Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3877-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3877-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Giuseppe Cipolla
CORRESPONDING AUTHOR
Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy
Salvatore Calabrese
Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
Amilcare Porporato
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Leonardo V. Noto
Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy
Related authors
No articles found.
Elisa Arnone, Dario Treppiedi, and Leonardo Valerio Noto
Proc. IAHS, 385, 5–10, https://doi.org/10.5194/piahs-385-5-2024, https://doi.org/10.5194/piahs-385-5-2024, 2024
Short summary
Short summary
The Friuli Venezia Giulia (FVG) region, northeastern Italy, records the heaviest precipitation annual totals of the country. The region counts on a dense ground-station network whose sampling frequency has been progressively increased up to 1 min step. In this work, we propose a comprehensive analysis of the available dataset of continuous series at high temporal resolution to verify whether trends in very short rainfalls are underway. Increasing trends have been detected on some stations.
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022, https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Antonio Francipane, Dario Pumo, Marco Sinagra, Goffredo La Loggia, and Leonardo Valerio Noto
Nat. Hazards Earth Syst. Sci., 21, 2563–2580, https://doi.org/10.5194/nhess-21-2563-2021, https://doi.org/10.5194/nhess-21-2563-2021, 2021
Short summary
Short summary
In the last few years, some cities in the Mediterranean area have witnessed an increase in extreme rainfall events such as urban floods. The study focuses on a particularly intense urban flood that occurred in Palermo on 15 July 2020, which highlighted the need for a shift in the way stormwater in urban settlements is managed. We think that the framework used to study the impacts of the event and some conclusive remarks could be easily transferred to other urban contexts.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration
– Guidelines for computing crop water requirements – FAO Irrigation and
drainage paper 56, FAO, ISBN 92-5-104219-5, 1998. a
Amann, T., Hartmann, J., Struyf, E., de Oliveira Garcia, W., Fischer, E. K.,
Janssens, I., Meire, P., and Schoelynck, J.: Enhanced Weathering and related
element fluxes – a cropland mesocosm approach, Biogeosciences, 17, 103–119,
https://doi.org/10.5194/bg-17-103-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Asibor, J. O., Clough, P. T., Nabavi, S. A., and Manovic, V.: Assessment of
optimal conditions for the performance of greenhouse gas removal methods,
J. Environ. Manag., 294, 113039,
https://doi.org/10.1016/j.jenvman.2021.113039, 2021. a
Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A.,
Borrelli, P., Montanarella, L., and Panagos, P.: Mapping LUCAS topsoil
chemical properties at European scale using Gaussian process regression,
Geoderma, 355, 113912,
https://doi.org/10.1016/j.geoderma.2019.113912, 2019. a, b, c
Bandstra, J. Z., Buss, H. L., Campen, R., Liermann, L., Moore, J., Hausrath,
E., Navarre-Sitchler, A., Jang, J., and Brantley, S.: Appendix: Compilation
of mineral dissolution rates, in: Kinetics of Water–Rock Interaction,
737–823, New York, Springer, 2008. a
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M.,
Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R.,
Mercure, J.-F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh,
L., Quegan, S., Pidgeon, N. F., Janssens, I. A., Hansen, J., and Banwart,
S. A.: Potential for large-scale CO2 removal via enhanced rock weathering
with croplands, Nature, 583, 242–248, https://doi.org/10.1038/s41586-020-2448-9, 2020. a, b, c
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets,
B.: Copernicus Global Land Cover Layers – Collection 2, Remote Sens., 12v 1044,
https://doi.org/10.3390/rs12061044, 2020. a
Calabrese, S. and Porporato, A.: Wetness controls on global chemical
weathering, Environ. Res. Commun., 2, 085005,
https://doi.org/10.1088/2515-7620/abad7b, 2020. a
Cipolla, G., Francipane, A., and Noto, L. V.: Classification of Extreme
Rainfall for a Mediterranean Region by Means of Atmospheric Circulation
Patterns and Reanalysis Data, Water Resour. Manag., 34, 3219–3235,
https://doi.org/10.1007/s11269-020-02609-1, 2020. a
Cipolla, G., Calabrese, S., Noto, L. V., and Porporato, A.: The role of
hydrology on enhanced weathering for carbon sequestration I. Modeling
rock-dissolution reactions coupled to plant, soil moisture, and carbon
dynamics, Adv. Water Resour., 154, 103934,
https://doi.org/10.1016/j.advwatres.2021.103934, 2021a. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Cipolla, G., Calabrese, S., Noto, L. V., and Porporato, A.: The role of
hydrology on enhanced weathering for carbon sequestration II. From
hydroclimatic scenarios to carbon-sequestration efficiencies, Adv.
