.1364/OE.17.005698, 2009.
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
This study assesses marine biological production in two Mediterranean systems representative of...
Altmetrics
Final-revised paper
Preprint