Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht,
Germany
Tina Sanders
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht,
Germany
Yoana Voynova
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht,
Germany
Scott D. Wankel
Woods Hole Oceanographic Institution, Woods Hole,
MA 02543, USA
Related authors
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
Biogeosciences, 22, 3375–3396, https://doi.org/10.5194/bg-22-3375-2025, https://doi.org/10.5194/bg-22-3375-2025, 2025
Short summary
Short summary
We found that biogeochemical variability at the land–sea interface (LSI) in two major temperate estuaries is modulated by the 14 d spring–neap tidal cycle, with large effects on dissolved inorganic and organic carbon concentrations and distribution. As this effect increases the strength of the carbon source to the atmosphere by up to 74 % during spring tide, it should be accounted for in regional models, which aim to resolve biogeochemical processing at the LSI.
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Cited articles
Amann, T., Weiss, A., and Hartmann, J.: Silica fluxes in the inner Elbe
Estuary, Germany, Biogeochemistry, 118, 389–412, https://doi.org/10.1007/s10533-013-9940-3,
2014.
Bahlmann, E., Bernasconi, S. M., Bouillon, S., Houtekamer, M., Korntheuer,
M., Langenberg, F., Mayr, C., Metzke, M., Middelburg, J. J., Nagel, B.,
Struck, U., Voß, M., and Emeis, K.-C.: Performance evaluation of
nitrogen isotope ratio determination in marine and lacustrine sediments: An
inter-laboratory comparison, Org. Geochem., 41, 3–12,
https://doi.org/10.1016/j.orggeochem.2009.05.008, 2010.
Belser, L. W. and Mays, E. L.: Specific-Inhibition of Nitrite Oxidation by
Chlorate and Its Use in Assessing Nitrification in Soils and Sediments,
Appl. Environ. Microbiol., 39, 505–510, 1980.
Bergemann, T. and Gaumert, M.: Elbebericht 2008, Flussgebietsgemeinschaft Elbe, Hamburg, Germany, 2010.
Böhlke, J. K., Smith, R. L., and Hannon, J. E.: Isotopic analysis of N
and O in nitrite and nitrate by sequential selective bacterial reduction to
N2O, Anal. Chem., 79, 5888–5895, 2007.
Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K., and Bruchert, V.:
Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted
Baltic Sea estuary: regulation and spatial patterns, Biogeochemistry, 119,
139–160, https://doi.org/10.1007/s10533-014-9953-6, 2014.
Brandes, J. A. and Devol, A. H.: Isotopic fractionation of oxygen and
nitrogen in coastal marine sediments, Geochim. Cosmochim. Ac., 61,
1793–1801, 1997.
Brandes, J. A. and Devol, A. H.: A global marine-fixed nitrogen isotopic
budget: Implications for Holocene nitrogen cycling, Global Biogeochem.
Cy., 16, 1120, https://doi.org/10.1029/2001GB001856, 2002.
Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., and Naqvi, S.
W. A.: Isotopic composition of nitrate in the central Arabian Sea and
eastern tropical North Pacific: A tracer for mixing and nitrogen cycles,
Limnol. Oceanogr., 43, 1680–1689, 1998.
Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High
Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary,
Front. Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
Buchwald, C., Santoro, A. E., McIlvin, M. R., and Casciotti, K. L.: Oxygen
isotopic composition of nitrate and nitrite produced by nitrifying
cocultures and natural marine assemblages, Limnol. Oceanogr., 57,
1361–1375, https://doi.org/10.4319/lo.2012.57.5.1361, 2012.
Buchwald, C., Santoro, A. E., Stanley, R. H. R., and Casciotti, K. L.:
Nitrogen cycling in the secondary nitrite maximum of the eastern tropical
North Pacific off Costa Rica, Global Biogeochem. Cy., 29, 2061–2081, https://doi.org/10.1002/2015gb005187, 2015.
Burchard, H., Schuttelaars, H. M., and Ralston, D. K.: Sediment Trapping in
Estuaries, Ann. Rev. Mar. Sci., 10, 371–395,
https://doi.org/10.1146/annurev-marine-010816-060535, 2018.