Water Resour., 154, 103949,
https://doi.org/10.1016/j.advwatres.2021.103949, 2021b. a, b, c, d, e, f, g, h, i
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic
properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978. a, b
Dietzen, C., Harrison, R., and Michelsen-Correa, S.: Effectiveness of enhanced
mineral weathering as a carbon sequestration tool and alternative to
agricultural lime: An incubation experiment, Int. J.
Greenh. Gas C., 74, 251–258,
https://doi.org/10.1016/j.ijggc.2018.05.007, 2018. a
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J.,
Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global patterns of terrestrial
nitrogen and phosphorus limitation, Nat. Geosci., 13, 221–226,
https://doi.org/10.1038/s41561-019-0530-4, 2020. a
D'Odorico, P., Laio, F., Porporato, A., and Rodriguez-Iturbe, I.: Hydrologic
controls on soil carbon and nitrogen cycles, II. A case study, Adv.
Water Resour., 26, 59–70,
https://doi.org/10.1016/S0309-1708(02)00095-7, 2003. a, b
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth for
temperate agricultural crops, Field Crops Res., 189, 68–74,
https://doi.org/10.1016/j.fcr.2016.02.013, 2016. a
FAO: Global Soil Organic Carbon Map V1.5: Technical report, p. 162, FAO and
ITPS, ISBN 978-92-5-132144-7, 2020. a
Goll, D. S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S., Hartmann,
J., Janssens, I., Li, W., Obersteiner, M., Penuelas, J., Tanaka, K., and
Vicca, S.: Potential CO2 removal from enhanced weathering by ecosystem
responses to powdered rock, Nat. Geosci., 14, 545–549,
https://doi.org/10.1038/s41561-021-00798-x, 2021. a
Gomez-Casanovas, N., Blanc-Betes, E., Moore, C. E., Bernacchi, C. J., Kantola,
I., and DeLucia, E. H.: A review of transformative strategies for climate
mitigation by grasslands, Sci. Total Environ., 799, 149466,
https://doi.org/10.1016/j.scitotenv.2021.149466, 2021. a
Gruber, C., Zhu, C., Georg, R. B., Zakon, Y., and Ganor, J.: Resolving the gap
between laboratory and field rates of feldspar weathering, Geochim.
Cosmochim. Ac., 147, 90–106, https://doi.org/10.1016/j.gca.2014.10.013, 2014. a
Hao, T., Zhu, Q., Zeng, M., Shen, J., Shi, X., Liu, X., Zhang, F., and
de Vries, W.: Quantification of the contribution of nitrogen fertilization
and crop harvesting to soil acidification in a wheat-maize double cropping
system, Plant Soil, 434, 167–184, https://doi.org/10.1007/s11104-018-3760-0, 2019. a
Haque, F., Santos, R. M., and Chiang, Y. W.: CO2 sequestration by
wollastonite-amended agricultural soils – An Ontario field study,
Int. J. Greenh. Gas C., 97, 103017,
https://doi.org/10.1016/j.ijggc.2020.103017, 2020. a, b
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A
representation of rock properties at the Earth surface, Geochem.
Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, 2012. a
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L.,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon dioxide,
supply nutrients, and mitigate ocean acidification, Rev. Geophys.,
51, 113–149, https://doi.org/10.1002/rog.20004, 2013. a, b, c, d
Hempel, J., Libohova, Z., Thompson, J., Odgers, N. P., Smith, C., Lelyk, G.,
and Geraldo, G.: GlobalSoilMap North American Node progress, GlobalSoilMap,
https://doi.org/10.1201/b16500-11,
e-ISBN 9780429227417, 2014. a, b, c
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews,
M. G., Lomas, M. R., Cotton, T. E. A., Kemp, S. J., James, R. H., Pearce,
C. R., Hartley, S. E., Hodson, M. E., Leake, J. R., Banwart, S. A., and
Beerling, D. J.: Increased yield and CO2 sequestration potential with the C4
cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural
soil, Glob. Change Biol., 26, 3658–3676,
https://doi.org/10.1111/gcb.15089, 2020. a, b
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering potential of
artificially enhanced silicate weathering of olivine, P.
