Articles | Volume 19, issue 21
https://doi.org/10.5194/bg-19-5041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pore network modeling as a new tool for determining gas diffusivity in peat
School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
Marjo Palviainen
Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
Arianna Marchionne
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
Tiia Grönholm
Finnish Meteorological Institute (FMI), Erik Palménin aukio 1, 00560 Helsinki, Finland
Maarit Raivonen
Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
Lukas Kohl
Department of Agricultural Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Annamari Laurén
School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
Related authors
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Petri Kiuru, Anne Ojala, Ivan Mammarella, Jouni Heiskanen, Kukka-Maaria Erkkilä, Heli Miettinen, Timo Vesala, and Timo Huttula
Biogeosciences, 16, 3297–3317, https://doi.org/10.5194/bg-16-3297-2019, https://doi.org/10.5194/bg-16-3297-2019, 2019
Short summary
Short summary
Many boreal lakes emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We incorporated four different gas exchange models into a physico-biochemical lake model and studied their ability to simulate lake air–water CO2 fluxes. The inclusion of refined gas exchange models in lake models that simulate carbon cycling is important to assess lake carbon budgets. However, higher estimates for inorganic carbon sources in boreal lakes are needed to balance the CO2 losses to the atmosphere.
Iñaki Urzainki, Marjo Palviainen, Hannu Hökkä, Sebastian Persch, Jeffrey Chatellier, Ophelia Wang, Prasetya Mahardhitama, Rizaldy Yudhista, and Annamari Laurén
Biogeosciences, 20, 2099–2116, https://doi.org/10.5194/bg-20-2099-2023, https://doi.org/10.5194/bg-20-2099-2023, 2023
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance crop productivity) are one of the main sources of carbon dioxide emissions globally. Blocking the ditches by building dams is a common strategy to raise the water table and to mitigate carbon dioxide emissions. But how effective is ditch blocking in raising the overall water table over a large area? Our work tackles this question by making use of the available data and physics-based hydrological modeling.
Jalisha Theanutti Kallingal, Johan Lindström, Paul A Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-302, https://doi.org/10.5194/gmd-2022-302, 2023
Revised manuscript under review for GMD
Short summary
Short summary
This manuscript describes the development of a Bayesian data assimilation framework around the wetland CH4 module in the LPJ-GUESS DGVM. The novel approach we developed combines the Rao-Blackwellised Adaptive Metropolis algorithm with the Global Adaptive Scaling (G-RB AM) for sampling the model parameters. Further, the manuscript demonstrates the application of the DA framework for optimising model process parameters by assimilating daily CH4 flux measurement data.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021, https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
Short summary
In this article, we present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Our practical approach promotes fair authorship practices and, by focusing on clear, transparent, and timely communication, helps avoid late-stage authorship conflict.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Iñaki Urzainki, Ari Laurén, Marjo Palviainen, Kersti Haahti, Arif Budiman, Imam Basuki, Michael Netzer, and Hannu Hökkä
Biogeosciences, 17, 4769–4784, https://doi.org/10.5194/bg-17-4769-2020, https://doi.org/10.5194/bg-17-4769-2020, 2020
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance plant production) are one of the main sources of carbon dioxide emissions globally. Blocking these ditches by building dams is a common strategy to restore the self-sustaining peat ecosystem and mitigate carbon dioxide emissions. Where should these dams be located in order to maximize the benefits? Our work tackles this question by making use of the available data, hydrological modeling and numerical optimization methods.
Petri Kiuru, Anne Ojala, Ivan Mammarella, Jouni Heiskanen, Kukka-Maaria Erkkilä, Heli Miettinen, Timo Vesala, and Timo Huttula
Biogeosciences, 16, 3297–3317, https://doi.org/10.5194/bg-16-3297-2019, https://doi.org/10.5194/bg-16-3297-2019, 2019
Short summary
Short summary
Many boreal lakes emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We incorporated four different gas exchange models into a physico-biochemical lake model and studied their ability to simulate lake air–water CO2 fluxes. The inclusion of refined gas exchange models in lake models that simulate carbon cycling is important to assess lake carbon budgets. However, higher estimates for inorganic carbon sources in boreal lakes are needed to balance the CO2 losses to the atmosphere.
