Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Gianpiero Cossarini
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Paolo Lazzari
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Tomas Lovato
Ocean Modeling and Data Assimilation Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, CMCC, Bologna, Italy
Giorgio Bolzon
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Simona Masina
Ocean Modeling and Data Assimilation Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, CMCC, Bologna, Italy
Cosimo Solidoro
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Stefano Salon
CORRESPONDING AUTHOR
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Related authors
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Guido Occhipinti, Davide Valenti, and Paolo Lazzari
EGUsphere, https://doi.org/10.5194/egusphere-2025-2994, https://doi.org/10.5194/egusphere-2025-2994, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Due to climate change shifts in ecosystem structure and function have been increasingly documented in marine ecosystems around the globe. We tested whether a marine biogeochemical model can predict shifts to alternative regimes in plankton and biogeochemical processes under environmental perturbations. Simulations show that perturbations can drive the system into new regimes, with responses that are either reversible or hysteretic, depending on the type and intensity of the disturbance.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Paolo Oddo, Mario Adani, Francesco Carere, Andrea Cipollone, Anna Chiara Goglio, Eric Jansen, Ali Aydogdu, Francesca Mele, Italo Epicoco, Jenny Pistoia, Emanuela Clementi, Nadia Pinardi, and Simona Masina
EGUsphere, https://doi.org/10.5194/egusphere-2025-1553, https://doi.org/10.5194/egusphere-2025-1553, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study present a data assimilation scheme that combines ocean observational data with ocean model results to better understand the ocean and predict its future state. The method uses a variational approach focusing on the physical relationships between all the state vector variables errors. Testing in the Mediterranean Sea showed that a complex sea level operator based on a barotropic model works best.
Rita Lecci, Robyn Gwee, Kun Yan, Sanne Muis, Nadia Pinardi, Jun She, Martin Verlaan, Simona Masina, Wenshan Li, Hui Wang, Salvatore Causio, Antonio Novellino, Marco Alba, Etiënne Kras, Sandra Gaytan Aguilar, and Jan-Bart Calewaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-1763, https://doi.org/10.5194/egusphere-2025-1763, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study explored how sea level is changing along the China-Europe Sea Route. By combining satellite and in-situ observations with advanced modeling, the research identified ongoing sea level rise and an increasing frequency of extreme water level events in some regions. These findings underscore the importance of continued monitoring and provide useful knowledge to support long-term planning, coastal resilience, and informed decision-making.
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from a single nutrient to fully explicit representations of multiple nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, the initial and boundary conditions, and the lack of observations.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Carlos Enmanuel Soto López, Fabio Anselmi, Mirna Gharbi Dit Kacem, and Paolo Lazzari
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-174, https://doi.org/10.5194/gmd-2024-174, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Our goal was to use an analytical expression to estimate the density of optical constituents, allowing us to have an interpretable formulation consistent with the laws of physics. We focused on a probabilistic approach, optimizing the model and retrieving quantities with their respective uncertainty. Considering future application to Big Data, we also explored a Neural Network based method, retrieving computationally efficient estimates, maintaining consistency with the analytical expression.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet, 4-osr8, 13, https://doi.org/10.5194/sp-4-osr8-13-2024, https://doi.org/10.5194/sp-4-osr8-13-2024, 2024
Short summary
Short summary
In the summer of 2022, a regional short-term forecasting system was able to predict the onset, spread, peaks, and decay of a record-breaking marine heatwave in the Mediterranean Sea up to 10 d in advance. Satellite data show that the event was record-breaking in terms of basin-wide intensity and duration. This study demonstrates the potential of state-of-the-art forecasting systems to provide early warning of marine heatwaves for marine activities (e.g. conservation and aquaculture).
