Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4249-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Negar Vakilifard
CORRESPONDING AUTHOR
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Richard G. Williams
Department of Earth, Ocean and Ecological Sciences, School of
Environmental Sciences, University of Liverpool, Liverpool, UK
Philip B. Holden
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Katherine Turner
Department of Earth, Ocean and Ecological Sciences, School of
Environmental Sciences, University of Liverpool, Liverpool, UK
Leverhulme Research Centre for Functional Materials Design, Liverpool,
UK
Neil R. Edwards
School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
UK
Cambridge Centre for Energy, Environment and Natural Resource
Governance, University of Cambridge, Cambridge, UK
David J. Beerling
Leverhulme Centre for Climate Change Mitigation, School of
Biosciences, University of Sheffield, Sheffield, UK
Related authors
No articles found.
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-69, https://doi.org/10.5194/cp-2023-69, 2023
Preprint under review for CP
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model MEMLM for reconstructing palaeoenvironments from microfossil assemblages. The machine learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation but they can catastrophically fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
EGUsphere, https://doi.org/10.5194/egusphere-2023-921, https://doi.org/10.5194/egusphere-2023-921, 2023
Short summary
Short summary
Phytoplankton are tiny oceanic algae able to absorb the light penetrating the ocean. The light absorbs by these organisms is re-emitted as heat in the surrounding environment, a process commonly called phytoplankton light absorption (PLA). As a consequence, PLA increases the oceanic temperature. We studied this mechanism with a climate model under different climate scenarios. We show that phytoplankton light absorption is reduced under strong warming scenario, limiting oceanic warming.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla T. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-47, https://doi.org/10.5194/gmd-2023-47, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (eg, basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits from C sequestration. ERW could drive changes in the soil emissions of non-CO2 GHGs (N2O), and trace gases (NO & NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91, https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton absorbing light can influence the climate system but its future effect on the climate is still unclear. We use a climate model to investigate the role of phytoplankton light absorption under global warming. We find out that the effect of phytoplankton light absorption is smaller under a high greenhouse gas emissions compared to reduced and intermediate greenhouse gas emissions. Additionally, we show that phytoplankton light absorption is an important mechanism for the carbon cycle.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Andreas Wernecke, Tamsin L. Edwards, Isabel J. Nias, Philip B. Holden, and Neil R. Edwards
The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020, https://doi.org/10.5194/tc-14-1459-2020, 2020
Short summary
Short summary
We investigate how the two-dimensional characteristics of ice thickness change from satellite measurements can be used to judge and refine a high-resolution ice sheet model of Antarctica. The uncertainty in 50-year model simulations for the currently most drastically changing part of Antarctica can be reduced by nearly 40 % compared to a simpler, non-spatial approach and nearly 90 % compared to the original spread in simulations.
Philip B. Holden, Neil R. Edwards, Thiago F. Rangel, Elisa B. Pereira, Giang T. Tran, and Richard D. Wilkinson
Geosci. Model Dev., 12, 5137–5155, https://doi.org/10.5194/gmd-12-5137-2019, https://doi.org/10.5194/gmd-12-5137-2019, 2019
Short summary
Short summary
We describe the development of the Paleoclimate PLASIM-GENIE emulator and its application to derive a high-resolution spatio-temporal description of the climate of the last 5 x 106 years. Spatial fields of bioclimatic variables are emulated at 1000-year intervals, driven by time series of scalar boundary-condition forcing (CO2, orbit, and ice volume). Emulated anomalies are interpolated into modern climatology to produce a high-resolution climate reconstruction of the Pliocene–Pleistocene.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
David J. Wilton, Marcus P. S. Badger, Euripides P. Kantzas, Richard D. Pancost, Paul J. Valdes, and David J. Beerling
Geosci. Model Dev., 12, 1351–1364, https://doi.org/10.5194/gmd-12-1351-2019, https://doi.org/10.5194/gmd-12-1351-2019, 2019
Short summary
Short summary
Methane is an important greenhouse gas naturally produced in wetlands (areas of land inundated with water). Models of the Earth's past climate need estimates of the amounts of methane wetlands produce; and in order to calculate those we need to model wetlands. In this work we develop a method for modelling the fraction of an area of the Earth that is wetland, repeat this over all the Earth's land surface and apply this to a study of the Earth as it was around 50 million years ago.
