Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Yong Zhang
CORRESPONDING AUTHOR
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Shuai Ma
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Hanbing Chen
College of Life Science, Fujian Normal University, Fuzhou, China
Jiabing Li
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Zhengke Li
School of Food and Biological Engineering, Shanxi University of
Science and Technology, Xi'an, China
Kui Xu
Hubei Key Laboratory of Edible Wild Plants Conservation and
Utilization, Hubei Engineering Research Center of Special Wild Vegetables
Breeding and Comprehensive Utilization Technology, College of Life Sciences,
Hubei Normal University, Huangshi, China
Ruiping Huang
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, China
Hong Zhang
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Yonghe Han
College of Environmental and Resource Sciences, College of Carbon
Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and
Resource Recycling, Fujian Normal University, Fuzhou, China
Institute for Advanced Marine Research, China University of
Geosciences, Guangzhou, China
Related authors
Jinlong Shang, Wenting Ke, Yinrui Wang, Junqin Cai, Yan Chen, Xi Liu, Yonghe Han, Hong Zhang, Kui Xu, and Yong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5131, https://doi.org/10.5194/egusphere-2025-5131, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Here, we revealed that low temperature and low light intensity acted synergistically to decrease growth rates and particulate organic carbon contents, whereas did not significantly affect particulate organic phosphorus contents of three calcifying coccolithophores strains. These results are important for assessing the effect of phytoplankton on deep–sea biogeochemical cycles.
Jinlong Shang, Wenting Ke, Yinrui Wang, Junqin Cai, Yan Chen, Xi Liu, Yonghe Han, Hong Zhang, Kui Xu, and Yong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5131, https://doi.org/10.5194/egusphere-2025-5131, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Here, we revealed that low temperature and low light intensity acted synergistically to decrease growth rates and particulate organic carbon contents, whereas did not significantly affect particulate organic phosphorus contents of three calcifying coccolithophores strains. These results are important for assessing the effect of phytoplankton on deep–sea biogeochemical cycles.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Zhuo Chen, Jun Sun, Ting Gu, Guicheng Zhang, and Yuqiu Wei
Ocean Sci., 17, 1775–1789, https://doi.org/10.5194/os-17-1775-2021, https://doi.org/10.5194/os-17-1775-2021, 2021
Short summary
Short summary
We investigated the spatial distribution pattern and diversity of phytoplankton communities in the western Pacific Ocean (WPO) in the autumn of 2016, 2017, and 2018. The regions with strong vertical stratification were more favorable for cyanobacteria, whereas weak vertical stratification was more conducive to diatoms and dinoflagellates. It is clear that physical processes control phytoplankton community structure by driving the balance of chemical elements.
Cited articles
Beaufort, L., Couapel, M., Buchet, N., Claustre, H., and Goyet, C.: Calcite production by coccolithophores in the south east Pacific Ocean, Biogeosciences, 5, 1101–1117, https://doi.org/10.5194/bg-5-1101-2008, 2008.
Berges, J. A., Franklin, D. J., and Harrison, P. J.: Evolution of an
artificial seawater medium: improvements in enriched seawater, artificial
water over the past two decades, J. Phycol., 37, 1138–1145, https://doi.org/10.1046/j.1529-8817.2001.01052.x, 2001.
Borchard, C., Borges, A. V., Händel, N., and Engel, A.: Biogeochemical
response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under
phosphorus limitation: A chemostat study, J. Exp. Mar. Biol. Ecol., 410,
61–71, https://doi.org/10.1016/j.jembe.2011.10.004, 2011.
Caldeira, K. and Wickett, M. E.: Oceanography: anthropogenic carbon and
ocean pH, Nature, 425, 365, https://doi.org/10.1038/425365a, 2003.
Chen, P., Toribara, T. T., and Warner, H.: Microdetermination of phosphorus,
Anal. Chem., 28, 1756–1758, https://doi.org/10.1021/ac60068a036, 1956.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practice
for ocean CO2 measurements, PICES Special Publication, 3, 191 pp., 2007.
Dickson, A. G.: pH buffers for seawater media based on the total hydrogen
ion concentration scale, Deep-Sea Res., 40, 107–118, https://doi.org/10.1016/0967-0637(93)90055-8, 1993.
Dyhrman, S. T.: Nutrients and their acquisition: phosphorus physiology in
microalgae, in: The physiology of microalgae, edited by: Borowitzka, M. A.,
Beardall, J., and Raven, J. A., Springer, Heidelberg, 155–183, https://doi.org/10.1007/978-3-319-24945-2, 2016.
