Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Negar Vakilifard
CORRESPONDING AUTHOR
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Richard G. Williams
Department of Earth, Ocean and Ecological Sciences, School of
Environmental Sciences, University of Liverpool, Liverpool, UK
Philip B. Holden
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Katherine Turner
Department of Earth, Ocean and Ecological Sciences, School of
Environmental Sciences, University of Liverpool, Liverpool, UK
Leverhulme Research Centre for Functional Materials Design, Liverpool,
UK
Neil R. Edwards
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Cambridge Centre for Energy, Environment and Natural Resource
Governance, University of Cambridge, Cambridge, UK
David J. Beerling
Leverhulme Centre for Climate Change Mitigation, School of
Biosciences, University of Sheffield, Sheffield, UK
Related authors
No articles found.
Ciara Pimm, Andrew J. S. Meijers, Dani C. Jones, and Richard G. Williams
Ocean Sci., 21, 1237–1253, https://doi.org/10.5194/os-21-1237-2025, https://doi.org/10.5194/os-21-1237-2025, 2025
Short summary
Short summary
Subantarctic mode water in the South Pacific Ocean is important due to its role in the uptake and transport of anthropogenic heat and carbon. The Subantarctic mode water region can be split into two pools using mixed-layer-depth properties. Sensitivity experiments are used to understand the effects of heating and wind on each pool. It is found that the optimal conditions to form large amounts of Subantarctic mode water in the South Pacific are local cooling and upstream warming combined.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
Clim. Past, 20, 2719–2739, https://doi.org/10.5194/cp-20-2719-2024, https://doi.org/10.5194/cp-20-2719-2024, 2024
Short summary
Short summary
Using an Earth system model that can simulate Dansgaard–Oeschger-like events, we show that conditions under which millennial-scale climate variability occurs are related to the integrated surface buoyancy flux over the northern North Atlantic. This newly defined buoyancy measure explains why millennial-scale climate variability arising from abrupt changes in the Atlantic meridional overturning circulation occurred for mid-glacial conditions but not for interglacial or full glacial conditions.
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past, 20, 2373–2398, https://doi.org/10.5194/cp-20-2373-2024, https://doi.org/10.5194/cp-20-2373-2024, 2024
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model (MEMLM) for reconstructing palaeoenvironments from microfossil assemblages. The machine-learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation, but they can fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Rémy Asselot, Philip B. Holden, Frank Lunkeit, and Inga Hense
Earth Syst. Dynam., 15, 875–891, https://doi.org/10.5194/esd-15-875-2024, https://doi.org/10.5194/esd-15-875-2024, 2024
Short summary
Short summary
Phytoplankton are tiny oceanic algae able to absorb the light penetrating the ocean. The light absorbed by these organisms is re-emitted as heat in the surrounding environment, a process commonly called phytoplankton light absorption (PLA). As a consequence, PLA increases the oceanic temperature. We studied this mechanism with a climate model under different climate scenarios. We show that phytoplankton light absorption is reduced under strong warming scenarios, limiting oceanic warming.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91, https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton absorbing light can influence the climate system but its future effect on the climate is still unclear. We use a climate model to investigate the role of phytoplankton light absorption under global warming. We find out that the effect of phytoplankton light absorption is smaller under a high greenhouse gas emissions compared to reduced and intermediate greenhouse gas emissions. Additionally, we show that phytoplankton light absorption is an important mechanism for the carbon cycle.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Cited articles
Archer, D.: A data-driven model of the global calcite lysocline, Global
Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96GB01521, 1996.
Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-varying climate sensitivity
from regional feedbacks, J. Clim., 26, 4518–4534, https://doi.org/10.1175/JCLI-D-12-00544.1, 2013.
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M.,
Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R.,
Mercure, J. F, Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh,
L., Quegan, S., Pidgeon, N. F., Janssens, I. A., Hansen, J., and Banwart, S.
A.: Potential for large-scale CO2 removal via enhanced rock weathering
with croplands, Nature, 583, 242–248, https://doi.org/10.1038/s41586-020-2448-9, 2020.
Boucher, O., Halloran, P. R., Bruke, E. J., Doutriaux-Boucher, M., Jones, C.
D., Lowe, J., Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an
Earth System model in response to CO2 concentration changes, Environ.
Res. Lett., 7, 024013, https://doi.org/10.1088/1748-9326/7/2/024013, 2012.
Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J.
G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J.,
and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from
1961 to 2008, Geophys. Res. Lett., 38, L18601, https://doi.org/10.1029/2011GL048794,
2011.
Colbourn, G., Ridgwell, A., and Lenton, T. M.: The Rock Geochemical Model (RokGeM) v0.9, Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, 2013.
Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A.,
Cimatoribus, A. A., Crespin, E., Drijfhout, S. S., Edwards, N. R., Eliseev,
A. V., Feulner, G., Fichefet, T., Forest, C. E., Goosse, H., Holden, P. B.,
Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov,
I. I., Monier, E., Olsen, S. M., Pedersen, J. O. P., Perrette, M.,
Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling,
T., Shaffer, G., Smith, R. S., Spahni, R., Sokolov, A. P., Steinacher, M.,
Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N., and Zhao, F.: Historical
and idealized climate model experiments: an intercomparison of Earth system
models of intermediate complexity, Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, 2013.
Edwards N. R. and Marsh R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Ehlert, D., Zickfeld, K., Eby, M., and Gillett, N.: The sensitivity of the
proportionality between temperature change and cumulative CO2 emissions
to ocean mixing, J. Clim., 30, 2921–2935, https://doi.org/10.1175/JCLI-D-16-0247.1,
2017.
Foley, A. M., Holden, P. B., Edwards, N. R., Mercure, J.-F., Salas, P., Pollitt, H., and Chewpreecha, U.: Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector, Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, 2016.
Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., and
Zelinka, M.: Evaluating adjusted forcing and model spread for historical and
future scenarios in the CMIP5 generation of climate models, J. Geophys. Res.-Atmos., 118, 1139–1150, https://doi.org/10.1002/jgrd.50174, 2013.
Froelicher, T. L. and Paynter, D. J.: Extending the relationship between
global warming and cumulative carbon emissions to multi-millennial
timescales, Environ. Res. Lett., 10, 075002, https://doi.org/10.1088/1748-9326/10/7/075002, 2015.
Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J.
G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D.
P., and Le Quéré, C.: Persistent growth of CO2 emissions and
implications for reaching climate targets, Nat.Geosci., 7, 709–715, https://doi.org/10.1038/ngeo2248, 2014.
Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Constraining
the ratio of global warming to cumulative carbon emissions using CMIP5
simulations, J. Clim., 26, 6844–6858, https://doi.org/10.1175/JCLI-D-12-00476.1, 2013.
Goodwin, P., Williams, R. G., and Ridgwell, A.: Sensitivity of climate to
cumulative carbon emissions due to compensation of ocean heat and carbon
uptake, Nat. Geosci., 8, 29–34, https://doi.org/10.1038/ngeo2304, 2015.
Goodwin, P.: On the time evolution of climate sensitivity and future
warming, Earth's Fut., 6, 1336–1348, https://doi.org/10.1029/2018EF000889, 2018.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res.
Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Hare, B. and Meinshausen, M.: How much warming are we committed to and how
much can be avoided?, Climatic Change, 75, 111–149, https://doi.org/10.1007/s10584-005-9027-9, 2006.
Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M., and
Wilkinson, R. D.: A probabilistic calibration of climate sensitivity and
terrestrial carbon change in GENIE-1, Clim. Dynam., 35, 785–806, https://doi.org/10.1007/s00382-009-0630-8, 2010.
Holden, P. B., Edwards, N. R., Gerten, D., and Schaphoff, S.: A model-based
constraint on CO2 fertilisation, Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, 2013a.
Holden, P. B., Edwards, N. R., Müller, S. A., Oliver, K. I. C., Death, R. M., and Ridgwell, A.: Controls on the spatial distribution of oceanic δ13CDIC, Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, 2013b.
IPCC (Intergovernment Panel on Climate Change): Climate change 2001: The
scientific basis, Cambridge, UK, Cambridge University Press, ISBN 0521 80767 0,
ISBN 0521 01495 6, 2001.
IPCC (Intergovernment Panel on Climate Change): Climate change 2013: The
physical science basis, Cambridge, UK, Cambridge University Press, ISBN 978-1-107-05799-1,
ISBN 978-1-107-66182-0, 2013.
IPCC (Intergovernment Panel on Climate Change): Climate change 2021: The
scientific basis, Cambridge, UK, Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Jeltsch-Thömmes, A., Stocker, T. F., and Joos, F.: Hysteresis of the
Earth system under positive and negative CO2 emissions, Environ. Res.
Lett., 15, 124026, https://doi.org/10.1088/1748-9326/abc4af, 2020.
Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E.,
Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S.,
Lindsay, K., Reick, C. H., Roelandt, C., Segschneider, J., and Tjiputra, J.:
Twenty-first-century compatible CO2 emissions and airborne fraction
simulated by CMIP5 Earth system models under four representative
concentration pathways, J. Clim., 26, 4398–4413, https://doi.org/10.1175/JCLI-D-12-00554.1, 2013.
Jones, C. D. and Friedlingstein, P.: Quantifying process-level uncertainty
contributions to TCRE and carbon budgets for meeting Paris Agreement climate
targets, Environ. Res. Lett., 15, 074019, https://doi.org/10.1088/1748-9326/ab858a,
2020.