Lukas Kohl, Markku Koskinen, Kaisa Rissanen, Iikka Haikarainen, Tatu Polvinen, Heidi Hellén, and Mari Pihlatie
Biogeosciences, 16, 3319–3332, https://doi.org/10.5194/bg-16-3319-2019, https://doi.org/10.5194/bg-16-3319-2019, 2019
Short summary
Short summary
Plants emit small amounts of methane and large amounts of volatile organic compounds (VOCs). Measurements of plant methane emissions therefore require analysers that can provide accurate measurements of CH4 concentrations in the presence of changing amounts of VOCs. We therefore quantified to which degree various VOCs bias methane concentration measurements on different analysers. Our results show that some analysers are more sensitive to the presence of VOCs than others.
Jouni Susiluoto, Maarit Raivonen, Leif Backman, Marko Laine, Jarmo Makela, Olli Peltola, Timo Vesala, and Tuula Aalto
Geosci. Model Dev., 11, 1199–1228, https://doi.org/10.5194/gmd-11-1199-2018, https://doi.org/10.5194/gmd-11-1199-2018, 2018
Short summary
Short summary
Methane is an important greenhouse gas and methane emissions from wetlands contribute to the warming of the climate. Wetland methane emissions are also challenging to estimate. We analyze the performance of a new wetland emission computer model utilizing mathematical methods and using data from a wetland in southern Finland. The analysis helps to explain how wetlands produce methane and how emission modeling can be improved and uncertainties in the emission estimates reduced in future studies.
Olli Peltola, Maarit Raivonen, Xuefei Li, and Timo Vesala
Biogeosciences, 15, 937–951, https://doi.org/10.5194/bg-15-937-2018, https://doi.org/10.5194/bg-15-937-2018, 2018
Short summary
Short summary
Emission via bubbling, i.e. ebullition, is one of the main CH4 emission pathways from wetlands to the atmosphere, yet it is still coarsely represented in wetland CH4 models. In this study three ebullition modelling approaches are evaluated. Modeled annual CH4 emissions were similar, whereas temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence realistic description of ebullition is needed when models are compared to and calibrated against measurements.
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Johanna Joensuu, Nuria Altimir, Hannele Hakola, Michael Rostás, Maarit Raivonen, Mika Vestenius, Hermanni Aaltonen, Markus Riederer, and Jaana Bäck
Atmos. Chem. Phys., 16, 7813–7823, https://doi.org/10.5194/acp-16-7813-2016, https://doi.org/10.5194/acp-16-7813-2016, 2016
Short summary
Short summary
Plants produce volatile compounds (BVOCs) that have a major role in atmospheric chemistry. Our aim was to see if terpenes, a key group of BVOCs, can be found on surfaces of pine needles and, if so, how they compare with the emissions of the same tree. Both emissions and wax extracts were clearly dominated by monoterpenes, but there were also differences in the emission and wax spectra. The results support the existence of BVOCs on needle surfaces, with possible implications for air chemistry.
T. Li, W. Zhang, Q. Zhang, Y. Lu, G. Wang, Z. Niu, M. Raivonen, and T. Vesala
Biogeosciences, 12, 6853–6868, https://doi.org/10.5194/bg-12-6853-2015, https://doi.org/10.5194/bg-12-6853-2015, 2015
Short summary
Short summary
Natural wetlands in China have experienced extensive conversion and climate warming, which makes the estimation of methane emission from wetlands highly uncertain. In this paper, we simulated an increase of 25.5% in national CH4 fluxes from 1950 to 2010, which was mainly induced by climate warming. Although climate warming has accelerated CH4 fluxes, the total amount of national CH4 emissions decreased by approximately 2.35 Tg (1.91-2.81 Tg), due to a large wetland loss of 17.0 million ha.
Related subject area
Biogeochemistry: Soils
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Soil priming effects and involved microbial community along salt gradients
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Adjustments of the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?