Fabry, V. J. and Balch, W. M.: Direct measurements of calcification rates
in planktonic organisms, in: Guide to best practices for ocean acidification
research and data reporting, edited by: Riebesell, U., Fabry, V. J.,
Hansson, L., and Gattuso, J. P., Luxembourg, Publications Office of the
European Union, 201–212, https://doi.org/10.2777/66906, 2010.
Feng, Y. Y., Roleda, M. Y., Armstrong, E., Summerfield, T. C., Law, C. S.,
Hurd, C. L., and Boyd, P. W.: Effects of multiple drivers of ocean global
change on the physiology and functional gene expression of the
coccolithophore Emiliania huxleyi, Glob. Chang. Biol., 26, 5630–5645, https://doi.org/10.1111/GCB.15259, 2020.
Gao, K., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and
Hutchins, D. A.: Effects of ocean acidification on marine photosynthetic
organisms under the concurrent influences of warming, UV radiation, and
deoxygenation, Front. Mar. Sci., 6, 322,
https://doi.org/10.3389/fmars.2019.00322, 2019.
Geider, R. J. and LaRoche, J.: Redfield revisited: variability of in
marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1–17,
https://doi.org/10.1017/S0967026201003456, 2002.
Gibbs, S. J., Poulton, A. J., Brown, P. R., Daniels, C. J., Hopkins, J.,
Young, J. R., Jones, H. L., Thiemann, G. J., O'Dea, S. A., and Newsam, C.:
Species-specific growth response of coccolithophores to Palaeocene–Eocene
environmental change, Nat. Geosci., 6, 218–222, https://doi.org/10.1038/ngeo1719,
2013.
Guillard, R. R. L. and Ryther, J. H.: Studies of marine planktonic diatoms.
I. Cyclotella nana Hustedt and Detonula confervacea Cleve, Can. J.
Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029, 1962.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of
seawater analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M.,
WILEY-VCH Publishers, ISBN 3-527-29589-5, 1999.
He, S., Le, C., He, J., and Liu, N.: Empirical algorithm for detecting
coccolithophore blooms through satellite observation in the Barents Sea,
Remote Sens. Environ., 270, 112886, https://doi.org/10.1016/j.res.2021.112886, 2022.
Heidenreich, E., Wördenweber, R., Kirschhöfer, F., Nusser, M.,
Friedrich, F., Fahl, K., Kruse, O., Rost, B., Franzreb, M.,
Brenner-Weiß, G., and Rokitta, S.: Ocean acidification has little effect
on the biochemical composition of the coccolithophore Emiliania huxleyi, PLoS One, 14,
e0218564, https://doi.org/10.1371/journal.pone.0218564, 2019.
Jin, P., Gao, G., Liu, X., Li, F., Tong, S., Ding, J., Zhong, Z., Liu, N.,
and Gao, K.: Contrasting photophysiological characteristics of phytoplankton
assemblages in the Northern South China Sea, PLoS ONE, 11, e0153555, https://doi.org/10.1371/journal.pone.0153555, 2016.
Jin, P., Ding, J. C., Xing, T., Riebesell, U., and Gao, K. S.: High levels
of solar radiation offset impacts of ocean acidification on calcifying and
non-calcifying strains of Emiliania huxleyi, Mar. Ecol. Prog. Ser., 568, 47–58, https://doi.org/10.3354/meps12042, 2017.
Jordan, R. W. and Winter, A.: Assemblages of coccolithophorids and other
living microplankton off the coast of Puerto Rico during January–May 1995,
Mar. Micropaleontol., 39, 113–130, https://doi.org/10.1016/S0377-8398(00)00017-7,
2000.
Kondrik, D. V., Pozdnyakov, D. V., and Johannessen, O. M.: Satellite
evidence that E. huxleyi phytoplankton blooms weaken marine carbon sinks, Geophys.
Res. Lett., 45, e2017GL076240, https://doi.org/10.1002/2017GL076240, 2018.
Kottmeier, D. M., Rokitta, S. D., and Rost, B.: Acidification, not
carbonation, is the major regulator of carbon fluxes in the coccolithophore
Emiliania huxleyi, New Phytol., 211, 126–137, https://doi.org/10.1111/nph.13885, 2016.
Kubryakova, E. A., Kubryakov, A. A., and Mikaelyan, A. S.: Winter
coccolithophore blooms in the Black Sea: Interannual variability and driving
factors, J. Mar. Syst., 213, 103461, https://doi.org/10.1016/j.jmarsys.2020.103461,
2021.