Natl. Acad. Sci. USA, 107, 20228–20233,
https://doi.org/10.1073/pnas.1000545107, 2010. a
Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in
water-controlled ecosystems: active role in hydrologic processes and response
to water stress: II. Probabilistic soil moisture dynamics, Adv. Water
Resour., 24, 707–723, https://doi.org/10.1016/S0309-1708(01)00005-7,
2001. a, b
Lal, R., Monger, C., Nave, L., and Smith, P.: The role of soil in regulation of
climate, Philos. T. R. Soc. B, 376, 20210084, https://doi.org/10.1098/rstb.2021.0084, 2021. a
Lasaga, A. C.: Chemical kinetics of water-rock interactions, J.
Geophys. Res.-Sol. Ea., 89, 4009–4025,
https://doi.org/10.1029/JB089iB06p04009, 1984. a, b
Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L.,
Yeong, K. L., Davies, K., Nelson, P. N., Bird, M. I., Kantola, I. B.,
Masters, M. D., DeLucia, E., Leake, J. R., Banwart, S. A., and Beerling,
D. J.: Effects of mineralogy, chemistry and physical properties of basalts on
carbon capture potential and plant-nutrient element release via enhanced
weathering, Appl. Geochem., 132, 105023,
https://doi.org/10.1016/j.apgeochem.2021.105023, 2021. a, b
Libohova, Z., Wills, S., Odgers, N. P., Ferguson, R., Nesser, R., Thompson,
J. A., West, L. T., and Hempel, J. W.: Converting pH 1:1 H2O and 1:2 CaCl2 to
1:5 H2O to contribute to a harmonized global soil database, Geoderma, 213,
544–550, https://doi.org/10.1016/j.geoderma.2013.08.019, 2014. a, b, c
Osservatorio Clima: ERG5_Eraclito – Dataset climatico dal 1961, Osservatorio Clima [data set], https://drive.google.com/file/d/1Hy9KakRnMrcOE5BUaMI_SgbIgOqViBZX/view?usp=sharing, last access: 1 July 2022. a
Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., and Schott, J.:
Olivine dissolution rates: A critical review, Chem. Geol., 500, 1–19,
https://doi.org/10.1016/j.chemgeo.2018.10.008, 2018. a
Palandri, J. L. and Kharaka, Y. K.: A compilation of rate parameters of
water-mineral interaction kinetics for application to geochemical modeling,
U. S. Geological Survey, https://doi.org/10.3133/ofr20041068, 2004. a
Peters, S. C., Blum, J. D., Driscoll, C. T., and Likens, G. E.: Dissolution of
wollastonite during the experimental manipulation of Hubbard Brook Watershed
1, Biogeochemistry, 67, 309–329, https://doi.org/10.1023/B:BIOG.0000015787.44175.3f,
2004. a
Plummer, L. N., Wigley, T. M. L., and Parkhurst, D. L.: Critical Review of the
Kinetics of Calcite Dissolution and Precipitation, in: Chemical Modeling in
Aqueous Systems, Am. Chem. Soc., 93, 537–573, 1979. a
Pokrovsky, O. S. and Schott, J.: Kinetics and mechanism of forsterite
dissolution at 25 ∘C and pH from 1 to 12, Geochim. Cosmochim. A.,
64, 3313–3325, https://doi.org/10.1016/S0016-7037(00)00434-8, 2000. a
Porporato, A., D’Odorico, P., Laio, F., and Rodriguez-Iturbe, I.: Hydrologic
controls on soil carbon and nitrogen cycles, I. Modeling scheme, Adv.