John S. Keery, Philip B. Holden, and Neil R. Edwards
Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, https://doi.org/10.5194/cp-14-215-2018, 2018
Short summary
Short summary
In the Eocene (~ 55 million years ago), the Earth had high levels of atmospheric CO2, so studies of the Eocene can provide insights into the likely effects of present-day fossil fuel burning. We ran a low-resolution but very fast climate model with 50 combinations of CO2 and orbital parameters, and an Eocene layout of the oceans and continents. Climatic effects of CO2 are dominant but precession and obliquity strongly influence monsoon rainfall and ocean–land temperature contrasts, respectively.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, and Robert van Woesik
Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, https://doi.org/10.5194/gmd-10-483-2017, 2017
Short summary
Short summary
We describe BUMPER, a Bayesian transfer function for inferring past climate from micro-fossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast. We apply BUMPER to a range of proxies, including both real and artificial data, demonstrating ease of use and applicability to multi-proxy reconstructions.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Philip B. Holden, Neil R. Edwards, Klaus Fraedrich, Edilbert Kirk, Frank Lunkeit, and Xiuhua Zhu
Geosci. Model Dev., 9, 3347–3361, https://doi.org/10.5194/gmd-9-3347-2016, https://doi.org/10.5194/gmd-9-3347-2016, 2016
Short summary
Short summary
We describe the development, tuning and climate of PLASIM–GENIE, a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the GENIE Earth system model.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
A. M. Foley, P. B. Holden, N. R. Edwards, J.-F. Mercure, P. Salas, H. Pollitt, and U. Chewpreecha
Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, https://doi.org/10.5194/esd-7-119-2016, 2016
Short summary
Short summary
We introduce GENIEem-PLASIM-ENTSem (GPem), a climate-carbon cycle emulator, showing how model emulation can be used in integrated assessment modelling to resolve regional climate impacts and systematically capture uncertainty. In a case study, we couple GPem to FTT:Power-E3MG, a non-equilibrium economic model with technology diffusion. We find that when the electricity sector is decarbonised by 90 %, further emissions reductions must be achieved in other sectors to avoid dangerous climate change.
K. Nishina, A. Ito, P. Falloon, A. D. Friend, D. J. Beerling, P. Ciais, D. B. Clark, R. Kahana, E. Kato, W. Lucht, M. Lomas, R. Pavlick, S. Schaphoff, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 6, 435–445, https://doi.org/10.5194/esd-6-435-2015, https://doi.org/10.5194/esd-6-435-2015, 2015
Short summary
Short summary
Our study focused on uncertainties in terrestrial C cycling under newly developed scenarios with CMIP5. This study presents first results for examining relative uncertainties of projected terrestrial C cycling in multiple projection components. Only using our new model inter-comparison project data sets enables us to evaluate various uncertainty sources in projection periods. The information on relative uncertainties is useful for climate science and climate change impact evaluation.