Leonardos, K. and Geider, R. J.: Elevated atmospheric carbon dioxide
increases organic carbon fixation by Emiliania huxleyi (haptophyta), under nutrient-limited
high-light conditions, J. Phycol., 41, 1196–1203, https://doi.org/10.1111/j.1529-8817.2005.00152.x, 2005.
Lohbeck, K., Riebesell, U., and Reusch, T. B. H.: Gene expression changes in
the coccolithophore Emiliania huxleyi after 500 generation of selection to ocean
acidification, P. Roy. Soc. B-Bio., 281, 20140003, https://doi.org/10.1098/rspb.2014.0003,
2014.
Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S.-J.: Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study, Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, 2018.
Mackinder, L., Wheeler, G., Schroeder, D., von Dassow, P., Riebesell, U.,
and Brownlee, C.: Expression of biomineralization-related ion transport
genes in Emiliania huxleyi, Env. Microbiol., 13, 3250–3565,
https://doi.org/10.1111/j.1462-2920.2011.02561.x, 2011.
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., and Lee,
Y. C.: Carbohydrate analysis by a phenol-sulfuric acid method in microplate
format, Anal. Biochem., 339, 69–72, https://doi.org/10.1016/j.ab.2004.12.001, 2005.
Matthiessen, B., Eggers, S. L., and Krug, S. A.: High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation, Biogeosciences, 9, 1195–1203, https://doi.org/10.5194/bg-9-1195-2012, 2012.
McKew, B. A., Metodieva, G., Raines, C. A., Metodiev, M. V., and Geider, R.
J.: Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise
modification of the proteome to scavenge alternative sources of N and P,
Environ. Microbiol., 17, 4050–4062, https://doi.org/10.1111/1462-2920.12957, 2015.
Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015.
Moreno, A. R. and Martiny, A. C.: Ecological stoichiometry of ocean
plankton, Ann. Rev. Mar. Sci., 10, 43–69, https://doi.org/10.1146/annurev-marine-121916-063126, 2018.
Müller, M. N., Antia, A. N., and LaRoche, J.: Influence of cell cycle
phase on calcification in the coccolithophore Emiliania huxleyi, Limnol. Oceanogr., 53,
506–512, https://doi.org/10.4319/lo.2008.53.2.0506, 2008.
Ni, G., Zimbalatti, G., Murphy, C. D., Barnett, A. B., Arsenault, C. M., Li,
G., Cockshutt, A. M., and Campbell, D. A.: Arctic Micromonas uses protein pools and
non-photochemical quenching to cope with temperature restrictions on
Photosystem II protein turnover, Photosynth. Res., 131, 203–220, https://doi.org/10.1007/s11120-016-0310-6, 2016.
Pakulski, J. D. and Benner, R.: An improved method for the hydrolysis and
MBTH analysis of dissolved and particulate carbohydrates in seawater, Mar.
Chem., 40, 143–160, https://doi.org/10.1016/0304-4203(92)90020-B, 1992.
Perrin, L., Probert, I., Langer, G., and Aloisi, G.: Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores, Biogeosciences, 13, 5983–6001, https://doi.org/10.5194/bg-13-5983-2016, 2016.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed
for CO2 system calculations, ORNL/CDIAC-105, Carbon Dioxide Information
Analysis Centre, Dr. Denis Pierrot, Oak Ridge National Laboratory, U.S., Department of Energy, https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a,
2006.
R version 3.5.0.: The R foundation for statistical computing platform,
x86_64-w64-mingw32/x64,
https://cran.r-project.org/bin/windows/base/old/3.5.0, (last access: 28 February 2020), 2018.
Reith, M. E. and Cattolico, R. A.: Chloroplast protein synthesis in the
chromophytic alga Olisthodiscus luteus, Plant Physiol., 79, 231–236, https://doi.org/10.1104/pp.79.1.231,
1985.
Riebesell, U., Bach, L. T., Bellerby, R. G. J., Rafael Bermúdez
Monsalve, J., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., and Schulz,
K. G.: Competitive fitness of a predominant pelagic calcifier impaired by
ocean acidification, Nat. Geosci., 10, 19–24, https://doi.org/10.1038/NGEO2854, 2017.
Riegman, R., Stolte, W., Noordeloos, A. A. M., and Slezak, D.: Nutrient
uptake and alkaline phosphatase (EC ) activity of Emiliania huxleyi (Prymnesiophyceae)
during growth under N and P limitation in continuous cultures, J. Phycol.,
36, 87–96, 2000.