Water Resour., 26, 45–58,
https://doi.org/10.1016/S0309-1708(02)00094-5, 2003. a, b
Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., and Theodoro,
S. H.: Possibilities of using silicate rock powder: An overview, Geosci.
Front., 13, 101185, https://doi.org/10.1016/j.gsf.2021.101185,
2022. a
Rimstidt, J. D.: Diffusion control of quartz and forsterite dissolution rates,
Appl. Geochem., 61, 99–108,
https://doi.org/10.1016/j.apgeochem.2015.05.020, 2015. a
Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Coxi, D. R.:
Probabilistic modelling of water balance at a point: the role of climate,
soil and vegetation, P. Roy. Soc. Lond. Ser. A, 455, 3789–3805,
https://doi.org/10.1098/rspa.1999.0477, 1999. a
Russell, L. M., Rasch, P. J., Mace, G. M., Jackson, R. B., Shepherd, J., Liss,
P., Leinen, M., Schimel, D., Vaughan, N. E., Janetos, A. C., Boyd, P. W.,
Norby, R. J., Caldeira, K., Merikanto, J., Artaxo, P., Melillo, J. M., and
Morgan, M. G.: Ecosystem Impacts of Geoengineering: A Review for Developing a
Science Plan, AMBIO, 41, 350–369, https://doi.org/10.1007/s13280-012-0258-5, 2012. a
Shen, X., Yang, F., Xiao, C., and Zhou, Y.: Increased contribution of root
exudates to soil carbon input during grassland degradation, Soil Biol.
Biochem., 146, 107817,
https://doi.org/10.1016/j.soilbio.2020.107817, 2020. a, b
Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G.,
MacLeod, D., Quichimbo, E. A., and Michaelides, K.: Hourly potential
evapotranspiration at 0.1∘ resolution for the global land surface from
1981-present, Sci. Data, 8, 224
, https://doi.org/10.1038/s41597-021-01003-9,
2021. a
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.: Potential
and costs of carbon dioxide removal by enhanced weathering of rocks,
Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4,
2018. a
Taylor, L. L., Beerling, D. J., Quegan, S., and Banwart, S. A.: Simulating
carbon capture by enhanced weathering with croplands: an overview of key
processes highlighting areas of future model development, Biol. Lett.,
13, 20160868, https://doi.org/10.1098/rsbl.2016.0868, 2017. a
Taylor, L. L., Driscoll, C. T., Groffman, P. M., Rau, G. H., Blum, J. D., and
Beerling, D. J.: Increased carbon capture by a silicate-treated forested
watershed affected by acid deposition, Biogeosciences, 18, 169–188,
https://doi.org/10.5194/bg-18-169-2021, 2021. a
ten Berge, H. F. M., van der Meer, H. G., Steenhuizen, J. W., Goedhart, P. W.,
Knops, P., and Verhagen, J.: Olivine Weathering in Soil, and Its Effects on
Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment,
PLOS ONE, 7, 1–8, https://doi.org/10.1371/journal.pone.0042098, 2012. a, b, c
U.S. Geological Survey: USGS Current Conditions for the Nation, U.S. Geological Survey [data set], https://waterdata.usgs.gov/nwis/current/?type=precip&group_key=state_cd, last access: 24 August 2022. a
Vicca, S., Goll, D. S., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck, A.,
Peñuelas, J., Poblador, S., Rijnders, J., Sardans, J., Struyf, E., Swoboda,
P., van Groenigen, J. W., Vienne, A., and Verbruggen, E.: Is the climate
change mitigation effect of enhanced silicate weathering governed by
biological processes?, Glob. Change Biol., 28, 711–726,
https://doi.org/10.1111/gcb.15993, 2022. a, b
Vico, G. and Porporato, A.: From rainfed agriculture to stress-avoidance
irrigation: I. A generalized irrigation scheme with stochastic soil moisture,
Adv. Water Resour., 34, 263–271,
https://doi.org/10.1016/j.advwatres.2010.11.010, 2011a. a
Vico, G. and Porporato, A.: From rainfed agriculture to stress-avoidance
irrigation: II. Sustainability, crop yield, and profitability, Adv.
Water Resour., 34, 272–281,
https://doi.org/10.1016/j.advwatres.2010.11.011, 2011b. a
Wang, J., Wang, X., Xu, M., Feng, G., Zhang, W., Yang, X., and Huang, S.:
Contributions of wheat and maize residues to soil organic carbon under
long-term rotation in north China, Sci. Rep., 5, 11409,
https://doi.org/10.1038/srep11409, 2015.
a, b
White, A. F. and Brantley, S. L.: The effect of time on the weathering of
silicate minerals: why do weathering rates differ in the laboratory and
field?, Chem. Geol., 202, 479–506,
https://doi.org/10.1016/j.chemgeo.2003.03.001, 2003. a
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help...
Altmetrics
Final-revised paper
Preprint