Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, UAE
Arabian Center for Climate and Environmental Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
Zouhair Lachkar
Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, UAE
Arabian Center for Climate and Environmental Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
Shafer Smith
Courant Institute of Mathematical Sciences, New York University, New York, USA
Arabian Center for Climate and Environmental Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
Marina Lévy
Sorbonne Université (CNRS/IRD/MNHN), LOCEAN-IPSL, Paris, France
Related authors
No articles found.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Marina Lévy, Karina von Schuckmann, Patrick Vincent, Bruno Blanke, Joachim Claudet, Patrice Guillotreau, Audrey Hasson, Claire Jolly, Yunne Shin, Olivier Thébaud, Adrien Vincent, and Pierre Bahurel
State Planet, 6-osr9, 1, https://doi.org/10.5194/sp-6-osr9-1-2025, https://doi.org/10.5194/sp-6-osr9-1-2025, 2025
Short summary
Short summary
The Ocean is vital to humanity, but humans are putting it at risk. The Starfish Barometer is a new yearly civic rendezvous that shows how people and the Ocean affect each other. Using science-based facts, it highlights major trends in ocean health, the pressures it faces, the harm to people, and current protection efforts and opportunities. The goal is to raise awareness to secure a better future for the Ocean and humanity.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025, https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Short summary
The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
Cited articles
Acharya, S. S. and Panigrahi, M. K.:
Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox,
Deep-Sea Res. Pt. I,
115, 240–252, 2016. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a, b
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P., Sutula, M., and Weisberg, S. B.:
Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming,
Frontiers in Marine Science,
6, 227, https://doi.org/10.3389/fmars.2019.00227, 2019. a
Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y. K., Dupont, S., Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., Roethler, M., Sutula, M., and Weisberg, S. B.:
Synthesis of Thresholds of Ocean Acidification Impacts on Echinoderms,
Frontiers in Marine Science,
8, 261, https://doi.org/10.3389/fmars.2021.602601, 2021. a
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. a
Carton, J. A. and Giese, B. S.:
A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA),
Mon. Weather Rev.,
136, 2999–3017, 2008. a
Casey, K. S. and Cornillon, P.:
A comparison of satellite and in situ–based sea surface temperature climatologies,
J. Climate,
12, 1848–1863, 1999. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Curry, W., Ostermann, D., Guptha, M., and Ittekkot, V.:
Foraminiferal production and monsoonal upwelling in the Arabian Sea: evidence from sediment traps,
Geological Society, London, Special Publications,
64, 93–106, 1992. a
da Silva, A. M., Young, C. C., and Levitus, S.:
Atlas of surface marine data 1994, Vol. 4: Anomalies of fresh water fluxes, NOAA Atlas, NESDIS,
U.S. Department of Commerce, NOAA, NESDIS, 9, 1994. a
de Verneil, A.: Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers, Zenodo [Data set], https://doi.org/10.5281/zenodo.5937512, 2022. a
Dickson, A. and Millero, F. J.:
A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media,
Deep-Sea Res. Pt. I,
34, 1733–1743, 1987. a
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.:
Ocean Acidification: The Other CO2 Problem,
Annu. Rev. Mar. Sci.,
1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, pMID: 21141034, 2009a. a
Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., Mahowald, N., Moore, J. K., and Wanninkhof, R.:
Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust,
Deep-Sea Res. Pt. II,
56, 640–655, 2009b. a, b
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020. a
Goyet, C., Metzl, N., Millero, F., Eischeid, G., O'sullivan, D., and Poisson, A.:
Temporal variation of the sea surface CO2/carbonate properties in the Arabian Sea,
Mar. Chem.,
63, 69–79, 1998a. a
Gruber, N., Frenzel, H., Doney, S. C., Marchesiello, P., McWilliams, J. C., Moisan, J. R., Oram, J. J., Plattner, G.-K., and Stolzenbach, K. D.:
Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System,
Deep-Sea Res. Pt. I,
53, 1483–1516, 2006. a
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M., McWilliams, J. C., Nagai, T., and Plattner, G.-K.:
Eddy-induced reduction of biological production in eastern boundary upwelling systems,
Nat. Geosci.,
4, 787–792, 2011. a
Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., and Plattner, G.-K.:
Rapid progression of ocean acidification in the California Current System,
Science,
337, 220–223, 2012. a
Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plattner, G.-K.: Spatiotemporal variability and long-term trends of ocean acidification in the California Current System, Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, 2013. a