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024, https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Short summary
We investigate the air–sea heat flux during marine heatwaves (MHWs) in the Mediterranean Sea. Surface heat flux drives 44 % of the onset and only 17 % of the declining MHW phases, suggesting a key role of oceanic processes. Heat flux is more important in warmer months and onset phases, with latent heat dominating. Shorter events show a weaker heat flux contribution. In most cases, mixed layer shoaling occurs over the entire MHW duration, followed by vertical mixing after the MHW end day.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
Ocean Sci., 20, 417–432, https://doi.org/10.5194/os-20-417-2024, https://doi.org/10.5194/os-20-417-2024, 2024
Short summary
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Revised manuscript under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Ali Aydogdu, Pietro Miraglio, Romain Escudier, Emanuela Clementi, and Simona Masina
State Planet, 1-osr7, 6, https://doi.org/10.5194/sp-1-osr7-6-2023, https://doi.org/10.5194/sp-1-osr7-6-2023, 2023
Short summary
Short summary
This paper investigates the salt content, salinity anomaly and trend in the Mediterranean Sea using observational and reanalysis products. The salt content increases overall, while negative salinity anomalies appear in the western basin, especially around the upwelling regions. There is a large spread in the salinity estimates that is reduced with the emergence of the Argo profilers.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Andrea Cipollone, Deep Sankar Banerjee, Doroteaciro Iovino, Ali Aydogdu, and Simona Masina
Ocean Sci., 19, 1375–1392, https://doi.org/10.5194/os-19-1375-2023, https://doi.org/10.5194/os-19-1375-2023, 2023
Short summary
Short summary
Sea-ice volume is characterized by low predictability compared to the sea ice area or the extent. A joint initialization of the thickness and concentration using satellite data could improve the predictive power, although it is still absent in the present global analysis–reanalysis systems. This study shows a scheme to correct the two features together that can be easily extended to include ocean variables. The impact of such a joint initialization is shown and compared among different set-ups.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Enrico Scoccimarro, Daniele Peano, Silvio Gualdi, Alessio Bellucci, Tomas Lovato, Pier Giuseppe Fogli, and Antonio Navarra
Geosci. Model Dev., 15, 1841–1854, https://doi.org/10.5194/gmd-15-1841-2022, https://doi.org/10.5194/gmd-15-1841-2022, 2022
Short summary
Short summary
This study evaluated the ability of the CMCC-CM2 climate model participating to the last CMIP6 effort, in representing extreme events of precipitation and temperature at the daily and 6-hourly frequencies. The 1/4° resolution version of the atmospheric model provides better results than the version at 1° resolution for temperature extremes, at both time frequencies. For precipitation extremes, especially at the daily time frequency, the higher resolution does not improve model results.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Giuliana Rossi, Gualtiero Böhm, Angela Saraò, Diego Cotterle, Lorenzo Facchin, Paolo Giurco, Renata Giulia Lucchi, Maria Elena Musco, Francesca Petrera, Stefano Picotti, and Stefano Salon
Geosci. Commun., 3, 381–392, https://doi.org/10.5194/gc-3-381-2020, https://doi.org/10.5194/gc-3-381-2020, 2020
Short summary
Short summary
We organized an exhibition on the climate crisis using high-quality images shot by scientists, who are amateur photographers, during their campaigns in glacier regions. Working-age people, attracted by the gorgeous images, received the message that such beauty is in danger of vanishing. Twice, the visitors could talk directly with the experts to discuss geoscience, photography, and aesthetic choices and, of course, climate change, a problem that each of us has to play a part in to solve.
Cited articles
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué,
M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alcarez-Fanjul, E., and
Gomis, D.: Mediterranean Sea response to climate change in an ensemble of
twenty first century scenarios, Clim. Dyn., 45, 2775–2802, https://doi.org/10.1007/s00382-015-2507-3, 2015.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Auger, P. A., Ulses, C., Estournel, C., Stemman, L., Somot, S., and Diaz, F.:
Interannual control of plankton ecosystem in a deep convection area as
inferred from a 30-year 3D modeling study: winter mixing and prey/predator
in the NW Mediterranean, Prog. Oceanogr., 124, 12–27, https://doi.org/10.1016/j.pocean.2014.04.004, 2014.
Benedetti, F., Guilhaumon, F., Adloff, F., and Ayata, S. D: Investigating
uncertainties in zooplankton composition shifts under climate change
scenarios in the Mediterranean Sea, Ecography, 41, 345–360, https://doi.org/10.1111/ecog.02434, 2018.
Bethoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., and
Ruiz-Pino, D.: Nutrients in the Mediterranean Sea, mass balance and
statistical analysis of concentrations with respect to environmental change,
Mar. Chem., 63, 155–169, 1998.