Casciotti, K. L.: Inverse kinetic isotope fractionation during bacterial
nitrite oxidation, Geochim. Cosmochim. Ac., 73, 2061–2076, 2009.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem.,
74, 4905–4912, 2002.
Casciotti, K. L., Sigman, D. M., and Ward, B. B.: Linking diversity and
stable isotope fractionation in ammonia-oxidizing bacteria, Geomicrobiol.
J., 20, 335–353, 2003.
Dähnke, K., Bahlmann, E., and Emeis, K.: A nitrate sink in estuaries? An
assessment by means of stable nitrate isotopes in the Elbe estuary,
Limnol. Oceanogr., 53, 1504–1511, 2008.
Dähnke, K., Emeis, K., Johannsen, A., and Nagel, B.: Stable isotope
composition and turnover of nitrate in the German Bight, Mar. Ecol.
Prog. Ser., 408, 7–18, 2010.
Deek, A., Dähnke, K., van Beusekom, J., Meyer, S., Voss, M., and Emeis,
K.: N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones,
Mar. Ecol. Prog. Ser., 493, 9–21, https://doi.org/10.3354/meps10514, 2013.
DIN15685: Bodenbeschaffenheit – Bestimmung der potentiellen
Nitrifizierung – Schnellverfahren mittels Ammoniumoxidation. Deutsches
Institut für Normung e.V., Beuth Verlag, Berlin, 2001.
Dortch, O., Thompson, P. A., and Harrison, P. J.: Short-Term Interaction
between Nitrate and Ammonium Uptake in Thalassiosira-Pseudonana – Effect of
Preconditioning Nitrogen-Source and Growth-Rate, Mar. Biol., 110,
183–193, 1991.
Eyre, B. and Balls, P.: A comparative study of nutrient behavior along the
salinity gradient of tropical and temperate estuaries, Estuaries, 22,
313–326, 1999.
Fry, B.: Conservative mixing of stable isotopes across estuarine salinity
gradients: A conceptual framework for monitoring watershed influences on
downstream fisheries production, Estuaries, 25, 264–271, 2002.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R.
W., Cowling, E. B., and Cosby, B. J.: The nitrogen cascade, Bioscience, 53,
341–356, 2003.
Garnier, J., Billen, G., Némery, J., and Sebilo, M.: Transformations of
nutrients (N, P, Si) in the turbidity maximum zone of the Seine estuary and
export to the sea, Estuar. Coast. Shelf Sci., 90, 129–141, 2010.
Gaye, B., Nagel, B., Dähnke, K., Rixen, T., and Emeis, K. C.: Evidence
of parallel denitrification and nitrite oxidation in the ODZ of the Arabian
Sea from paired stable isotopes of nitrate and nitrite Global Biogeochem.
Cy., 27, 1–13, https://doi.org/10.1002/2011GB004115, 2013.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid Commun.
Mass Sp., 23, 3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Granger, J. and Wankel, S. D.: Isotopic overprinting of nitrification on
denitrification as a ubiquitous and unifying feature of environmental
nitrogen cycling, P. Natl. Acad. Sci. USA, 113, E6391–E6400, https://doi.org/10.1073/pnas.1601383113, 2016.
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49, 1763–1773,
2004.
Granger, J., Prokopenko, M. G., Mordy, C. W., and Sigman, D. M.: The
proportion of remineralized nitrate on the ice-covered eastern Bering Sea
shelf evidenced from the oxygen isotope ratio of nitrate, Global
Biogeochem. Cy., 27, 962–971, https://doi.org/10.1002/gbc.20075, 2013.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of
Seawater Analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH Verlag GmbH, 159–228, https://doi.org/10.1002/9783527613984.ch10, 1999.
Hoch, M. P., Fogel, M. L., and Kirchman, D. L.: Isotope fractionation
associated with ammonium uptake by a marine bacterium, Limnol.
Oceanogr., 37, 1447–1459, https://doi.org/10.4319/lo.1992.37.7.1447,
1992.
Hofmann, J., Behrendt, H., Gilbert, A., Janssen, R., Kannen, A., Kappenberg,
J., Lenhart, H., Lise, W., Nunneri, C., and Windhorst, W.:
Catchment – coastal zone interaction based upon scenario and model analysis:
Elbe and the German Bight case study, Reg. Environ. Change, 5,
54–81, https://doi.org/10.1007/s10113-004-0082-y, 2005.