Estimating maximum fine-fraction organic carbon in UK grasslands
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge
Vertical mobility of pyrogenic organic matter in soils: a column experiment
Vertical partitioning of CO2 production in a forest soil
Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands
Reviews and syntheses: Ironing out wrinkles in the soil phosphorus cycling paradigm
Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation
Reviews and syntheses: The mechanisms underlying carbon storage in soil
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-133, https://doi.org/10.5194/bg-2023-133, 2023
Revised manuscript accepted for BG
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated their effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-114, https://doi.org/10.5194/bg-2023-114, 2023
Revised manuscript accepted for BG
Short summary
Short summary
We conducted a 90 days of indoor incubation, and found soil microbial community was mainly controled by soil pH and EC. By O2PLS, we found Actinobacteria and Proteobacteria (Luteimonas, Hoeflea and Stenotrophomonas) dominant in these soils were the core microbial taxa that affecting the process of organic C mineralization. To clarify the priming effects and involved microbial groups would help us better understanding C sequestration potential and underlying mechanisms in saline soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-66, https://doi.org/10.5194/bg-2023-66, 2023
Preprint under review for BG
Short summary
Short summary
This study adapts the Rock-Eval® protocol to optimize SOC and SIC quantifications on one aliquot of calcareous soil. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot achieve a complete thermal breakdown of SIC amounts > 4 mg leading to an underestimation of high SIC contents by the MinC parameter, even after correcting it. Thus, the final oxidation isotherm must be extended to 7 min to quantify any amount of SIC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-59, https://doi.org/10.5194/bg-2023-59, 2023
Revised manuscript accepted for BG
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among wetland, continental and marine ecosystems, and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in continents, but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Antonio Rodríguez, Rosa Maria Canals, Josefina Plaixats, Elena Albanell, Haifa Debouk, Jordi Garcia-Pausas, Leticia San Emeterio, Àngela Ribas, Juan José Jimenez, and M.-Teresa Sebastià
Biogeosciences, 17, 6033–6050, https://doi.org/10.5194/bg-17-6033-2020, https://doi.org/10.5194/bg-17-6033-2020, 2020
Short summary
Short summary
The novelty of our work is that it presents a series of potential interactions between drivers of soil organic carbon at broad scales in temperate mountain grasslands. The most relevant contribution of our work is that it illustrates the importance of grazing management for soil carbon stocks, indicating that interactions between grazing species and soil nitrogen and herbage quality may be promising paths in order to design further management policies for palliating climate change.
Curt A. McConnell, Jason P. Kaye, and Armen R. Kemanian
Biogeosciences, 17, 5309–5333, https://doi.org/10.5194/bg-17-5309-2020, https://doi.org/10.5194/bg-17-5309-2020, 2020
Short summary
Short summary
Soil phosphorus (P) management is a critical challenge for agriculture worldwide; yet, simulation models of soil P processes lag those of other essential nutrients. In this review, we identify hindrances to measuring and modeling soil P pools and fluxes. We highlight the need to clarify biological and mineral interactions by defining P pools explicitly and using evolving techniques, such as tracing P in phosphates using oxygen isotopes.
Greta Formaglio, Edzo Veldkamp, Xiaohong Duan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, https://doi.org/10.5194/bg-17-5243-2020, 2020
Short summary
Short summary
The intensive management of large-scale oil palm plantations may result in high nutrient leaching losses which reduce soil fertility and potentially pollute water bodies. The reduction in management intensity with lower fertilization rates and with mechanical weeding instead of the use of herbicide results in lower nutrient leaching losses while maintaining high yield. Lower leaching results from lower nutrient inputs from fertilizer and from higher retention by enhanced cover vegetation.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Cited articles
Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, Ü., and Smith,
P.: Emissions of methane from northern peatlands: a review of management
impacts and implications for future management options, Ecol. Evol., 6,
7080–7102, https://doi.org/10.1002/ece3.2469, 2016. a, b
Akaike, H.: A new look at the statistical model identification, IEEE T.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Bakker, J. W. and Hidding, A.: The influence of soil structure and air content
on gas diffusion in soils, Neth. J. Agr. Sci., 18, 37–48,
https://doi.org/10.18174/njas.v18i1.17354, 1970. a
Ball, B. C. and Smith, K. A.: Gas movement and air-filled porosity, in: Soil
and Environmental Analysis: Physical Methods, 2nd Edn., edited by: Smith,
K. A. and Mullins, C. E., 499–538, Marcel Dekker, New York, NY, ISBN
978-0-8247-0414-8, 2001. a
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour.
Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982. a
Blagodatsky, S. and Smith, P.: Soil physics meets soil biology: Towards better
mechanistic prediction of greenhouse gas emissions from soil, Soil Biol.