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder,
V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S ., Levin, L.,
O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue, A.,
and Williamson, P.: Changing Ocean, Marine Ecosystems, and Dependent
Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V.,
Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriìa, A., Nicolai, M.,
Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
Buga, L., Sarbu, G., Fryberg, L., Magnus, W., Wesslander, K., Gatti, J.,
Leroy, D., Iona, S., Larsen, M., Koefoed Rømer, J., Østrem, A. K.,
Lipizer, M., and Giorgetti, A.: EMODnet Thematic Lot n∘ 4/SI2.749773
EMODnet Chemistry Eutrophication and Acidity aggregated datasets v2018, EMODnet [data set], https://doi.org/10.6092/EC8207EF-ED81-4EE5-BF48-E26FF16BF02E, 2018.
Butenschön, M., Lovato, T., Masina, S., Caserini, S., and Grosso, M.:
Alkalinization Scenarios in the Mediterranean Sea for Efficient Removal of
Atmospheric CO2 and the Mitigation of Ocean Acidification, Frontiers in Climate, 3, 14, https://doi.org/10.3389/fclim.2021.614537, 2021.
Canu, D. M., Ghermandi, A., Nunes, P. A., Lazzari, P., Cossarini, G., and
Solidoro, C.: Estimating the value of carbon sequestration ecosystem
services in the Mediterranean Sea: An ecological economics approach, Global Environ. Chang., 32,
87–95, 2015.
Cardin, V., Civitarese, G., Hainbucher, D., Bensi, M., and Rubino, A.: Thermohaline properties in the Eastern Mediterranean in the last three decades: is the basin returning to the pre-EMT situation?, Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, 2015.
Claustre, H., Morel, A., Hooker, S. B., Babin, M., Antoine, D., Oubelkheir,
K., Bricaud, A., Leblanc, K., Quéguiner, B., and Maritorena, S.: Is desert
dust making oligotrophic waters greener?, Geophys. Res. Lett., 29, 1–4,
https://doi.org/10.1029/2001GL014056, 2002.
Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., and Santoleri, R.:
Mediterranean Ocean colour chlorophyll trends, PLoS ONE, 11, e0155756, https://doi.org/10.1371/journal.pone.0155756, 2016.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro, C., Di
Biagio, V., Amadio, C., Lazzari, P., Brosich, A., and Salon, S.: High-Resolution
Reanalysis of the Mediterranean Sea Biogeochemistry (1999–2019), Front.
Mar. Sci., 8, 741486, https://doi.org/10.3389/fmars.2021.741486, 2021.
Crise, A., Allen, J., Baretta, J., Crispi, G., Mosetti, R., and Solidoro, C.:
The Mediterranean pelagic ecosystem response to physical forcing, Prog.
Oceanogr., 44, 219–243, 1999.
Crispi, G., Mosetti, R., Solidoro, C., and Crise, A.: Nutrient cycling in
Mediterranean basins: the role of the biological pump in the trophic regime,
Ecol. Model., 138, 101–114, 2001.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V: Future evolution of
Marine Heatwaves in the Mediterranean Sea, Clim. Dyn., 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
De Carlo, E. H., Mousseau, L., Passafiume, O., Drupp, P., and Gattuso, J. P.:
Carbonate Chemistry and Air–Sea CO2 Flux in a NW Mediterranean Bay
Over a Four-Year Period: 2007–2011, Aquat. Geochem., 19, 399–442, https://doi.org/10.1007/s10498-013-9217-4, 2013.
Di Biagio, V., Cossarini, G., Salon, S., Lazzari, P., Querin, S., Sannino,
G., and Solidoro, C.: Temporal scales of variability in the Mediterranean Sea
ecosystem: Insight from a coupled model, J. Mar. Syst., 197, 103176, https://doi.org/10.1016/j.jmarsys.2019.05.002, 2019.
Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X.: Heat stress
intensification in the Mediterranean climate change hotspot, Geophys. Res.
Lett., 34, GL030000, https://doi.org/10.1029/2007GL030000, 2007.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Antoine, D., and Marullo, S.: Satellite-driven modeling of
the upper ocean mixed layer and air–sea CO2 flux in the Mediterranean Sea,
Deep-Sea Res. Pt. I, 55, 405–434,
2008.
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M.,
Dell'Aquilla, A., Elizalde, A., Jacob, D., L'Hévéder,
B., Li, L., Oddo, P., Sannino, G., Scoccimarrio, E., and Sevault, F.: Future
projections of the surface heat and water budgets of the Mediterranean Sea
in an ensemble of coupled atmosphere–ocean regional climate models, Clim. Dynam., 39,
1859–1884, 2012.