K. Nishina, A. Ito, D. J. Beerling, P. Cadule, P. Ciais, D. B. Clark, P. Falloon, A. D. Friend, R. Kahana, E. Kato, R. Keribin, W. Lucht, M. Lomas, T. T. Rademacher, R. Pavlick, S. Schaphoff, N. Vuichard, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 5, 197–209, https://doi.org/10.5194/esd-5-197-2014, https://doi.org/10.5194/esd-5-197-2014, 2014
O. J. Squire, A. T. Archibald, N. L. Abraham, D. J. Beerling, C. N. Hewitt, J. Lathière, R. C. Pike, P. J. Telford, and J. A. Pyle
Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, https://doi.org/10.5194/acp-14-1011-2014, 2014
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
P. O. Hopcroft, P. J. Valdes, R. Wania, and D. J. Beerling
Clim. Past, 10, 137–154, https://doi.org/10.5194/cp-10-137-2014, https://doi.org/10.5194/cp-10-137-2014, 2014
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
P. B. Holden, N. R. Edwards, D. Gerten, and S. Schaphoff
Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, https://doi.org/10.5194/bg-10-339-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Anthropogenic climate change drives non-stationary phytoplankton variance
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Climate, land cover and topography: essential ingredients in predicting wetland permanence
Not all biodiversity rich spots are climate refugia
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Anthropogenic CO2-mediated freshwater acidification limits survival, calcification, metabolism, and behaviour in stress-tolerant freshwater crustaceans
Quantifying the role of moss in terrestrial ecosystem carbon dynamics in northern high latitudes
On the influence of erect shrubs on the irradiance profile in snow
Tolerance of tropical marine microphytobenthos exposed to elevated irradiance and temperature
Persistent impacts of the 2018 drought on forest disturbance regimes in Europe
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2
Effects of elevated CO2 and extreme climatic events on forage quality and in vitro rumen fermentation in permanent grassland
Cushion bog plant community responses to passive warming in southern Patagonia
Blue carbon stocks and exchanges along the California coast
Oceanic primary production decline halved in eddy-resolving simulations of global warming
Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model
Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees?
Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
Sensitivity of 21st-century projected ocean new production changes to idealized biogeochemical model structure
Ocean carbon uptake under aggressive emission mitigation
Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration
Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2023-506, https://doi.org/10.5194/egusphere-2023-506, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size and intensity under Last Glacial Maximum (LGM) conditions, using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2022-579, https://doi.org/10.5194/egusphere-2022-579, 2022
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton variance using an Earth System Model ensemble, identifying a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Biogeosciences, 19, 2741–2757, https://doi.org/10.5194/bg-19-2741-2022, https://doi.org/10.5194/bg-19-2741-2022, 2022
Short summary
Short summary
This study is the first assessment to evaluate the interactions between river discharges, tides, and storm surges and how they can drive compound flooding in the Kapuas River delta. We successfully created a realistic hydrodynamic model whose domain covers the land–sea continuum using a wetting–drying algorithm in a data-scarce environment. We then proposed a new method to delineate compound flooding hazard zones along the river channels based on the maximum water level profiles.
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Jody Daniel, Rebecca C. Rooney, and Derek T. Robinson
Biogeosciences, 19, 1547–1570, https://doi.org/10.5194/bg-19-1547-2022, https://doi.org/10.5194/bg-19-1547-2022, 2022
Short summary
Short summary
The threat posed by climate change to prairie pothole wetlands is well documented, but gaps remain in our ability to make meaningful predictions about how prairie pothole wetlands will respond. We integrate aspects of topography, land cover/land use and climate to model the permanence class of tens of thousands of wetlands at the western edge of the Prairie Pothole Region.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Alex R. Quijada-Rodriguez, Pou-Long Kuan, Po-Hsuan Sung, Mao-Ting Hsu, Garett J. P. Allen, Pung Pung Hwang, Yung-Che Tseng, and Dirk Weihrauch
Biogeosciences, 18, 6287–6300, https://doi.org/10.5194/bg-18-6287-2021, https://doi.org/10.5194/bg-18-6287-2021, 2021
Short summary
Short summary
Anthropogenic CO2 is chronically acidifying aquatic ecosystems. We aimed to determine the impact of future freshwater acidification on the physiology and behaviour of an important aquaculture crustacean, Chinese mitten crabs. We report that elevated freshwater CO2 levels lead to impairment of calcification, locomotor behaviour, and survival and reduced metabolism in this species. Results suggest that present-day calcifying invertebrates could be heavily affected by freshwater acidification.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Sazlina Salleh and Andrew McMinn
Biogeosciences, 18, 5313–5326, https://doi.org/10.5194/bg-18-5313-2021, https://doi.org/10.5194/bg-18-5313-2021, 2021
Short summary
Short summary
The benthic diatom communities in Tanjung Rhu, Malaysia, were regularly exposed to high light and temperature variability during the tidal cycle, resulting in low photosynthetic efficiency. We examined the impact of high temperatures on diatoms' photosynthetic capacities, and temperatures beyond 50 °C caused severe photoinhibition. At the same time, those diatoms exposed to temperatures of 40 °C did not show any sign of photoinhibition.