Islam, M. J., Jang, C., Eum, J., Jung, S.-M., Shin, M.-S., Lee, Y., Choi,
Y., and Kim, B.: C : N : P stoichiometry of particulate and dissolved organic
matter in river waters and changes during decomposition, J. Ecol. Environ., 43, 4, https://doi.org/10.1186/s41610-018-0101-4, 2019.
Jacob, J., Sanders, T., and Dähnke, K.: Nitrite consumption and
associated isotope changes during a river flood event, Biogeosciences, 13,
5649–5659, https://doi.org/10.5194/bg-13-5649-2016, 2016.
Jacob, J., Nowka, B., Merten, V., Sanders, T., Spieck, E., and Dähnke,
K.: Oxidation kinetics and inverse isotope effect of marine
nitrite-oxidizing isolates, Aquat. Microb. Ecol., 80, 289–300, https://doi.org/10.3354/ame01859, 2018.
Johannsen, A., Dähnke, K., and Emeis, K.: Isotopic composition of
nitrate in five German rivers discharging into the North Sea, Org.
Geochem., 39, 1678–1689, 2008.
Kappenberg, J. and Fanger, H.-U.: Sedimenttransportgeschehen in der
tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee, GKKS Forschungszentrum GmbH,
ISSN 0344-9629, 2007.
Kendall, C.: Tracing nitrogen sources and cycling in catchments, in: Isotope
Tracers in Catchment Hydrology, edited by: Kendall, C. and McDonnell, J.
J., Elsevier, Amsterdam, 521–576, https://doi.org/10.1016/B978-0-444-81546-0.50023-9, 1998.
Klawonn, I., Bonaglia, S., Brüchert, V., and Ploug, H.: Aerobic and
anaerobic nitrogen transformation processes in N2-fixing cyanobacterial
aggregates, ISME J., 9, 1456–1466, https://doi.org/10.1038/ismej.2014.232, 2015.
Liu, T., Xia, X., Liu, S., Mou, X., and Qiu, Y.: Acceleration of
Denitrification in Turbid Rivers Due to Denitrification Occurring on
Suspended Sediment in Oxic Waters, Environ. Sci. Technol.,
47, 4053–4061, https://doi.org/10.1021/es304504m, 2013.
Lozán, J. L. and Kausch, H.: Warnsignale aus Flüssen und Ästuaren, Parey Berlin, ISBN: 978-3980966870, 1996.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental-Determination of Nitrogen Kinetic Isotope
Fractionation – Some Principles – Illustration for the Denitrification and
Nitrification Processes, Plant Soil, 62, 413–430, https://doi.org/10.1007/BF02374138,
1981.
Mariotti, A., Leclerc, A., and Germon, J. C.: Nitrogen isotope fractionation
associated with the NO → N2O step of denitrification in soils,
Can. J. Soil Sci., 62, 227–241, https://doi.org/10.4141/cjss82-027, 1982.
Martin, T. S., Primeau, F., and Casciotti, K. L.: Modeling oceanic nitrate
and nitrite concentrations and isotopes using a 3-D inverse N cycle model,
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, 2019.
Martiny, A. C., Vrugt, J. A., and Lomas, M. W.: Concentrations and ratios of
particulate organic carbon, nitrogen, and phosphorus in the global ocean,
Sci. Data, 1, 140048, https://doi.org/10.1038/sdata.2014.48, 2014.
McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and
nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in
freshwater and seawater, Anal. Chem., 77, 5589–5595, 2005.
Meincke, M., Bock, E., Kastrau, D., and Kroneck, P. M. H.: Nitrite
oxidoreductase from Nitrobacter hamburgensis: redox centers and their
catalytic role, Arch. Microbiol., 158, 127–131, https://doi.org/10.1007/BF00245215,
1992.
Middelburg, J. J. (Ed.): Organic Matter is more than CH2O, in: Marine Carbon
Biogeochemistry: A Primer for Earth System Scientists, Springer International Publishing, Springer, Cham, 107–118, ISBN: 978-3-030-10822-9, https://doi.org/10.1007/978-3-030-10822-9_6, 2019.