Rokitta, S. D., von Dassow, P., Rost, B., and John, U.: P- and N-depletion
trigger similar cellular responses to promote senescence in eukaryotic
phytoplankton, Front. Mar. Sci., 3, 109, https://doi.org/10.3389/fmars.2016.00109, 2016
Rokitta, S. D. and Rost, B: Effects of CO2 and their modulation by
light in the life-cycle stages of the coccolithophore Emiliania huxleyi, Limnol. Oceanogr.,
57, 607–618, https://doi.org/10.4319/lo.2012.57.2.0607, 2012.
Rokitta, S. D., de Nooijer, L. J., Trimborn, S., de Vargas, C., Rost, B.,
and John, U.: Transcriptome analyses reveal differential gene expression
patterns between the life-cycle stages of Emiliania huxleyi (haptophyta) and reflect
specialization to different ecological niches, J. Phycol., 47, 829–838,
https://doi.org/10.1016/S0924-9338(02)00624-7, 2011.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump:
responses to environmental changes, in: Coccolithophores: from molecular
biology to global impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer, Berlin, 99–125, 2004.
Rouco, M., Branson, O., Lebrato, M., and Iglesias-Rodríguez, M.: The
effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under
different CO2 scenarios, Front. Microbiol., 4, 1–11, https://doi.org/10.3389/fmicb.2013.00155, 2013.
Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good,
C. E., Millero, F. J., and Campbell, D. C.: Thermodynamics of the
dissociation of boric acid in seawater at S = 35 from 0 to 55 ∘C, Mar. Chem., 44, 243–248, https://doi.org/10.1016/0304-4203(93)90206-4,
1993.
Shemi, A., Schatz, D., Fredricks, H. F., Van Mooy, B. A. S., Porat, Z., and
Vardi, A.: Phosphorus starvation induces membrane remodeling and recycling
in Emiliania huxleyi, New Phytol., 211, 886–898, https://doi.org/10.1111/nph.13940, 2016.
Solórzano, L. and Sharp, J. H.: Determination of total dissolved
phosphorus and particulate phosphorus in nature waters, Limnol. Oceanogr.,
25, 754–758, https://doi.org/10.4319/lo.1980.25.4.0754, 1980.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Sterner, R. W. and Elser, J. J.: Ecological Stoichiometry: The Biology of
Elements from Molecules to the Biosphere, Princeton University Press,
Princeton, 2002.
Terrats, L., Claustre, H., Cornec, M., Mangin, A., and Neukermans, G.:
Detection of coccolithophore blooms with BioGeoChemical-Argo floats,
Geophys. Res. Lett., 47, e2020GL090559, https://doi.org/10.1029/2020GL090559, 2020.
Townsend, D. W., Keller, M. D., Holligan, P. M., Ackleson, S. G., and Balch,
W. M.: Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the
Gulf of Maine, Cont. Shelf Res., 14, 979–1000, https://doi.org/10.1016/0278-4343(94)90060-4, 1994.
Tyrrell, T. and Merico, A.: Emiliania huxleyi: bloom observations and the conditions that
induce them, in: Coccolithophores: from molecular biology to global impact,
edited by: Thierstein, H. R. and Young, J. R., Springer, Berlin, 75–97,
2004.
Wang, C., Wang, J., Li, L., Wang, Y., and Lin, S.: P-limitation promotes
carbon accumulation and sinking of Emiliania huxleyi through transcriptomic reprogramming,
Front. Mar. Sci., 9, 860222, https://doi.org/10.3389/fmars.2022.860222, 2022.
Wang, G., Xie, S. P., Huang, R. X., and Chen, C.: Robust warming pattern of
global subtropical oceans and its mechanism, J. Climate, 28, 8574–8584,
https://doi.org/10.1175/jcli-d-14-00809.1, 2015.
Wilson, D. N. and Doudna Cate J. H.: The structure and function of the
eukaryotic ribosome, CSH Perspect. Biol., 4, a011536, https://doi.org/10.1101/cshperspect.a011536, 2012.
Zhang, Y., Collins, S., and Gao, K.: Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions, Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, 2020.
Zhang, Y., Li, Z. K., Schulz, K. G., Hu, Y., Irwin, A. J., and Finkel, Z.
V.: Growth-dependent changes in elemental stoichiometry and macromolecular
allocation in the coccolithophore Emiliania huxleyi under different environmental conditions,
Limnol. Oceanogr., 66, 2999–3009, https://doi.org/10.1002/lno.11854, 2021.
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
We found that increasing light intensity compensates for the negative effects of low phosphorus...
Altmetrics
Final-revised paper
Preprint