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Short summary
Europe was affected by an extreme drought in 2018. We show that this drought has increased forest disturbances across Europe, especially central and eastern Europe. Disturbance levels observed 2018–2020 were the highest on record for 30 years. Increased forest disturbances were correlated with low moisture and high atmospheric water demand. The unprecedented impacts of the 2018 drought on forest disturbances demonstrate an urgent need to adapt Europe’s forests to a hotter and drier future.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Vincent Niderkorn, Annette Morvan-Bertrand, Aline Le Morvan, Angela Augusti, Marie-Laure Decau, and Catherine Picon-Cochard
Biogeosciences, 18, 4841–4853, https://doi.org/10.5194/bg-18-4841-2021, https://doi.org/10.5194/bg-18-4841-2021, 2021
Short summary
Short summary
Climate change can change vegetation characteristics in grasslands with a potential impact on forage chemical composition and quality, as well as its use by ruminants. Using controlled conditions mimicking a future climatic scenario, we show that forage quality and ruminant digestion are affected in opposite ways by elevated atmospheric CO2 and an extreme event (heat wave, severe drought), indicating that different factors of climate change have to be considered together.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Melissa A. Ward, Tessa M. Hill, Chelsey Souza, Tessa Filipczyk, Aurora M. Ricart, Sarah Merolla, Lena R. Capece, Brady C O'Donnell, Kristen Elsmore, Walter C. Oechel, and Kathryn M. Beheshti
Biogeosciences, 18, 4717–4732, https://doi.org/10.5194/bg-18-4717-2021, https://doi.org/10.5194/bg-18-4717-2021, 2021
Short summary
Short summary
Salt marshes and seagrass meadows ("blue carbon" habitats) can sequester and store high levels of organic carbon (OC), helping to mitigate climate change. In California blue carbon sediments, we quantified OC storage and exchange between these habitats. We find that (1) these salt marshes store about twice as much OC as seagrass meadows do and (2), while OC from seagrass meadows is deposited into neighboring salt marshes, little of this material is sequestered as "long-term" carbon.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Genevieve Jay Brett, Daniel B. Whitt, Matthew C. Long, Frank Bryan, Kate Feloy, and Kelvin J. Richards
Biogeosciences, 18, 3123–3145, https://doi.org/10.5194/bg-18-3123-2021, https://doi.org/10.5194/bg-18-3123-2021, 2021
Short summary
Short summary
We quantify one form of uncertainty in modeled 21st-century changes in phytoplankton growth. The supply of nutrients from deep to surface waters decreases in the warmer future ocean, but the effect on phytoplankton growth also depends on changes in available light, how much light and nutrient the plankton need, and how fast they can grow. These phytoplankton properties can be summarized as a biological timescale: when it is short, future growth decreases twice as much as when it is long.
Sean M. Ridge and Galen A. McKinley
Biogeosciences, 18, 2711–2725, https://doi.org/10.5194/bg-18-2711-2021, https://doi.org/10.5194/bg-18-2711-2021, 2021
Short summary
Short summary
Approximately 40 % of the CO2 emissions from fossil fuel combustion and cement production have been absorbed by the ocean. The goal of the UNFCCC Paris Agreement is to reduce humanity's emissions so as to limit global warming to no more than 2 °C, and ideally less than 1.5 °C. If we achieve this level of mitigation, the ocean's uptake of carbon will be strongly reduced. Excess carbon trapped in the near-surface ocean will begin to mix back to the surface and will limit additional uptake.
