Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Lund University, Microbial Ecology, Department of Biology, 223 62 Lund, Sweden
Swedish University of Agricultural Sciences (SLU), Department of Biosystems and Technology, Sundsvägen 14, Alnarp, Sweden
Lorenzo Menichetti
Swedish University of Agricultural Sciences (SLU), Department of Ecology, Ulls Väg 17, Uppsala, Sweden
Alf Ekblad
School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
Nicholas P. Rosenstock
Center for Environmental and Climate Research, Lund University, 223 62 Lund, Sweden
Håkan Wallander
Lund University, Microbial Ecology, Department of Biology, 223 62 Lund, Sweden
Related authors
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Maria Regina Gmach, Martin Anders Bolinder, Lorenzo Menichetti, Thomas Kätterer, Heide Spiegel, Olle Åkesson, Jürgen Kurt Friedel, Andreas Surböck, Agnes Schweinzer, and Taru Sandén
SOIL, 10, 407–423, https://doi.org/10.5194/soil-10-407-2024, https://doi.org/10.5194/soil-10-407-2024, 2024
Short summary
Short summary
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden and 16 in Austria) using long-term field experiments with the Tea Bag Index (TBI) approach. We found that the decomposition rate (k) and stabilization factor (S) were mainly governed by climatic conditions. In general, organic and mineral fertilization increased k and S, and reduced tillage increased S. Edaphic factors also affected k and S.
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Preprint under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Cited articles
Agerer, R. A. and Aidl, S. R.:
Distance-related semi-quantitative estimation of the extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora, Mycol. Prog., 3, 57–64, https://doi.org/10.1007/s11557-006-0077-9, 2004.
Akselsson, C., Belyazid, S., Hellsten, S., Klarqvist, M., Pihl-Karlsson, G., Karlsson, P. E., and Lundin, L.:
Assessing the risk of N leaching from forest soils across a steep N deposition gradient in Sweden, Environ. Pollut., 158, 3588–3595, https://doi.org/10.1016/j.envpol.2010.08.012, 2010.
Almeida, J. P., Rosenstock, N. P., Forsmark, B., Bergh, J., and Wallander, H.:
Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation, Fungal Ecol., 40, 20–31, https://doi.org/10.1016/j.funeco.2018.05.008, 2019.
Almeida, J. P., Rosenstock, N. P., Woche, S. K., Guggenberger, G., and Wallander, H.:
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest, Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, 2022.
Bahr, A., Ellström, M., Akselsson, C., Ekblad, A., Mikusinska, A., and Wallander, H.: Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage, Soil Biol. Biochem., 59, 38–48, https://doi.org/10.1016/j.soilbio.2013.01.004, 2013.
Bahr, A., Ellström, M., Bergh, J., and Wallander, H.:
Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus, Plant Soil, 390, 323–335, https://doi.org/10.1007/s11104-015-2408-6, 2015.
Bending, G. D. and Read, D. J.:
The structure and function of the vegetative mycelium of ectomycorrhizal plants: V. Foraging behaviour and translocation of nutrients from exploited litter, New Phytol., 130, 401–409, https://doi.org/10.1111/j.1469-8137.1995.tb01834.x, 1995.
Berner, C., Johansson, T., and Wallander, H.:
Long-term effect of apatite on ectomycorrhizal growth and community structure, Mycorrhiza, 22, 615–621, https://doi.org/10.1007/s00572-012-0438-y, 2012.
Bidartondo, M. I., Ek, H., Wallander, H., and Söderström, B.:
Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi?, New Phytol., 151, 543–550, https://doi.org/10.1046/j.1469-8137.2001.00180.x, 2001.
Binkley, D. and Högberg, P.: Tamm Review: Revisiting the influence of nitrogen deposition on Swedish forests, For. Ecol. Manage., 368, 222–239, https://doi.org/10.1016/j.foreco.2016.02.035, 2016.
Castaño, C., Alday, J. G., Parladé, J., Pera, J., Martínez de Aragón, J., and Bonet, J. A.:
Seasonal dynamics of the ectomycorrhizal fungus Lactarius vinosus are altered by changes in soil moisture and temperature, Soil Biol. Biochem., 115, 253–260, https://doi.org/10.1016/j.soilbio.2017.08.021, 2017.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B. D.:
Roots and associated fungi drive long-term carbon sequestration in boreal forest, Science (80-.), 340, 1615–1618, https://doi.org/10.1126/science.1231923, 2013.
Coutts, M. P. and Nicoll, B. C.:
Growth and survival of shoots, roots, and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting, Can. J. Forest Res., 20, 861–868, https://doi.org/10.1139/x90-115, 1990.
De la Varga, H., Águeda, B., Ágreda, T., Martínez-Peña, F., Parladé, J., and Pera, J.:
Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain, Mycorrhiza, 23, 391–402, https://doi.org/10.1007/s00572-013-0481-3, 2013.