Biochem., 47, 78–92, https://doi.org/10.1016/j.soilbio.2011.12.015, 2012. a, b
Bland, J. M. and Altman, D. G.: Measuring agreement in method comparison
studies, Stat. Methods Med. Res., 8, 135–160,
https://doi.org/10.1177/096228029900800204, 1999. a
Blunt, M. J., Jackson, M. D., Piri, M., and Valvatne, P. H.: Detailed physics,
predictive capabilities and macroscopic consequences for pore-network models
of multiphase flow, Adv. Water Resour., 25, 1069–1089,
https://doi.org/10.1016/S0309-1708(02)00049-0, 2002. a
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P.,
Paluszny, A., and Pentland, C.: Pore-scale imaging and modelling, Adv. Water
Resour., 51, 197–216, https://doi.org/10.1016/j.advwatres.2012.03.003, 2013. a, b, c, d
Boon, A., Robinson, J. S., Nightingale, P. D., Cardenas, L., Chadwick, D. R.,
and Verhoef, A.: Determination of the gas diffusion coefficient of a peat
grassland soil, Eur. J. Soil Sci., 64, 681–687, https://doi.org/10.1111/ejss.12056,
2013. a, b, c, d
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: biogeochemical, microbial, and modeling perspectives
from local to global scales, Glob. Change Biol., 19, 1325–1346,
https://doi.org/10.1111/gcb.12131, 2013. a
Burnham, K. P. and Anderson, D. R.: Multimodel inference: Understanding AIC
and BIC in model selection, Sociol. Method. Res., 33, 261–304,
https://doi.org/10.1177/0049124104268644, 2004. a
Currie, J. A.: Gaseous diffusion in porous media. Part 2. – Dry granular
materials, Brit. J. Appl. Phys., 11, 318–324,
https://doi.org/10.1088/0508-3443/11/8/303, 1960. a, b, c, d
de Vries, E. T., Raoof, A., and van Genuchten, M. T.: Multiscale modelling
of dual-porosity porous media; a computational pore-scale study for flow and
solute transport, Adv. Water Resour., 105, 82–95,
https://doi.org/10.1016/j.advwatres.2017.04.013, 2017. a
Dhanoa, M. S., Lister, S. J., France, J., and Barnes, R. J.: Use of mean square
prediction error analysis and reproducibility measures to study near infrared
calibration equation performance, J. Near Infrared Spec., 7, 133–143,
https://doi.org/10.1255/jnirs.244, 1999. a
Dong, H. and Blunt, M. J.: Pore-network extraction from
micro-computerized-tomography images, Phys. Rev. E, 80, 036307,
https://doi.org/10.1103/PhysRevE.80.036307, 2009. a
Dong, L., Zhang, W., Xiong, Y., Zou, J., Huang, Q., Xu, X., Ren, P., and Huang,
G.: Impact of short-term organic amendments incorporation on soil structure
and hydrology in semiarid agricultural lands, Int. Soil Water Conserv. Res.,
10, 457–469, https://doi.org/10.1016/j.iswcr.2021.10.003, 2022. a
Edling, P.: Soil air. Volume and gas exchange mechanisms, Report 151, Swedish
University of Agricultural Sciences, Department of Soil Sciences, Uppsala,
Sweden, ISBN 91-576-2764-9, 1986. a
Estop-Aragonés, C., Knorr, K.-H., and Blodau, C.: Controls on in situ
oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen,
J. Geophys. Res., 117, G02002, https://doi.org/10.1029/2011JG001888, 2012. a
Fan, Z., McGuire, A. D., Turetsky, M. R., Harden, J. W., Waddington, J. M., and
Kane, E. S.: The response of soil organic carbon of a rich fen peatland in
interior Alaska to projected climate change, Glob. Change Biol., 19,
604–620, https://doi.org/10.1111/gcb.12041, 2013. a
Fan, Z., Neff, J. C., Waldrop, M. P., Ballantyne, A. P., and Turetsky, M. R.:
Transport of oxygen in soil pore-water systems: implications for modeling
emissions of carbon dioxide and methane from peatlands, Biogeochemistry, 121,
455–470, https://doi.org/10.1007/s10533-014-0012-0, 2014. a
Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B.,
Tuittila, E.-S., and Roulet, N.: Peatlands in the Earth's 21st century
climate system, Environ. Rev., 19, 371–396, https://doi.org/10.1139/a11-014, 2011. a
Gharedaghloo, B., Price, J. S., Rezanezhad, F., and Quinton, W. L.: Evaluating
the hydraulic and transport properties of peat soil using pore network
modeling and X-ray micro computed tomography, J. Hydrol., 561, 494–508,