Fach, B. A., Orek, H., Yilmaz, E., Tezcan, D., Salihoglu, I., Salihoglu, B.,
and Latif, M. A.: Water Mass Variability and Levantine Intermediate Water
Formation in the Eastern Mediterranean Between 2015 and 2017, J. Geophys. Res.-Ocean., 126,
e2020JC016472, https://doi.org/10.1029/2020JC016472, 2021.
Fedele, G., Mauri, E., Notarstefano, G., and Poulain, P. M.: Characterization of the Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using 20 years of Argo data, Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, 2022.
Foujols, M.-A., Lévy, M., Aumont, O., and Madec, G.: OPA 8.1 Tracer Model reference manual (Note du Pole de Modélisation) France, Institut Pierre-Simon Laplace (IPSL), 45 pp., 2000.
Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., and Yari,
S.: Can internal processes sustain reversals of the ocean upper circulation?
The Ionian Sea example, Geophys. Res. Lett., 37, L09608, https://doi.org/10.1029/2010GL043216,
2010.
Galli, G., Lovato, T., and Solidoro, C.: Marine Heat Waves Hazard 3D Maps and
the Risk for Low Motility Organisms in a Warming Mediterranean Sea,
Front. Mar. Sci., 4, 136, https://doi.org/10.3389/fmars.2017.00136, 2017.
Gazeau, F., Ridame, C., Van Wambeke, F., Alliouane, S., Stolpe, C., Irisson, J.-O., Marro, S., Grisoni, J.-M., De Liège, G., Nunige, S., Djaoudi, K., Pulido-Villena, E., Dinasquet, J., Obernosterer, I., Catala, P., and Guieu, C.: Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview, Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, 2021.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate Change Projections for the Mediterranean
Region, Glob. Planet Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Goyet, C., Hassoun, A., Gemayel, E., Touratier, F., Abboud-Abi Saab, M., and
Guglielmi, V.: Thermodynamic forecasts of the Mediterranean Sea
acidification, Mediterr. Mar. Sci., 17, 508–518, 2016.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun,
A., Calmanti, S., Carillo, A., Dell'Aquila, A., Déqué, M., Dubois,
C., Elizalde, A., Harzallah, A, Jacob, D., L'Hévéder, B., May, W.,
Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., and
Navarra, A : The CIRCE simulations: Regional climate change projections with
realistic representation of the Mediterranean sea, B. Am. Meteorol. Soc., 94, 65–81,
https://doi.org/10.1175/BAMS-D-11-00136.1, 2013.
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and Moutin, T.: New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015.
Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab,
M., Guglielmi, V., Touratier, F., and Falco, C.: Acidification of the
Mediterranean Sea from anthropogenic carbon penetration, Deep-Sea Res.
Pt. I, 102, 1–15, 2015.
Hassoun, A. E. R., Fakhri, M., Abboud-Abi Saab, M., Gemayel, E., and De
Carlo, E. H: The carbonate system of the Eastern-most Mediterranean Sea,
Levantine Sub-basin: Variations and drivers, Deep-Sea Res. Pt. II, 164, 54–73, 2019.
Hausfather, Z. and Peters, G. P.: Emissions – The “business as usual” story is misleading, Nature, 577, 618–620, 2020.
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Déqué, M.:
Modeling the deep convection in the northwestern Mediterranean Sea using an
eddy-permitting and an eddy-resolving model: Case study of winter
1986–1987, J. Geophys. Res., 113, C04011, https://doi.org/10.1029/2006JC003991, 2008.
Herrmann, M., Diaz, F., Estournel, C., Marsaleix, P., and Ulses, C.: Impact of
atmospheric and oceanic interannual variability on the North Western
Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle, J. Geophys. Res. Oceans, 118, 5792–5813, https://doi.org/10.1002/jgrc.20405, 2013.
Herrmann, M., Estournel, C., Adloff, F., and Diaz, F.: Impact of climate
change on the northwestern Mediterranean Sea pelagic planktonic ecosystem
and associated carbon cycle, J. Geophys. Res.-Oceans, 119, 5815–5836,
https://doi.org/10.1002/2014JC010016, 2014.