Katavouta, A., Williams, R. G., Goodwin, P., and Roussenov, V.: Reconciling
atmospheric and oceanic views of the transient climate response to
emissions, Geophys. Res. Lett. 45, 6205–6214, https://doi.org/10.1029/2018GL077849,
2018.
Knutti, R. and Rugenstein, M. A. A.: Feedbacks, climate sensitivity and the
limits of linear models, Phil. Trans. R. Soc. A, 373, 20150146, https://doi.org/10.1098/rsta.2015.0146, 2015.
Koch, A., Brierley, C., Maslin, M. M., and Lewis, S. L.: Earth system
impacts of the European arrival and Great Dying in the Americas after 1492,
Quaternary Sci. Rev., 207, 13–36, https://doi.org/10.1016/j.quascirev.2018.12.004, 2019.
Kohfeld, K. E. and Ridgwell, A.: Glacial-interglacial variability in
atmospheric pCO2, in Surface Ocean-Lower Atmosphere Processes, Geophys.
Res. Ser., 187, 251–286, https://doi.org/10.1029/2008GM000845, 2009.
Koven, C. D., Arora, V. K., Cadule, P., Fisher, R. A., Jones, C. D., Lawrence, D. M., Lewis, J., Lindsay, K., Mathesius, S., Meinshausen, M., Mills, M., Nicholls, Z., Sanderson, B. M., Séférian, R., Swart, N. C., Wieder, W. R., and Zickfeld, K.: Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios, Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, 2022.
Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M.,
and Edenhofer, O.: Economic mitigation challenges: how further delay closes
the door for achieving climate targets, Environ. Res. Lett., 8, 034033, https://doi.org/10.1088/1748-9326/8/3/034033, 2013.
MacDougall, A. H: The transient response to cumulative CO2 emissions: a
review, Curr. Clim. Change Rep., 2, 39–47, https://doi.org/10.1007/s40641-015-0030-6,
2016.
MacDougall, A. H., Swart, N. C., and Knutti, R.: The uncertainty in the
transient climate response to cumulative CO2 emissions arising from the
uncertainty in physical climate parameters, J. Clim., 30, 813–827, https://doi.org/10.1175/JCLI-D-16-0205.1, 2017.
MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F. A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra, J., Wiltshire, A., and Ziehn, T.: Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2, Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, 2020.
Matthews, H. D. and Caldeira, K.: Transient climate–carbon simulations of
planetary geoengineering, P. Natl Acad. Sci. USA, 104, 9949–9954, https://doi.org/10.1073/pnas.0700419104, 2007.
Matthews, H. D. and Caldeira, K.: Stabilizing climate requires near–zero
emissions, Geophys. Res. Lett., 35, L04705, https://doi.org/10.1029/2007GL032388, 2008.
Matthews, H. D. and Zickfeld, K.: Climate response to zeroed emissions of
greenhouse gases and aerosols, Nat. Clim. Change, 2, 338–341, https://doi.org/10.1038/nclimate1424, 2012.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.: The
proportionality of global warming to cumulative carbon emissions, Nature,
459, 829–832, https://doi.org/10.1038/nature08047, 2009.
Matthews, H. D., Landry, J. S., Partanen, A. I., Allen, M., Eby, M.,
Forster, P. M., Friedlingstein, P., and Zickfeld, K.: Estimating carbon
budgets for ambitious climate targets, Curr. Clim. Change Rep., 3, 69–77,
https://doi.org/10.1007/s40641-017-0055-0, 2017.
Matthews, H. D., Zickfeld, K., Knutti, R., and Allen, M. R.: Focus on
cumulative emissions, global carbon budgets and the implications for climate
mitigation targets, Environ. Res. Lett., 13, 010201, https://doi.org/10.1088/1748-9326/aa98c9, 2018.
Matthews, H. D., Tokarska, K. B., Rogelj, J., Smith, C., MacDougall, A. H.,
Haustein, K., Mengis, N., Sippel, S., Forster, P. M., and Knutti, R.: An
integrated approach to quantifying uncertainties in the remaining carbon
budget, Commun. Earth Environ., 2, 7, https://doi.org/10.1038/s43247-020-00064-9, 2021.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K.,
and Levy, M.: The roads ahead: Narratives for shared socioeconomic pathways
describing world futures in the 21st century, Global Environ. Chang., 42,
169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., Samir, K.C., Leimbach, M., Jiang, L., Kram, T.,
Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlík, P.,
Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V.,
Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey,
V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C.,
Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M.,
Tabeau, A., and Tavoni. M.: The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An overview,
Global Environ. Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,
2017.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by
deep-sea sediments in an Earth system model, Global Biogeochem. Cy., 21, GB2008,
https://doi.org/10.1029/2006GB002764, 2007.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T.