https://doi.org/10.1016/j.jhydrol.2018.04.007, 2018. a, b, c, d
Giavarina, D.: Understanding Bland Altman analysis, Biochem. Med. (Zagreb), 25,
141–151, https://doi.org/10.11613/BM.2015.015, 2015. a
Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A.,
Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A.,
Lehnert, W., and Putz, A.: OpenPNM: A pore network modeling package,
Comput. Sci. Eng., 18, 60–74, https://doi.org/10.1109/MCSE.2016.49, 2016. a
Gostick, J. T.: Versatile and efficient pore network extraction method using
marker-based watershed segmentation, Phys. Rev. E, 96, 023307,
https://doi.org/10.1103/PhysRevE.96.023307, 2017. a, b, c
Gostick, J. T., Khan, Z. A., Tranter, T. G., Kok, M. D. R., Agnaou, M.,
Sadeghi, M., and Jervis, R.: PoreSpy: A Python toolkit for quantitative
analysis of porous media images, J. Open Source Softw., 4, 1296,
https://doi.org/10.21105/joss.01296, 2019. a
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun., 11, 1644,
https://doi.org/10.1038/s41467-020-15499-z, 2020. a
Hamamoto, S., Dissanayaka, S. H., Kawamoto, K., Nagata, O., Komtatsu, T., and
Moldrup, P.: Transport properties and pore-network structure in
variably-saturated Sphagnum peat soil, Eur. J. Soil Sci., 67, 121–131,
https://doi.org/10.1111/ejss.12312, 2016a. a, b, c, d
Hamamoto, S., Moldrup, P., Kawamoto, K., Sakaki, T., Nishimura, T., and
Komatsu, T.: Pore network structure linked by X-ray CT to particle
characteristics and transport parameters, Soils Found., 56, 676–690,
https://doi.org/10.1016/j.sandf.2016.07.008, 2016b. a
Helliwell, J. R., Sturrock, C. J., Grayling, K. M., Tracy, S. R., Flavel,
R. J., Young, I. M., Whalley, W. R., and Mooney, S. J.: Applications of X-ray
computed tomography for examining biophysical interactions and structural
development in soil systems: a review, Eur. J. Soil Sci., 64, 279–297,
https://doi.org/10.1111/ejss.12028, 2013. a
Hillel, D.: Introduction to Environmental Soil Physics, Academic Press, San
Diego, California, ISBN 978-0-12-348525-0, 1998. a
Jin, Y. and Jury, W. A.: Characterizing the dependence of gas diffusion
coefficient on soil properties, Soil Sci. Soc. Am. J., 60, 66–71,
https://doi.org/10.2136/sssaj1996.03615995006000010012x, 1996. a, b, c, d
Jokinen, P., Pirinen, P., Kaukoranta, J.-P., Kangas, A., Alenius, P., Eriksson,
P., Johansson, M., and Wilkman, S.: Climatological and oceanographic
statistics of Finland 1991–2020, Reports 2021:8, Finnish Meteorological
Institute, Helsinki, Finland, https://doi.org/10.35614/isbn.9789523361485, 2021. a
King, J. A. and Smith, K. A.: Gaseous diffusion through peat, J. Soil Sci., 38,
173–177, https://doi.org/10.1111/j.1365-2389.1987.tb02134.x, 1987. a, b
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel,
P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V.,
O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn,
R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013. a
Kiuru, P., Palviainen, M., Kohl, L., Marchionne, A., and Laurén, A.: Pore
network modeling as a new tool for determining gas diffusivity in peat,
Zenodo [code, data set], https://doi.org/10.5281/zenodo.7193268, 2022b. a, b
Kiuru, P., Palviainen, M., and Laurén, A.: Peat macropore networks – new
insights into episodic and hotspot methane emission, Zenodo [data set],
https://doi.org/10.5281/zenodo.6327112, 2022c. a
Kleimeier, C., Rezanezhad, F., Cappellen, P. V., and Lennartz, B.: Influence of
pore structure on solute transport in degraded and undegraded fen peat soils,
Mires Peat, 19, 18, https://doi.org/10.19189/MaP.2017.OMB.282, 2017. a
Koestel, J., Larsbo, M., and Jarvis, N.: Scale and REV analyses for porosity
and pore connectivity measures in undisturbed soil, Geoderma, 366, 114206,
https://doi.org/10.1016/j.geoderma.2020.114206, 2020. a
Lai, D. Y. F.: Methane dynamics in northern peatlands: A review, Pedosphere,
19, 409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009. a
Laine, J. and Vasander, H.: Ecology and vegetation gradients in peatlands, in:
Peatlands in Finland, edited by: Vasander, H., 10–19, Finnish Peatland
Society, Helsinki, Finland, ISBN 952-90-7971-0, 1996. a
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in
global climate change mitigation strategies, Nat. Commun., 9, 1071,
https://doi.org/10.1038/s41467-018-03406-6, 2018. a
Leifeld, J., Wüst-Galley, C., and Page, S.: Intact and managed peatland
soils as a source and sink of GHGs from 1850 to 2100, Nat. Clim. Change, 9,
945–947, https://doi.org/10.1038/s41558-019-0615-5, 2019. a
Lennartz, B. and Liu, H.: Hydraulic functions of peat soils and ecosystem
service, Front. Environ. Sci., 7, 92, https://doi.org/10.3389/fenvs.2019.00092, 2019. a
Likos, W. J., Lu, N., and Godt, J. W.: Hysteresis and uncertainty in soil
water-retention curve parameters, J. Geotech. Geoenviron., 140,
04013050, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001071, 2014. a
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to global implications – a synthesis, Biogeosciences, 5, 1475–1491, https://doi.org/10.5194/bg-5-1475-2008, 2008. a
Lin, L. I.-K.: A concordance correlation coefficient to evaluate
reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989. a
Liu, H. and Lennartz, B.: Hydraulic properties of peat soils along a bulk
density gradient – A meta study, Hydrol. Process., 33, 101–114,
https://doi.org/10.1002/hyp.13314, 2019. a
Maier, M. and Schack-Kirchner, H.: Using the gradient method to determine soil
gas flux: A review, Agr. Forest Meteorol, 192–193, 78–95,
https://doi.org/10.1016/j.agrformet.2014.03.006, 2014. a
Maier, M., Gartiser, V., Schengel, A., and Lang, V.: Long term soil gas
monitoring as tool to understand soil processes, Appl. Sci., 10, 8653,
https://doi.org/10.3390/app10238653, 2020. a
McCarter, C. P. R., Rezanezhad, F., Quinton, W. L., Gharedaghloo, B., Lennartz,
B., Price, J., Connon, R., and Van Cappellen, P.: Pore-scale controls on
hydrological and geochemical processes in peat: Implications on interacting
processes, Earth-Sci. Rev., 207, 103227,
https://doi.org/10.1016/j.earscirev.2020.103227, 2020. a, b, c, d
Merey, Ş.: Prediction of transport properties for the Eastern
Mediterranean Sea shallow sediments by pore network modelling, J. Petrol.
Sci. Eng., 176, 403–420, https://doi.org/10.1016/j.petrol.2019.01.081, 2019. a
Millington, R.: Gas diffusion in porous media, Science, 130, 100–102,
https://doi.org/10.1126/science.130.3367.100.b, 1959. a
Millington, R. J. and Quirk, J.: Permeability of porous solids, T. Faraday
Soc., 57, 1200–1207, https://doi.org/10.1039/TF9615701200, 1961. a, b, c, d
Moldrup, P., Olesen, T., Schjønning, P., Yamaguchi, T., and Rolston, D. E.:
Predicting the gas diffusion coefficient in undisturbed soil from soil water
characteristics, Soil Sci. Soc. Am. J., 64, 94–100,
https://doi.org/10.2136/sssaj2000.64194x, 2000. a, b, c
Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., and Rolston, D. E.:
Tortuosity, diffusivity, and permeability in the soil liquid and gaseous
phases, Soil Sci. Soc. Am. J., 65, 613–623, https://doi.org/10.2136/sssaj2001.653613x,
2001. a
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel,
R. D., and Veith, T. L.: Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, T. ASABE, 50,
885–900, https://doi.org/10.13031/2013.23153, 2007. a
Mostaghimi, P., Blunt, M. J., and Bijeljic, B.: Computations of absolute
permeability on micro-CT images, Math. Geosci., 45, 103–125,
https://doi.org/10.1007/s11004-012-9431-4, 2013. a
Nimmo, J. R.: Porosity and pore-size distribution, in: Encyclopedia of Soils in
the Environment, Vol. 3, edited by: Hillel, D., 295–303, Elsevier,
Oxford, UK, ISBN 978-0-12-348530-4, 2005. a
Ojanen, P. and Minkkinen, K.: The dependence of net soil CO2 emissions on
water table depth in boreal peatlands drained for forestry, Mires Peat, 24,
27, https://doi.org/10.19189/MaP.2019.OMB.StA.1751, 2019. a
Otsu, N.: A threshold selection method from gray-level histograms, IEEE T.