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.:
Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations,
Geophys. Res. Lett.,
33, L16611, https://doi.org/10.1029/2006GL026817, 2006. a
Hood, R. R., Urban, E. R., McPhaden, M. J., Su, D., and Raes, E.:
The 2nd International Indian Ocean Expedition (IIOE-2): Motivating New Exploration in a Poorly Understood Basin,
Limnology and Oceanography Bulletin,
25, 117–124, 2016. a
Keeling, C. D.:
Carbon dioxide in surface ocean waters: 4. Global distribution,
J. Geophys. Res.,
73, 4543–4553, https://doi.org/10.1029/JB073i014p04543, 1968. a
Keeling, C. D., Brix, H., and Gruber, N.:
Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii,
Global Biogeochem. Cy.,
18, GB4006, https://doi.org/10.1029/2004GB002227, 2004. a
Khatiwala, S., Primeau, F., and Hall, T.:
Reconstruction of the history of anthropogenic CO2 concentrations in the ocean,
Nature,
462, 346–349, 2009. a
Körtzinger, A., Duinker, J. C., and Mintrop, L.:
Strong CO2 emissions from the Arabian Sea during south-west monsoon,
Geophys. Res. Lett.,
24, 1763–1766, 1997. a
Lachkar, Z. and Gruber, N.:
Response of biological production and air–sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems,
J. Marine Syst.,
109, 149–160, 2013. a
Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity, Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, 2018. a
Large, W. G., McWilliams, J. C., and Doney, S. C.:
Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization,
Rev. Geophys.,
32, 363–403, 1994. a
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., and Key, R. M.:
Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans,
Geophys. Res. Lett.,
33, L19605, https://doi.org/10.1029/2006GL027207, 2006. a
Lendt, R., Thomas, H., Hupe, A., and Ittekkot, V.:
Response of the near-surface carbonate system of the northwestern Arabian Sea to the southwest monsoon and related biological forcing,
J. Geophys. Res.-Oceans,
108, 3222, https://doi.org/10.1029/2000JC000771, 2003. a, b, c, d
Lévy, M., Shankar, D., André, J.-M., Shenoi, S., Durand, F., and de Boyer Montégut, C.:
Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms,
J. Geophys. Res.-Oceans,
112, C12014, https://doi.org/10.1029/2007JC004090, 2007. a
L'Hégaret, P., Duarte, R., Carton, X., Vic, C., Ciani, D., Baraille, R., and Corréard, S.: Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path, Ocean Sci., 11, 667–693, https://doi.org/10.5194/os-11-667-2015, 2015. a
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.:
Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode,
Global Biogeochem. Cy.,
21, GB2026, https://doi.org/10.1029/2006GB002900, 2007. a, b
Mahadevan, A., Lévy, M., and Mémery, L.:
Mesoscale variability of sea surface pCO2: What does it respond to?,
Global Biogeochem. Cy.,
18, GB1017, https://doi.org/10.1029/2003GB002102, 2004. a
Mahadevan, A., Tagliabue, A., Bopp, L., Lenton, A., Mémery, L., and Lévy, M.:
Impact of episodic vertical fluxes on sea surface pCO2,
Philos. T. R. Soc. A,
369, 2009–2025, https://doi.org/10.1098/rsta.2010.0340, 2011. a
Marchesiello, P., Debreu, L., and Couvelard, X.:
Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution,
Ocean Model.,
26, 156–169, 2009. a
Mehrbach, C., Culberson, C., Hawley, J., and Pytkowicx, R.:
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1,
Limnol. Oceanogr.,
18, 897–907, 1973. a
Millero, F. J.:
Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Acta,
59, 661–677, 1995. a
Millero, F. J., Degler, E. A., O'Sullivan, D. W., Goyet, C., and Eischeid, G.:
The carbon dioxide system in the Arabian Sea,
Deep-Sea Res. Pt. II,
45, 2225–2252, 1998a. a
Millero, F. J., Lee, K., and Roche, M.:
Distribution of alkalinity in the surface waters of the major oceans,
Mar. Chem.,
60, 111–130, https://doi.org/10.1016/S0304-4203(97)00084-4, 1998b. a
Morrison, J. M., Codispoti, L., Smith, S. L., Wishner, K., Flagg, C., Gardner, W. D., Gaurin, S., Naqvi, S., Manghnani, V., Prosperie, L., Prosperie, L., and Gundersen, J. S.:
The oxygen minimum zone in the Arabian Sea during 1995,
Deep-Sea Res. Pt. II,
46, 1903–1931, 1999. a
Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C., and Plattner, G.-K.:
Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System,
J. Geophys. Res.-Oceans,
120, 5318–5341, 2015. a
Naqvi, S. W. A., Gupta, R. S., and Kumar, M. D.:
Carbon dioxide and nitrous oxide in the Arabian Sea, Geophysical Monograph Series,
American Geophysical Union, Washington, DC, 75, 85–92, https://doi.org/10.1029/GM075p0085, 1993. a
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.:
GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019. a, b
Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean carbonate system: mocsy 2.0, Geosci. Model Dev., 8, 485–499, https://doi.org/10.5194/gmd-8-485-2015, 2015. a
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.:
Routine uncertainty propagation for the marine carbon dioxide system,
Mar. Chem.,
207, 84–107, 2018. a
Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in the oxygen minimum zone (OMZ), Biogeosciences, 8, 239–252, https://doi.org/10.5194/bg-8-239-2011, 2011. a