Ibrahim, O., Mohamed, B., and Nagy, H.: Spatial Variability and Trends of Marine
Heat Waves in the Eastern Mediterranean Sea over 39 Years, J. Mar. Sci. Eng., 9, 643, https://doi.org/10.3390/jmse9060643, 2021.
IPCC AR5 Climate Change 2014: Synthesis Report. Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, 2014.
Keeling, R. F., Kortzinger, A., and Gruber, N.: Ocean Deoxygenation in a
Warming World, Ann. Rev. Mar. Sci., 2, 199–229, 2010.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Lamon, L., Rizzi, J., Bonaduce, A., Dubois, C., Lazzari, P., Ghenim, L., Gana, S., Somot, S., Li, L., Melaku Canu, D., Solidoro, C., Pinardi, N., and Marcomini, A.: An ensemble of models for
identifying climate change scenarios in the Gulf of Gabes, Tunisia, Reg.
Environ. Change, 14, 31–40, https://doi.org/10.1007/s10113-013-0430-x, 2014.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède, R., and Gačić, M.: On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach, Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, 2015.
Lascaratos, A.: Estimation of deep and intermediate water mass formation rates in the Mediterranean Sea, Deep-Sea Res. Pt. II, 40, 1327–1332, 1993.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M.,
Oddo, P., and Vichi M.: The impacts of climate change and environmental
management policies on the trophic regimes in the Mediterranean Sea:
Scenario analyses, J. Marine Syst., 135, 137–149, 2014.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of
phosphate and nitrate in the Mediterranean Sea: A modeling approach, Deep-Sea
Res., 108, 39–52, 2016.
Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gačić, M., Gomis, D., Goodess,
C., Hoff, H., Kutiel, H., Luterbacher, J., Planton, S., Reale, M., Schröder,
K., Struglia, M. V., Toreti, A., Tsimplis, M., Ulbrich, U., and Xoplaki, E.:
Introduction: Mediterranean Climate: Background Information, in: The Climate of the Mediterranean Region. From the Past to the Future, edited by: Lionello, P., Elsevier, Amsterdam, Netherlands, XXXV–lXXX, ISBN: 9780124160422, 2012.
Lovato, T.: Mediterranean Sea marine physical simulations under CMIP5 historical and future scenario projections for the 21st century, CMCC DDS [data set], https://dds.cmcc.it/#/dataset/medsea-cmip5-projections-physics, last access: 21 July 2022.
Lovato, T., Vichi, M., and Oddo, P.: High-resolution simulations of
Mediterranean Sea physical oceanography under current and scenario climate
conditions: model description, assessment and scenario analysis, CMCC
Research Paper, 207, RP0207.2013, 2013.
Macias, D. M., Garcia-Gorriz, E., and Stips, A.: Productivity changes in the
Mediterranean Sea for the twenty-first century in response to changes in the
regional atmospheric forcing, Front. Mar. Sci., 2, 79, https://doi.org/10.3389/fmars.2015.00079, 2015.
Macias, D., Stips, A., and Garcia-Gorriz, E.: The relevance of deep
chlorophyll maximum in the open Mediterranean Sea evaluated through 3D
hydrodynamic-biogeochemical coupled simulations, Ecol. Model., 281,
26–37, 2014.
Macias, D., Garcia-Gorriz, E., and Stips, A.: Deep winter convection and
phytoplankton dynamics in the NW Mediterranean Sea under present climate and
future (horizon 2030) scenarios, Sci. Rep., 22, 1–15, https://doi.org/10.1038/s41598-018-24965-0, 2018.
Madec, G.: NEMO Ocean Engine, Note du Pôle de modélisation, no. 27,
Institut Pierre-Simon Laplace (IPSL), France, 2008.
Mantziafou, A. and Lascaratos, A.: An eddy resolving numerical study of the
general circulation and deep-water formation in the Adriatic Sea, Deep-Sea
Res. Pt. I, 51, 251–292, 2004.
Mantziafou, A. and Lascaratos, A.: Deep-water formation in the Adriatic Sea:
Interannual simulations for the years 1979–1999, Deep Sea Res. Pt. I, 55,
1403–1427, 2008.
Mathbout, S., Lopez-Bustins, J. A., Royé, D., and Martin-Vide, J.:
Mediterranean-Scale Drought: Regional Datasets for Exceptional
Meteorological Drought Events during 1975–2019, Atmosphere, 12, 941, https://doi.org/10.3390/atmos12080941, 2021.
MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report (Version 1), Zenodo, https://doi.org/10.5281/zenodo.4768833, 2020.
Morel, A. and Gentili, B.: The dissolved yellow substance and the shades of blue in the Mediterranean Sea, Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, 2009.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Van Vuuren, D. P., and Meehl, G. A.: The next generation of scenarios for
climate change research and assessment, Nature, 463, 747–756, 2010.
Moullec, F., Barrier, N., Drira, S., Guilhaumon, F., Marsaleix, P., Somot,
S., Ulses, C., Velez, L., and Shin, Y. J.: An end-to-end model reveals losers
and winners in a warming Mediterranean Sea, Front. Mar. Sci., 6, 345, https://doi.org/10.3389/fmars.2019.00345, 2019.
Moutin, T. and Raimbault, P.: Primary production, carbon export and
nutrients availability in Western and Eastern Mediterranean Sea in early
summer 1996 (MINOS cruise), J. Marine Syst., 33/34, 273–288, 2002.
Moutin, T. and Prieur, L.: Influence of anticyclonic eddies on the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM cruise), Biogeosciences, 9, 3827–3855, https://doi.org/10.5194/bg-9-3827-2012, 2012.
Myers, P. G. and Haines, K.: Stability of the Mediterranean's thermohaline
circulation under modified surface evaporative fluxes, J. Geophys. Res.,
107, https://doi.org/10.1029/2000JC000550, 2002.
Nittis, K. and Lascaratos, A.: Diagnostic and prognostic numerical studies of LIW formation, J. Mar. Syst., 18, 179–195, 1998.
O'Connor, M. I., Gilbert, B., and Brown, C. J.: Theoretical predictions for
how temperature affects the dynamics of interacting herbivores and plants,
The American Naturalist, 178, 626–638, 2011.
Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo, D.: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting, Ocean Sci., 5, 461–473, https://doi.org/10.5194/os-5-461-2009, 2009.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pagès, R., Baklouti, M., Barrier, N., Ayache, M., Sevault, F., Somot, S.,
and Moutin, T.: Projected Effects of Climate-Induced Changes in
Hydrodynamics on the Biogeochemistry of the Mediterranean Sea Under the RCP
8.5 Regional Climate Scenario, Front. Mar. Sci., 7, 957, https://doi.org/10.3389/fmars.2020.563615, 2020.
Planton, S., Lionello, P., Artale, V., Aznar, R., Carrillo, A., Colin,J.,
Congedi, L., Dubois, C., Elizalde, A., Gualdi, S., Hertig, E., Jacobeit, J.,
Jordà, G., Li, L., Mariotti, A., Piani, C., Ruti, P., Sanchez-Gomez, E.,
Sannino, G., Sevault, F., Somot, S., and Tsimplis, M.: The Climate of the
Mediterranean Region in Future Climate, in: The Climate of
the Mediterranean Region. From the Past to the Future, edited by: Lionello, P., Elsevier, Amsterdam, Netherlands, Projections, 449–502, ISBN 978-0-12-416042-2, 2012.
Powley, H. R., Krom, M. D., and Van Cappellen, P.: Circulation and oxygen
cycling in the Mediterranean Sea: Sensitivity to future climate change, J. Geophys. Res.-Oceans,
121, 8230–8247, https://doi.org/10.1002/2016JC012224, 2016.
Ramirez-Romero, E., Jordà, G., Amores, A., Kay, S., Segura-Noguera, M.,
Macias, D. M., Maynou, F., Sabatés, A., and Catalán, I. A.: Assessment of
the Skill of Coupled Physical–Biogeochemical Models in the NW
Mediterranean, Front. Mar. Sci., 7, 497, https://doi.org/10.3389/fmars.2020.00497, 2020.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti,
L., Farneti, R., and Sannino, G.: The Regional Earth System Model RegCM-ES:
Evaluation of the Mediterranean climate and marine biogeochemistry, J. Adv. Model. Earth Sy., 12,
e2019MS001812, https://doi.org/10.1029/2019MS001812, 2020a.
Reale, M., Salon, S., Somot, S., Solidoro, C., Giorgi, F., Cossarini, G.,
Lazzari, P., Crise, A., and Sevault, F.: Influence of large-scale atmospheric
circulation patterns on nutrients dynamics in the Mediterranean Sea in the
extended winter season (October–March) 1961–1999, Clim. Res., 82, 117–136, https://doi.org/10.3354/cr01620, 2020b.