Syst. Man Cyb., 9, 62–66, https://doi.org/10.1109/TSMC.1979.4310076, 1979. a
Paavilainen, E. and Päivänen, J. Eds.: Peatland Forestry: Ecology and
Principles, Springer-Verlag, Berlin, Germany, ISBN 978-3-642-08198-9,
1995. a
Päivänen, J.: Hydraulic conductivity and water retention in peat soils,
Acta For. Fenn., 129, 1–70, https://doi.org/10.14214/aff.7563, 1973. a, b
Penman, H. L.: Gas and vapour movements in the soil: I. The diffusion of
vapours through porous solids, J. Agr. Sci., 30, 437–462,
https://doi.org/10.1017/S0021859600048164, 1940. a
Qiu, C., Zhu, D., Ciais, P., Guenet, B., and Peng, S.: The role of northern
peatlands in the global carbon cycle for the 21st century, Glob. Ecol.
Biogeogr., 29, 956–973, https://doi.org/10.1111/geb.13081, 2020. a
Rabot, E., Wiesmeier, M., Schlüter, S., and Vogel, H.-J.: Soil structure as
an indicator of soil functions: A review, Geoderma, 314, 122–137,
https://doi.org/10.1016/j.geoderma.2017.11.009, 2018. a
Raivonen, M., Smolander, S., Backman, L., Susiluoto, J., Aalto, T., Markkanen, T., Mäkelä, J., Rinne, J., Peltola, O., Aurela, M., Lohila, A., Tomasic, M., Li, X., Larmola, T., Juutinen, S., Tuittila, E.-S., Heimann, M., Sevanto, S., Kleinen, T., Brovkin, V., and Vesala, T.: HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands, Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, 2017. a
Redding, T. E. and Devito, K. J.: Particle densities of wetland soils in
northern Alberta, Canada, Can. J. Soil Sci., 86, 57–60,
https://doi.org/10.4141/S05-061, 2006. a
Reddy, K. R. and DeLaune, R. D.: Biogeochemistry of Wetlands: Science and
Applications, CRC Press, Boca Raton, Florida, ISBN 978-1-56670-678-0,
2008. a
Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., and
Van Cappellen, P.: Structure of peat soils and implications for water
storage, flow and solute transport: A review update for geochemists, Chem.
Geol., 429, 75–84, https://doi.org/10.1016/j.chemgeo.2016.03.010, 2016. a, b, c
Sadeghi, M. A., Agnaou, M., Barralet, J., and Gostick, J.: Dispersion modeling
in pore networks: A comparison of common pore-scale models and alternative
approaches, J. Contam. Hydrol., 228, 103578,
https://doi.org/10.1016/j.jconhyd.2019.103578, 2020. a
Sarkkola, S., Hökkä, H., Koivusalo, H., Nieminen, M., Ahti, E.,
Päivänen, J., and Laine, J.: Role of tree stand evapotranspiration in
maintaining satisfactory drainage conditions in drained peatlands, Can. J.