Middelburg, J. J. and Herman, P. M. J.: Organic matter processing in tidal
estuaries, Mar. Chem., 106, 127–147, 2007.
Middelburg, J. J. and Nieuwenhuize, J.: Nitrogen isotope tracing of
dissolved inorganic nitrogen behaviour in tidal estuaries, Estuar. Coast. Shelf Sci., 53, 385–391, 2001.
Möbius, J.: Isotope fractionation during nitrogen remineralization
(ammonification): Implications for nitrogen isotope biogeochemistry,
Geochim. Cosmochim. Ac., 105, 422–432,
https://doi.org/10.1016/j.gca.2012.11.048, 2013.
Möbius, J., Lahajnar, N., and Emeis, K. C.: Diagenetic control of
nitrogen isotope ratios in Holocene sapropels and recent sediments from the
Eastern Mediterranean Sea, Biogeosciences, 7, 3901–3914, https://doi.org/10.5194/bg-7-3901-2010, 2010.
OSPAR Commission: Second OSPAR Integrated Report on the Eutrophication
Status of the OSPAR Maritime Area, Eutrophication Series, OSPAR Comission,
London, United Kingdom, ISBN: 978-1-906840-13-6, 2008.
Pastuszak, M., Witek, Z., Nagel, K., Wielgat, M., and Grelowski, A.: Role of
the Oder estuary (southern Baltic) in transformation of the riverine
nutrient loads, J. Mar. Syst., 57, 30–54, 2005.
Pätsch, J., Serna, A., Dähnke, K., Schlarbaum, T., Johannsen, A.,
and Emeis, K. C.: Nitrogen cycling in the German Bight (SE North Sea) –
Clues from modelling stable nitrogen isotopes, Cont. Shelf Res.,
30, 203–213, https://doi.org/10.1016/j.csr.2009.11.003, 2010.
Pennock, J. R., Velinsky, D. J., Ludlam, J. M., Sharp, J. H., and Fogel, M.
L.: Isotopic fractionation of ammonium and nitrate during uptake by
Skeletonema costatum: Implications for δ15N dynamics under bloom
conditions, Limnol. Oceanogr., 41, 451–459,
https://doi.org/10.4319/lo.1996.41.3.0451, 1996.
Petersen, W., Schroeder, F., and Bockelmann, F.-D.: FerryBox – Application
of continuous water quality observations along transects in the North Sea,
Ocean Dynam., 61, 1541–1554, https://doi.org/10.1007/s10236-011-0445-0, 2011.
Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and
Benner, S. G.: Nitrous oxide from streams and rivers: A review of primary
biogeochemical pathways and environmental variables, Earth-Sci. Rev.,
191, 224–262, https://doi.org/10.1016/j.earscirev.2019.02.021, 2019.
Radach, G. and Pätsch, J.: Variability of continental riverine
freshwater and nutrient inputs into the North Sea for the years 1977–2000
and its consequences for the assessment of eutrophication, Estuar.
Coast., 30, 66–81, 2007.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea-water, in: The Sea, edited by: Hill, M. N., Vol. 2, Interscience Publishers, New York, 26–77,
ISBN: 9780674017283, 1963.
Sanders, T. and Laanbroek, H. J.: The distribution of sediment and water
column nitrification potential in the hyper-turbid Ems estuary, Aquat.
Sci., 80, 33, https://doi.org/10.1007/s00027-018-0584-1, 2018.
Sanders, T., Schöl, A., and Dähnke, K.: Hot Spots of Nitrification
in the Elbe Estuary and Their Impact on Nitrate Regeneration, Estuar.
Coast., 41, 128–138, https://doi.org/10.1007/s12237-017-0264-8, 2018.
Santoro, A. E. and Casciotti, K. L.: Enrichment and characterization of
ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and
stable isotope fractionation, ISME J., 5, 1796–1808, https://doi.org/10.1038/ismej.2011.58, 2011.