Reale, M., Cossarini, G., Lazzari, P., Lovato, T., Bolzon, G., Masina, S., Solidoro, C., and Salon, S.: Mediterranean Sea marine biogeochemistry simulations under CMIP5 future scenario projections for the 21st century, CMCC DDS [data set], https://dds.cmcc.it/#/dataset/medsea-cmip5-projections-biogeochemistry, last access: 21 July 2022.
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018.
Richon, C., Dutay, J.-C., Bopp, L., Le Vu, B., Orr, J. C., Somot, S., and Dulac, F.: Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario, Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, 2019.
Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P., Teruzzi, A., Solidoro, C., and Crise, A.: Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts, Ocean Sci., 15, 997–1022, https://doi.org/10.5194/os-15-997-2019, 2019.
Schroeder, K., Garcìa-Lafuente, J., Josey, S. A., Artale, V., Nardelli,
B. B., Carrillo, A., Gačić, M., Gasparini, G. P., Herrmann, M.,
Lionello, P., Ludwig, W., Millot, C., Özsoy, E., Pisacane, G.,
Sánchez-Garrido, J. C., Sannino, G., Santoleri, R., Somot, S., Struglia,
M., Stanev, E., Taupier-Letage, I., Tsimplis, M. N., Vargas-Yáñez,
M., Zervakis, V., and Zodiatis, G.: Circulation of the Mediterranean Sea and its
Variability, in: The Climate of the Mediterranean Region: From the Past to the Future, edited by: Lionello, P., Elsevier Inc., 187–256, https://doi.org/10.1016/B978-0-12-416042-2.00003-3, 2012.
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini,
E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical Cyclones on
Ocean Heat Transport in a High Resolution Coupled General Circulation Model,
J. Climate, 24, 4368–4384, 2011.
Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean
ventilation and deoxygenation in a warming world: introduction and
overview, Philos. T. R. Soc. A, 375, 20170240, https://doi.org/10.1098/rsta.2017.0240, 2017.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P.,
and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics),
Copernicus Monitoring Environment Marine Service (CMEMS), [data set],
https://www.cmcc.it/mediterranean-sea-physical-reanalysis-cmems-med-physics (last access: 31 October 2021), 2019.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Sitz, L. E., Di Sante, F., Farneti, R., Fuentes-Franco, R., Coppola, E.,
Mariotti, L., Reale, M., Sannino, G., Barreiro, M., Nogherotto, R.,
Giuliani, G., Graffino, G., Solidoro, C., Cossarini, G., and Giorgi, F.:
Description and evaluation of the Earth System Regional Climate Model (Reg
CM-ES), J. Adv. Model. Earth Sy., 9, 1863–1886, https://doi.org/10.1002/2017MS000933, 2017.
Solidoro, C., Cossarini, G., Lazzari, P., Galli, G., Bolzon, G., Somot, S.,
Sevault, F., and Salon, S.: Modelling carbon budgets in the Mediterranean Sea
ecosystem under contemporary and future climate, Front. Mari. Sci., 8, https://doi.org/10.3389/fmars.2021.781522, 2022.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change scenario
simulation of the Mediterranean Sea for the 21st century using a
high-resolution ocean circulation model, Clim. Dynam.,
27, 851–879, https://doi.org/10.1007/s00382-006-0167-z, 2006.
Somot, S., Houpert, L., Sevault, F., Testor, P., Bosse, A., Taupier-Letage,
I., Bouin, M., Waldman, R., Cassou, C., Sanchez-Gomez, E., Durrieu de Madron,
X., Adloff, F., Nabat, P., and Herrmann, M.: Characterizing, modelling and
understanding the climate variability of the deep water formation in the
North-Western Mediterranean Sea, Clim. Dynam., 51, 1179–1210, https://doi.org/10.1007/s00382-016-3295-0, 2018.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault,
F., Macias, D., Djurdjevic V., Sannino G., Li, L., and Sein, D.: Evolution of
Mediterranean Sea water properties under climate change scenarios in the
Med-CORDEX ensemble, Clim. Dyn., 54, 2135–2165, https://doi.org/10.1007/s00382-019-05105-4, 2020.