Alexander Koch, Chris Brierley, and Simon L. Lewis
Biogeosciences, 18, 2627–2647, https://doi.org/10.5194/bg-18-2627-2021, https://doi.org/10.5194/bg-18-2627-2021, 2021
Short summary
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Wei Min Hao, Matthew C. Reeves, L. Scott Baggett, Yves Balkanski, Philippe Ciais, Bryce L. Nordgren, Alexander Petkov, Rachel E. Corley, Florent Mouillot, Shawn P. Urbanski, and Chao Yue
Biogeosciences, 18, 2559–2572, https://doi.org/10.5194/bg-18-2559-2021, https://doi.org/10.5194/bg-18-2559-2021, 2021
Short summary
Short summary
We examined the trends in the spatial and temporal distribution of the area burned in northern Eurasia from 2002 to 2016. The annual area burned in this region declined by 53 % during the 15-year period under analysis. Grassland fires in Kazakhstan dominated the fire activity, comprising 47 % of the area burned but accounting for 84 % of the decline. A wetter climate and the increase in grazing livestock in Kazakhstan are the major factors contributing to the decline in the area burned.
Cited articles
Archer, D.: A data-driven model of the global calcite lysocline, Global
Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96GB01521, 1996.
Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-varying climate sensitivity
from regional feedbacks, J. Clim., 26, 4518–4534, https://doi.org/10.1175/JCLI-D-12-00544.1, 2013.
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M.,
Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R.,
Mercure, J. F, Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh,
L., Quegan, S., Pidgeon, N. F., Janssens, I. A., Hansen, J., and Banwart, S.
A.: Potential for large-scale CO2 removal via enhanced rock weathering
with croplands, Nature, 583, 242–248, https://doi.org/10.1038/s41586-020-2448-9, 2020.
Boucher, O., Halloran, P. R., Bruke, E. J., Doutriaux-Boucher, M., Jones, C.
D., Lowe, J., Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an
Earth System model in response to CO2 concentration changes, Environ.
Res. Lett., 7, 024013, https://doi.org/10.1088/1748-9326/7/2/024013, 2012.
Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J.
G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J.,
and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from
1961 to 2008, Geophys. Res. Lett., 38, L18601, https://doi.org/10.1029/2011GL048794,
2011.
Colbourn, G., Ridgwell, A., and Lenton, T. M.: The Rock Geochemical Model (RokGeM) v0.9, Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, 2013.
Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A.,
Cimatoribus, A. A., Crespin, E., Drijfhout, S. S., Edwards, N. R., Eliseev,
A. V., Feulner, G., Fichefet, T., Forest, C. E., Goosse, H., Holden, P. B.,
Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov,
I. I., Monier, E., Olsen, S. M., Pedersen, J. O. P., Perrette, M.,
Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling,
T., Shaffer, G., Smith, R. S., Spahni, R., Sokolov, A. P., Steinacher, M.,
Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N., and Zhao, F.: Historical
and idealized climate model experiments: an intercomparison of Earth system
models of intermediate complexity, Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, 2013.
Edwards N. R. and Marsh R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Ehlert, D., Zickfeld, K., Eby, M., and Gillett, N.: The sensitivity of the
proportionality between temperature change and cumulative CO2 emissions
to ocean mixing, J. Clim., 30, 2921–2935, https://doi.org/10.1175/JCLI-D-16-0247.1,
2017.
Foley, A. M., Holden, P. B., Edwards, N. R., Mercure, J.-F., Salas, P., Pollitt, H., and Chewpreecha, U.: Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector, Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, 2016.
Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., and
Zelinka, M.: Evaluating adjusted forcing and model spread for historical and
future scenarios in the CMIP5 generation of climate models, J. Geophys. Res.-Atmos., 118, 1139–1150, https://doi.org/10.1002/jgrd.50174, 2013.
Froelicher, T. L. and Paynter, D. J.: Extending the relationship between
global warming and cumulative carbon emissions to multi-millennial
timescales, Environ. Res. Lett., 10, 075002, https://doi.org/10.1088/1748-9326/10/7/075002, 2015.
Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J.
G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D.
P., and Le Quéré, C.: Persistent growth of CO2 emissions and
implications for reaching climate targets, Nat.Geosci., 7, 709–715, https://doi.org/10.1038/ngeo2248, 2014.
Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Constraining
the ratio of global warming to cumulative carbon emissions using CMIP5
simulations, J. Clim., 26, 6844–6858, https://doi.org/10.1175/JCLI-D-12-00476.1, 2013.