Schlarbaum, T., Dähnke, K., and Emeis, K.: Turnover of combined
dissolved organic nitrogen and ammonium in the Elbe estuary/NW Europe:
Results of nitrogen isotope investigations, Mar. Chem., 119, 91–107, https://doi.org/10.1016/j.marchem.2009.12.007, 2010.
Schöl, A., Hein, B., Wyrwa, J., and Kiresch, V.: Modelling water quality
in the Elbe and its estuary – Large scale and long term applications with
focus on the oxygen budget of the estuary, Die Küste, 81, 203–232,
2014.
Schröder, F., Wiltshire, K. H., Klages, D., Mathieu, B., and Knauth, H.-D.: Nitrogen and oxygen processes in sediments of the Elbe estuary, Archiv. Hydrobiol., 110, 311–328, 1996.
Sebilo, M., Billen, G., Mayer, B., Billiou, D., Grably, M., Garnier, J., and
Mariotti, A.: Assessing nitrification and denitrification in the seine river
and estuary using chemical and isotopic techniques, Ecosystems, 9, 564–577,
2006.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Bohlke, J. K.: A bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
2001.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D.
M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep
nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen,
Deep-Sea Res. Pt. I, 56, 1419–1439, https://doi.org/10.1016/j.dsr.2009.04.007, 2009.
Spieckermann, M. J.: Controls of Oxygen Consumption of Sediments in the
Upper Elbe Estuary, University of Hamburg, Germany, 96 pp., https://ediss.sub.uni-hamburg.de/handle/ediss/9129 (last access: 10 August 2022), 2021.
Stephens, B. M., Wankel, S. D., Beman, J. M., Rabines, A. J., Allen, A. E.,
and Aluwihare, L. I.: Euphotic zone nitrification in the California Current
Ecosystem, Limnol. Oceanogr., 65, 790–806,
https://doi.org/10.1002/lno.11348, 2020.
Umweltbundesamt, 2021: Flusseinträge und direkte Einträge in die
Nordsee,
https://www.umweltbundesamt.de/daten/, last access: 8 October 2021.
van Beusekom, J. E. E. and de Jonge, V. N.: Retention of phosphorus and
nitrogen in the Ems estuary, Estuaries, 21, 527–539, 1998.
Voynova, Y. G., Brix, H., Petersen, W., Weigelt-Krenz, S., and Scharfe, M.:
Extreme flood impact on estuarine and coastal biogeochemistry: the 2013 Elbe
flood, Biogeosciences, 14, 541–557, https://doi.org/10.5194/bg-14-541-2017, 2017.
Wada, E. and Hattori, A.: Nitrogen isotope effects in the assimilation of
inorganic nitrogenous compounds by marine diatoms, Geomicrobiology, 1,
85–101, 1978.
Wankel, S. D., Kendall, C., Francis, C. A., and Paytan, A.: Nitrogen sources
and cycling in the San Francisco Bay Estuary: A nitrate dual isotopic
composition approach, Limnol. Oceanogr., 51, 1654–1664, 2006.
Wankel, S. D., Kendall, C., Pennington, J. T., Chavez, F. P., and Paytan,
A.: Nitrification in the euphotic zone as evidenced by nitrate dual isotopic
composition: Observations from Monterey Bay, California,
Global Biogeochem. Cy., 21, GB2009, https://doi.org/10.1029/2006GB002723, 2007.
Waser, N. A. D., Harrison, P. J., Nielsen, B., Calvert, S. E., and Turpin,
D. H.: Nitrogen isotope fractionation during the uptake and assimilation of
nitrate, nitrite, ammonium, and urea by a marine diatom, Limnol.
Oceanogr., 43, 215–224, https://doi.org/10.4319/lo.1998.43.2.0215, 1998.
York, J. K., Tomasky, G., Valiela, I., and Repeta, D. J.: Stable isotopic
detection of ammonium and nitrate assimilation by phytoplankton in the
Waquoit Bay estuarine system, Limnol. Oceanogr., 52, 144–155, 2007.
Zhang, L., Altabet, M. A., Wu, T. X., and Hadas, O.: Sensitive measurement
of NH N-15/N-14 (δNH ) at natural abundance levels in fresh
and saltwaters, Anal. Chem., 79, 5297–5303, 2007.
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal...
Altmetrics
Final-revised paper
Preprint