Forest Res., 40, 1485–1496, https://doi.org/10.1139/X10-084, 2010. a
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a
Schlegel, A.: hypothetical – Hypothesis and statistical testing in Python,
Github, https://github.com/aschleg/hypothetical (last
access: 13 October 2022), 2020. a
Schlüter, S., Sammartino, S., and Koestel, J.: Exploring the relationship
between soil structure and soil functions via pore-scale imaging, Geoderma,
370, 114370, https://doi.org/10.1016/j.geoderma.2020.114370, 2020. a
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical modeling
with Python, in: Proceedings of the 9th Python in Science
Conference, edited by: van der Walt, S. and Millman, J., Austin, Texas, 28
June–3 July 2010, 92–96, https://doi.org/10.25080/Majora-92bf1922-011, 2010. a
Soinne, H., Keskinen, R., Räty, M., Kanerva, S., Turtola, E., Kaseva, J.,
Nuutinen, V., Simojoki, A., and Salo, T.: Soil organic carbon and clay
content as deciding factors for net nitrogen mineralization and cereal yields
in boreal mineral soils, Eur. J. Soil Sci., 72, 1497–1512,
https://doi.org/10.1111/ejss.13003, 2021. a
Steele, D. D. and Nieber, J. L.: Network modeling of diffusion coefficients for
porous media: I. Theory and model development, Soil Sci. Soc. Am. J., 58,
1337–1345, https://doi.org/10.2136/sssaj1994.03615995005800050008x, 1994. a
Stock, S. R.: Recent advances in X-ray microtomography applied to materials,
Int. Mater. Rev., 53, 129–181, https://doi.org/10.1179/174328008X277803, 2008. a
Sullivan, B. W., Dore, S., Kolb, T. E., Hart, S. C., and Montes-Helu, M. C.:
Evaluation of methods for estimating soil carbon dioxide efflux across a
gradient of forest disturbance, Glob. Change Biol., 16, 2449–2460,
https://doi.org/10.1111/j.1365-2486.2009.02139.x, 2010. a
Tozzi, R., Masci, F., and Pezzopane, M.: A stress test to evaluate the
usefulness of Akaike information criterion in short-term earthquake
prediction, Sci. Rep.-UK, 10, 21153, https://doi.org/10.1038/s41598-020-77834-0, 2020. a
Tsuruta, A., Aalto, T., Backman, L., Krol, M. C., Peters, W., Lienert, S.,
Joos, F., Miller, P. A., Zhang, W., Laurila, T., Hatakka, J., Leskinen, A.,
Lehtinen, K. E. J., Peltola, O., Vesala, T., Levula, J., Dlugokencky, E.,
Heimann, M., Kozlova, E., Aurela, M., Lohila, A., Kauhaniemi, M., and
Gomez-Pelaez, A. J.: Methane budget estimates in Finland from the
CarbonTracker Europe-CH4 data assimilation system, Tellus B, 71,
1565030, https://doi.org/10.1080/16000889.2018.1565030, 2019. a
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image
contributors: scikit-image: image processing in Python, PeerJ, 2, e453,
https://doi.org/10.7717/peerj.453, 2014. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: fundamental algorithms for scientific computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Walczak, R., Rovdan, E., and Witkowska-Walczak, B.: Water retention
characteristics of peat and sand mixtures, Int. Agrophys., 16, 161–165,
2002. a
Washington, J. W., Rose, A. W., Ciolkosz, E. J., and Dobos, R. R.: Gaseous
diffusion and permeability in four soil profiles in central Pennsylvania,
Soil Sci., 157, 65–76, https://doi.org/10.1097/00010694-199402000-00001, 1994. a
Weber, T. K. D., Iden, S. C., and Durner, W.: A pore-size classification for peat bogs derived from unsaturated hydraulic properties, Hydrol. Earth Syst. Sci., 21, 6185–6200, https://doi.org/10.5194/hess-21-6185-2017, 2017.
a
Xiong, Q., Baychev, T. G., and Jivkov, A. P.: Review of pore network modelling
of porous media: Experimental characterisations, network constructions and
applications to reactive transport, J. Contam. Hydrol., 192, 101–117,
https://doi.org/10.1016/j.jconhyd.2016.07.002, 2016. a, b
Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, 2016. a
Yang, Y., Wang, K., Zhang, L., Sun, H., Zhang, K., and Ma, J.: Pore-scale
simulation of shale oil flow based on pore network model, Fuel, 251,
683–692, https://doi.org/10.1016/j.fuel.2019.03.083, 2019. a
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett.,
37, L13402, https://doi.org/10.1029/2010GL043584, 2010. a
Zhao, J., Qin, F., Derome, D., Kang, Q., and Carmeliet, J.: Improved pore
network models to simulate single-phase flow in porous media by coupling with
lattice Boltzmann method, Adv. Water Resour., 145, 103738,
https://doi.org/10.1016/j.advwatres.2020.103738, 2020. a
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may...
Altmetrics
Final-revised paper
Preprint