Goodwin, P., Williams, R. G., and Ridgwell, A.: Sensitivity of climate to
cumulative carbon emissions due to compensation of ocean heat and carbon
uptake, Nat. Geosci., 8, 29–34, https://doi.org/10.1038/ngeo2304, 2015.
Goodwin, P.: On the time evolution of climate sensitivity and future
warming, Earth's Fut., 6, 1336–1348, https://doi.org/10.1029/2018EF000889, 2018.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res.
Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Hare, B. and Meinshausen, M.: How much warming are we committed to and how
much can be avoided?, Climatic Change, 75, 111–149, https://doi.org/10.1007/s10584-005-9027-9, 2006.
Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M., and
Wilkinson, R. D.: A probabilistic calibration of climate sensitivity and
terrestrial carbon change in GENIE-1, Clim. Dynam., 35, 785–806, https://doi.org/10.1007/s00382-009-0630-8, 2010.
Holden, P. B., Edwards, N. R., Gerten, D., and Schaphoff, S.: A model-based
constraint on CO2 fertilisation, Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, 2013a.
Holden, P. B., Edwards, N. R., Müller, S. A., Oliver, K. I. C., Death, R. M., and Ridgwell, A.: Controls on the spatial distribution of oceanic δ13CDIC, Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, 2013b.
IPCC (Intergovernment Panel on Climate Change): Climate change 2001: The
scientific basis, Cambridge, UK, Cambridge University Press, ISBN 0521 80767 0,
ISBN 0521 01495 6, 2001.
IPCC (Intergovernment Panel on Climate Change): Climate change 2013: The
physical science basis, Cambridge, UK, Cambridge University Press, ISBN 978-1-107-05799-1,
ISBN 978-1-107-66182-0, 2013.
IPCC (Intergovernment Panel on Climate Change): Climate change 2021: The
scientific basis, Cambridge, UK, Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Jeltsch-Thömmes, A., Stocker, T. F., and Joos, F.: Hysteresis of the
Earth system under positive and negative CO2 emissions, Environ. Res.
Lett., 15, 124026, https://doi.org/10.1088/1748-9326/abc4af, 2020.
Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E.,
Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S.,
Lindsay, K., Reick, C. H., Roelandt, C., Segschneider, J., and Tjiputra, J.:
Twenty-first-century compatible CO2 emissions and airborne fraction
simulated by CMIP5 Earth system models under four representative
concentration pathways, J. Clim., 26, 4398–4413, https://doi.org/10.1175/JCLI-D-12-00554.1, 2013.
Jones, C. D. and Friedlingstein, P.: Quantifying process-level uncertainty
contributions to TCRE and carbon budgets for meeting Paris Agreement climate
targets, Environ. Res. Lett., 15, 074019, https://doi.org/10.1088/1748-9326/ab858a,
2020.
Katavouta, A., Williams, R. G., Goodwin, P., and Roussenov, V.: Reconciling
atmospheric and oceanic views of the transient climate response to
emissions, Geophys. Res. Lett. 45, 6205–6214, https://doi.org/10.1029/2018GL077849,
2018.
Knutti, R. and Rugenstein, M. A. A.: Feedbacks, climate sensitivity and the
limits of linear models, Phil. Trans. R. Soc. A, 373, 20150146, https://doi.org/10.1098/rsta.2015.0146, 2015.
Koch, A., Brierley, C., Maslin, M. M., and Lewis, S. L.: Earth system
impacts of the European arrival and Great Dying in the Americas after 1492,
Quaternary Sci. Rev., 207, 13–36, https://doi.org/10.1016/j.quascirev.2018.12.004, 2019.
Kohfeld, K. E. and Ridgwell, A.: Glacial-interglacial variability in
atmospheric pCO2, in Surface Ocean-Lower Atmosphere Processes, Geophys.
Res. Ser., 187, 251–286, https://doi.org/10.1029/2008GM000845, 2009.
Koven, C. D., Arora, V. K., Cadule, P., Fisher, R. A., Jones, C. D., Lawrence, D. M., Lewis, J., Lindsay, K., Mathesius, S., Meinshausen, M., Mills, M., Nicholls, Z., Sanderson, B. M., Séférian, R., Swart, N. C., Wieder, W. R., and Zickfeld, K.: Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios, Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, 2022.
Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M.,
and Edenhofer, O.: Economic mitigation challenges: how further delay closes
the door for achieving climate targets, Environ. Res. Lett., 8, 034033, https://doi.org/10.1088/1748-9326/8/3/034033, 2013.
MacDougall, A. H: The transient response to cumulative CO2 emissions: a
review, Curr. Clim. Change Rep., 2, 39–47, https://doi.org/10.1007/s40641-015-0030-6,
2016.
MacDougall, A. H., Swart, N. C., and Knutti, R.: The uncertainty in the
transient climate response to cumulative CO2 emissions arising from the
uncertainty in physical climate parameters, J. Clim., 30, 813–827, https://doi.org/10.1175/JCLI-D-16-0205.1, 2017.
MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F. A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra, J., Wiltshire, A., and Ziehn, T.: Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2, Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, 2020.
Matthews, H. D. and Caldeira, K.: Transient climate–carbon simulations of
planetary geoengineering, P. Natl Acad. Sci. USA, 104, 9949–9954, https://doi.org/10.1073/pnas.0700419104, 2007.
Matthews, H. D. and Caldeira, K.: Stabilizing climate requires near–zero
emissions, Geophys. Res. Lett., 35, L04705, https://doi.org/10.1029/2007GL032388, 2008.
Matthews, H. D. and Zickfeld, K.: Climate response to zeroed emissions of
greenhouse gases and aerosols, Nat. Clim. Change, 2, 338–341, https://doi.org/10.1038/nclimate1424, 2012.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.: The
proportionality of global warming to cumulative carbon emissions, Nature,
459, 829–832, https://doi.org/10.1038/nature08047, 2009.
Matthews, H. D., Landry, J. S., Partanen, A. I., Allen, M., Eby, M.,
Forster, P. M., Friedlingstein, P., and Zickfeld, K.: Estimating carbon
budgets for ambitious climate targets, Curr. Clim. Change Rep., 3, 69–77,
https://doi.org/10.1007/s40641-017-0055-0, 2017.
Matthews, H. D., Zickfeld, K., Knutti, R., and Allen, M. R.: Focus on
cumulative emissions, global carbon budgets and the implications for climate
mitigation targets, Environ. Res. Lett., 13, 010201, https://doi.org/10.1088/1748-9326/aa98c9, 2018.
Matthews, H. D., Tokarska, K. B., Rogelj, J., Smith, C., MacDougall, A. H.,
Haustein, K., Mengis, N., Sippel, S., Forster, P. M., and Knutti, R.: An
integrated approach to quantifying uncertainties in the remaining carbon
budget, Commun. Earth Environ., 2, 7, https://doi.org/10.1038/s43247-020-00064-9, 2021.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K.,
and Levy, M.: The roads ahead: Narratives for shared socioeconomic pathways
describing world futures in the 21st century, Global Environ. Chang., 42,
169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., Samir, K.C., Leimbach, M., Jiang, L., Kram, T.,
Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlík, P.,
Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V.,
Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey,
V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C.,
Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M.,
Tabeau, A., and Tavoni. M.: The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An overview,
Global Environ. Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,
2017.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by
deep-sea sediments in an Earth system model, Global Biogeochem. Cy., 21, GB2008,
https://doi.org/10.1029/2006GB002764, 2007.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T.
M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data
assimilation in an efficient Earth System Model of global biogeochemical
cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M.,
Krey, V., and Riahi, K.: Energy system transformations for limiting
end-of-century warming to below 1.5 ∘C, Nat. Clim. Change, 5,
519–27, https://doi.org/10.1038/nclimate2572, 2015.
Solomon, S., Plattner, G. K., Knutti, R., and Friedlingstein, P.:
Irreversible climate change due to carbon dioxide emissions, P. Natl.
Acad. Sci. USA, 106, 1704–1709, https://doi.org/10.1073/pnas.0812721106, 2009.