Stöven, T. and Tanhua, T.: Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements, Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and Cossarini,
G.: Assimilation of coastal and open sea biogeochemical data to improve
phytoplankton simulation in the Mediterranean Sea, Ocean Model., 132, 46–60, 2018.
Teruzzi, A., Bolzon, G., Cossarini, G., Lazzari, P., Salon, S., Crise, A.,
and Solidoro, C.: Mediterranean Sea Biogeochemical Reanalysis (CMEMS
MED-Biogeochemistry), Copernicus Monitoring Environment Marine
Service (CMEMS) [data set], https://www.cmcc.it/doi/mediterranean-sea-biogeochemical-reanalysis-cmems-med-biogeochemistry (last access: 31 January 2021), 2019.
Teruzzi, A., Feudale, L., Bolzon, G., Lazzari, P., Salon, S., Di Biagio, V.,
Coidessa, G., and Cossarini, G.: Mediterranean Sea Biogeochemical Reanalysis
(CMEMS MED-Biogeochemistry, MedBFM3 system) (Version 1) Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_BGC_006_008_MEDBFM3I, 2021.
Van Apeldoorn, D. and Bouwman, L.: SES land-based runoff and nutrient load
data (1980–2000), Deliverable 4.6,
http://www.perseus-net.eu/assets/media/PDF/deliverables/3321.6_Final.pdf, (last access: 5 February 2020), 2014.
Velaoras, D., Papadopoulos, V. P., Kontoyiannis, H., Cardin, V., and
Civitarese, G.: Water masses and hydrography during April and June 2016
in the cretan sea and cretan passage (Eastern Mediterranean Sea), Deep-Sea Res. Pt. II, 164, 25–40,
2019.
Vichi, M., Allen, J. I., Masina, S., and Hardman-Mountford, N. J.: The
emergence of ocean biogeochemical provinces: A quantitative assessment and a
diagnostic for model evaluation, Global Biogeochem. Cy., 25, GB2005, https://doi.org/10.1029/2010GB003867,
2011.
Vichi, M., Cossarini, G., Gutierrez Mlot, E., Lazzari, P., Lovato, T.,
Mattia, G., Masina, S., McKiver, W., Pinardi, N., Solidoro, C., and Zavatarelli,
M.: The Biogeochemical Flux Model (BFM): Equation Description and User
Manual. BFM version 5 (BFM-V5), Release 1.0, BFM Report series No. 1, March
2013, CMCC, Bologna, Italy, 87 pp., http://bfm-community.eu (last access: 30 October 2021),
2015.
Waldman, R., Brüggemann, N., Bosse, A., Spall, M., Somot, S., and
Sevault, F.: Overturning the Mediterranean thermohaline circulation, Geophys. Res. Lett., 45, 8407–8415, https://doi.org/10.1029/2018GL078502 ,2018.
Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault,
P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C.,
Garcia, F., Xueref-Remy, I., Blanc, P., Armengaud, A., and Lefèvre, D.:
Temporal variability of the carbonate system and air-sea CO2 exchanges in a
Mediterranean human-impacted coastal site, Estuar. Coast. Shelf S., 236, 106641, https://doi.org/10.1016/j.ecss.2020.106641, 2020.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and
Dickson, A. G: Total alkalinity, the explicit conservative expression and
its application to biogeochemical processes, Mar. Chem., 106,
287–300, 2007.
Zunino, S., Canu, D. M., Bandelj, V., and Solidoro, C.: Effects of ocean
acidification on benthic organisms in the Mediterranean Sea under realistic
climatic scenarios: a meta-analysis, Regional Studies in Marine Science, 10, 86–96, 2017.
Zunino, S., Canu, D. M., Zupo, V., and Solidoro, C.: Direct and indirect
impacts of marine acidification on the ecosystem services provided by
coralligenous reefs and seagrass systems, Global Ecology and Conservation, 18, e00625, https://doi.org/10.1016/j.gecco.2019.e00625, 2019.
Zunino, S., Libralato, S., Melaku Canu, D., Prato G., and Solidoro C.: Impact
of Ocean Acidification on Ecosystem Functioning and Services in
Habitat-Forming Species and Marine Ecosystems, Ecosystems, 24, 1561–1575, https://doi.org/10.1007/s10021-021-00601-3, 2021.
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea...
Altmetrics
Final-revised paper
Preprint