M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data
assimilation in an efficient Earth System Model of global biogeochemical
cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M.,
Krey, V., and Riahi, K.: Energy system transformations for limiting
end-of-century warming to below 1.5 ∘C, Nat. Clim. Change, 5,
519–27, https://doi.org/10.1038/nclimate2572, 2015.
Solomon, S., Plattner, G. K., Knutti, R., and Friedlingstein, P.:
Irreversible climate change due to carbon dioxide emissions, P. Natl.
Acad. Sci. USA, 106, 1704–1709, https://doi.org/10.1073/pnas.0812721106, 2009.
Spafford, L. and MacDougall, A. H.: Quantifying the probability
distribution function of the transient climate response to cumulative
CO2 emissions, Environ. Res. Lett., 15, 034044, https://doi.org/10.1088/1748-9326/ab6d7b, 2020.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 dissolution at the seafloor caused
by anthropogenic CO2, P. Natl. Acad. Sci. USA, 115,
11700–11705, https://doi.org/10.1073/pnas.1804250115, 2018.
Tokarska, K. B. and Zickfeld, K.: The effectiveness of net negative carbon
dioxide emissions in reversing anthropogenic climate change, Environ. Res.
Lett., 10, 094013, https://doi.org/10.1088/1748-9326/10/9/094013, 2015.
Tokarska, K. B., Gillet, N. P., Arora, V. K., Lee, W. G., and Zickfeld, K.:
The influence of non-CO2 forcings on cumulative carbon emissions
budgets, Environ. Res. Lett., 13, 034039, https://doi.org/10.1088/1748-9326/aaafdd, 2018.
UNFCCC (United Nations Framework Convention on Climate Change): Adoption of
the Paris Agreement, 21st Conference of the Parties, United Nations, Paris, GE.15-21932(E),
2015.
Vakilifard, N., Kantzas, E. P., Holden, P. B., Edwards, N. R., and Beerling,
D. J.: The role of enhanced rock weathering deployment with agriculture in
limiting future warming and protecting coral reefs, Environ. Res. Lett., 16,
094005, https://doi.org/10.1088/1748-9326/ac1818, 2021.
Vakilifard, N., Williams, R. G., Holden, P. B., Turner, K., Edwards, N. R., and Beerling, D. J.: Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations, Zenodo [data set], https://doi.org/10.5281/zenodo.7040612, 2022.
Williams, R. G., Goodwin, P., Roussenov, V. M., and Bopp, L.: A framework to
understand the transient climate response to emissions, Environ. Res. Lett.,
11, 015003, https://doi.org/10.1088/1748-9326/11/1/015003, 2016.
Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., and Bopp, L.:
Sensitivity of global warming to carbon emissions: effects of heat and
carbon uptake in a suite of Earth system models, J. Clim., 30, 9343–9363, https://doi.org/10.1175/JCLI-D-16-0468.1, 2017a.
Williams, R. G., Roussenov, V., Frölicher,T. L., and Goodwin, P.:
Drivers of continued surface warming after cessation of carbon emissions,
Geophys. Res. Lett., 44, 10633–10642, https://doi.org/10.1002/2017GL075080, 2017b.
Williams, R. G., Ceppi, P., and Katavouta, A.: Controls of the transient
climate response to emissions by physical feedbacks, heat uptake and carbon
cycling, Environ. Res. Lett., 15, 0940c1, https://doi.org/10.1088/1748-9326/ab97c9,
2020.
Zickfeld, K., Arora, V. K., and Gillett, N. P.: Is the climate response to
CO2 emissions path dependent?, Geophys. Res. Lett., 39, L05703, https://doi.org/10.1029/2011GL050205, 2012.
Zickfeld, K., Eby, M., Weaver, A. J., Alexander, K., Crespin, E., Edwards,
N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E.,
Friedlingstein, P., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M.,
Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I., Monier, E., Olsen,
A. M., Pedersen, J. O. P., Perrette, M., Philippon-Berthier, G., Ridgwell,
A., Schlosser, A., Schneider Von Deimling, T., Shaffer, G., Sokolov, A.,
Spahni, R., Steinacher, M., Tachiiri, K., Tokos, K. S., Yoshimori, M., Zeng,
N., and Zhao, F.: Long-term climate change commitment and reversibility: An
EMIC intercomparison, J. Clim., 26, 5782–5809, https://doi.org/10.1175/JCLI-D-12-00584.1, 2013.
Zickfeld, K., MacDougall, A. H., and Matthews, H. D.: On the proportionality
between global temperature change and cumulative CO2 emissions during
periods of net negative CO2 emissions, Environ. Res. Lett., 11, 055006,
https://doi.org/10.1088/1748-9326/11/5/055006, 2016.
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
To remain within the Paris climate agreement, there is an increasing need to develop and...
Altmetrics
Final-revised paper
Preprint