Spafford, L. and MacDougall, A. H.: Quantifying the probability
distribution function of the transient climate response to cumulative
CO2 emissions, Environ. Res. Lett., 15, 034044, https://doi.org/10.1088/1748-9326/ab6d7b, 2020.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 dissolution at the seafloor caused
by anthropogenic CO2, P. Natl. Acad. Sci. USA, 115,
11700–11705, https://doi.org/10.1073/pnas.1804250115, 2018.
Tokarska, K. B. and Zickfeld, K.: The effectiveness of net negative carbon
dioxide emissions in reversing anthropogenic climate change, Environ. Res.
Lett., 10, 094013, https://doi.org/10.1088/1748-9326/10/9/094013, 2015.
Tokarska, K. B., Gillet, N. P., Arora, V. K., Lee, W. G., and Zickfeld, K.:
The influence of non-CO2 forcings on cumulative carbon emissions
budgets, Environ. Res. Lett., 13, 034039, https://doi.org/10.1088/1748-9326/aaafdd, 2018.
UNFCCC (United Nations Framework Convention on Climate Change): Adoption of
the Paris Agreement, 21st Conference of the Parties, United Nations, Paris, GE.15-21932(E),
2015.
Vakilifard, N., Kantzas, E. P., Holden, P. B., Edwards, N. R., and Beerling,
D. J.: The role of enhanced rock weathering deployment with agriculture in
limiting future warming and protecting coral reefs, Environ. Res. Lett., 16,
094005, https://doi.org/10.1088/1748-9326/ac1818, 2021.
Vakilifard, N., Williams, R. G., Holden, P. B., Turner, K., Edwards, N. R., and Beerling, D. J.: Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations, Zenodo [data set], https://doi.org/10.5281/zenodo.7040612, 2022.
Williams, R. G., Goodwin, P., Roussenov, V. M., and Bopp, L.: A framework to
understand the transient climate response to emissions, Environ. Res. Lett.,
11, 015003, https://doi.org/10.1088/1748-9326/11/1/015003, 2016.
Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., and Bopp, L.:
Sensitivity of global warming to carbon emissions: effects of heat and
carbon uptake in a suite of Earth system models, J. Clim., 30, 9343–9363, https://doi.org/10.1175/JCLI-D-16-0468.1, 2017a.
Williams, R. G., Roussenov, V., Frölicher,T. L., and Goodwin, P.:
Drivers of continued surface warming after cessation of carbon emissions,
Geophys. Res. Lett., 44, 10633–10642, https://doi.org/10.1002/2017GL075080, 2017b.
Williams, R. G., Ceppi, P., and Katavouta, A.: Controls of the transient
climate response to emissions by physical feedbacks, heat uptake and carbon
cycling, Environ. Res. Lett., 15, 0940c1, https://doi.org/10.1088/1748-9326/ab97c9,
2020.
Zickfeld, K., Arora, V. K., and Gillett, N. P.: Is the climate response to
CO2 emissions path dependent?, Geophys. Res. Lett., 39, L05703, https://doi.org/10.1029/2011GL050205, 2012.
Zickfeld, K., Eby, M., Weaver, A. J., Alexander, K., Crespin, E., Edwards,
N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E.,
Friedlingstein, P., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M.,
Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I., Monier, E., Olsen,
A. M., Pedersen, J. O. P., Perrette, M., Philippon-Berthier, G., Ridgwell,
A., Schlosser, A., Schneider Von Deimling, T., Shaffer, G., Sokolov, A.,
Spahni, R., Steinacher, M., Tachiiri, K., Tokos, K. S., Yoshimori, M., Zeng,
N., and Zhao, F.: Long-term climate change commitment and reversibility: An
EMIC intercomparison, J. Clim., 26, 5782–5809, https://doi.org/10.1175/JCLI-D-12-00584.1, 2013.
Zickfeld, K., MacDougall, A. H., and Matthews, H. D.: On the proportionality
between global temperature change and cumulative CO2 emissions during
periods of net negative CO2 emissions, Environ. Res. Lett., 11, 055006,
https://doi.org/10.1088/1748-9326/11/5/055006, 2016.
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
To remain within the Paris climate agreement, there is an increasing need to develop and...
Altmetrics
Final-revised paper
Preprint