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, 2013. a
Prasad, T., Ikeda, M., and Kumar, S. P.:
Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea,
J. Geophys. Res.-Oceans,
106, 17059–17071, 2001. a
Praveen, V., Valsala, V., Ajayamohan, R., and Balasubramanian, S.:
Oceanic Mixing over the Northern Arabian Sea in a Warming Scenario: Tug of War between Wind and Buoyancy Forces,
J. Phys. Oceanogr.,
50, 945–964, 2020. a
Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Kumar, D.:
Contribution of mesoscale processes to nutrient budgets in the Arabian Sea,
J. Geophys. Res.-Oceans,
116, C11, https://doi.org/10.1029/2011JC007006, 2011. a
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.:
Effects of Eddy-Driven Subduction on Ocean Biological Carbon Pump,
Global Biogeochem. Cy.,
33, 1071–1084, https://doi.org/10.1029/2018GB006125, 2019. a
Risien, C. M. and Chelton, D. B.:
A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data,
J. Phys. Oceanogr.,
38, 2379–2413, 2008. a
Rixen, T., Guptha, M., and Ittekkot, V.:
Deep ocean fluxes and their link to surface ocean processes and the biological pump,
Prog. Oceanogr.,
65, 240–259, 2005. a
Rixen, T., Goyet, C., and Ittekkot, V.: Diatoms and their influence on the biologically mediated uptake of atmospheric CO2 in the Arabian Sea upwelling system, Biogeosciences, 3, 1–13, https://doi.org/10.5194/bg-3-1-2006, 2006. a
Roobaert, A., Laruelle, G. G., Landschützer, P., and Regnier, P.: Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis, Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, 2018. a
Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and Regnier, P.:
The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean,
Global Biogeochem. Cy.,
33, 1693–1714, 2019. a
Sarma, V., Swathi, P., Kumar, M. D., Prasannakumar, S., Bhattathiri, P., Madhupratap, M., Ramaswamy, V., Sarin, M., Gauns, M., Ramaiah, N., Sardessai, S., and de Sousa, S. N.:
Carbon budget in the eastern and central Arabian Sea: An Indian JGOFS synthesis,
Global Biogeochem. Cy.,
17, 1102,https://doi.org/10.1029/2002GB001978, 2003. a
Sarma, V. V. S. S., Dileep, K. M., Gauns, M., and Madhupratap, M.:
Seasonal controls on surface pCO2 in the central and eastern Arabian Sea,
Academy Proceedings in Earth and Planetary Sciences, 109, 471–479,
available at: http://proxy.library.nyu.edu/login?url=https://www.proquest.com/docview/214115753?accountid=12768 (last access: 1 February 2022),
copyright – Indian Academy of Sciences 2000; Last updated: 11 August 2010; SubjectsTermNotLitGenreText – Arabian Sea, 2000. a
Sharada, M., Swathi, P., Yajnik, K., and Devasena, C. K.:
Role of biology in the air-sea carbon flux in the Bay of Bengal and Arabian Sea,
J. Earth Syst. Sci.,
117, 429–447, 2008. a
Shchepetkin, A. F. and McWilliams, J. C.:
The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model,
Ocean Model.,
9, 347–404, 2005. a
Smith, S. L.:
The Arabian Sea of the 1990s: New biogeochemical understanding,
Prog. Oceanogr.,
2, 113–115, 2005. a
Somasundar, K., Rajendran, A., Kumar, M. D., and Gupta, R. S.:
Carbon and nitrogen budgets of the Arabian Sea,
Mar. Chem.,
30, 363–377, 1990. a
Sreeush, M. G., Valsala, V., Santanu, H., Pentakota, S., Prasad, K., Naidu, C., and Murtugudde, R.:
Biological production in the Indian Ocean upwelling zones – Part 2: Data based estimates of variable compensation depth for ocean carbon models via cyclo-stationary Bayesian Inversion,
Deep-Sea Res. Pt. II,
179, 104619, https://doi.org/10.1016/j.dsr2.2019.07.007, 2019b. a
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.:
Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects,
Deep-Sea Res. Pt. II,
49, 1601–1622, 2002. a
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans,
Deep-Sea Res. Pt. II,
56, 554–577, 2009. a, b
Taylor, K. E.:
Summarizing multiple aspects of model performance in a single diagram,
J. Geophys. Res.-Atmos.,
106, 7183–7192, 2001. a
Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T., Segschneider, J., Totterdell, I., and Heinze, C.:
Long-term surface pCO2 trends from observations and models,
Tellus B,
66, 23083, https://doi.org/10.3402/tellusb.v66.23083, 2014.
a, b, c
Turi, G., Lachkar, Z., and Gruber, N.: Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study, Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, 2014. a, b, c, d
Valsala, V., Sreeush, M. G., and Chakraborty, K.:
The IOD Impacts on the Indian Ocean Carbon Cycle,
J. Geophys. Res.-Oceans,
125, e2020JC016485, https://doi.org/10.1029/2020JC016485, 2020. a
Vic, C., Roullet, G., Carton, X., and Capet, X.:
Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS,
J. Geophys. Res.-Oceans,
119, 6422–6443, https://doi.org/10.1002/2014JC009857, 2014. a
Weiss, R.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, 1974. a
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.:
Total alkalinity: The explicit conservative expression and its application to biogeochemical processes,
Mar. Chem.,
106, 287–300, 2007. a
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights...
Altmetrics
Final-revised paper
Preprint