Du, E., van Doorn, M., and de Vries, W.: Spatially divergent trends of nitrogen versus phosphorus limitation across European forests, Sci. Total Environ., 771, 145391, https://doi.org/10.1016/j.scitotenv.2021.145391, 2021.
Ekblad, A., Wallander, H., Carlsson, R., and Huss-danell, k.:
Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana, New Phytol., 131, 443–451, https://doi.org/10.1111/j.1469-8137.1995.tb03081.x, 1995.
Ekblad, A., Wallander, H., and Godbold, D. L.:
The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils-role in carbon cycling, Plant Soil, 366, 1–27, https://doi.org/10.1007/s11104-013-1630-3, 2013.
Ekblad, A., Mikusinska, A., Agren, G. I., Menichetti, L., Wallander, H., Vilgalys, R., Bahr, A., and Eriksson, U.:
Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization, New Phytol., 211, 874–885, https://doi.org/10.1111/nph.13961, 2016.
Endrulat, T., Buchmann, N., and Brunner, I. B.: Carbon allocation into different fine-root classes of young Abies alba trees is affected more by phenology than by simulated browsing, PLoS One, 11, 1–15, https://doi.org/10.1371/journal.pone.0154687, 2016.
Falk, W., Reger, B., Uhl, E., Pretzsch, H., and Zimmermann, L.: Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change, Glob. Change Biol., 26, 5796–5815, https://doi.org/10.1111/gcb.15265, 2020.
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosental, Y., Seitzinger, S., Smetacek, V., and Steffen, W.:
The global carbon cycle: A test of our knowledge of earth as a system, Science (80-.), 290, 291–296, https://doi.org/10.1126/science.290.5490.291, 2000.
Fernandez, C. W.:
The advancing mycelial frontier of ectomycorrhizal fungi, New Phytol., 230, 1296–1299, https://doi.org/10.1111/nph.17281, 2021.
Gill, A. L. and Finzi, A. C.:
Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale, Ecol. Lett., 19, 1419–1428, https://doi.org/10.1111/ele.12690, 2016.
Hagenbo, A., Clemmensen, K. E., Finlay, R. D., Kyaschenko, J., Lindahl, B. D., Fransson, P., and Ekblad, A.:
Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequence, New Phytol., 214, 424–431, https://doi.org/10.1111/nph.14379, 2017.
Hagenbo, A., Kyaschenko, J., Clemmensen, K. E., Lindahl, B. D., and Fransson, P.:
Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence, J. Ecol., 106, 490–501, https://doi.org/10.1111/1365-2745.12917, 2018.
Hagenbo, A., Piñuela, Y., Castaño, C., Martínez de Aragón, J., de-Miguel, S., Alday, J. G., and Bonet, J. A.:
Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests, New Phytol., 230, 1609–1622, https://doi.org/10.1111/nph.17012, 2021.
Hagerberg, D. and Wallander, H.: The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium, FEMS Microbiol. Ecol., 39, 139–146, https://doi.org/10.1016/S0168-6496(01)00207-0, 2002.
Hagerberg, D., Thelin, G., and Wallander, H.:
The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources, Plant Soil, 252, 279–290, https://doi.org/10.1023/A:1024719607740, 2003.
Hansson, K.:
Impact of tree species on carbon in forest soils, PhD thesis, Swedish University of Agricultural sciences, Uppsala, Sweden, 1–56 pp., 2011.
Hedh, J., Wallander, H., and Erland, S.:
Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest, Mycol. Res., 112, 681–688, https://doi.org/10.1016/j.mycres.2007.11.008, 2008.
Hedwall, P. O., Nordin, A., Strengbom, J., Brunet, J., and Olsson, B.: Does background nitrogen deposition affect the response of boreal vegetation to fertilization?, Oecologia, 173, 615–624, https://doi.org/10.1007/s00442-013-2638-3, 2013.
Hobbie, E. A.: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies, Ecology, 87, 563–569, https://doi.org/10.1890/05-0755, 2006.
Hobbie, E. A.: Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies, Ecology, 87, 563–569, https://doi.org/10.1890/05-0755, 2006.
Högberg, M. N., Högbom, L., and Kleja, D. B.:
Soil microbial community indices as predictors of soil solution chemistry and N leaching in Picea abies (L.) Karst. forests in S. Sweden, Plant Soil, 372, 507–522, https://doi.org/10.1007/s11104-013-1742-9, 2013.
Högberg, M. N., Högberg, P., Wallander, H., and Nilsson, L. O.:
Carbon–nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest, New Phytol., 232, 1839–1848, https://doi.org/10.1111/nph.17701, 2021.
Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.:
Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests, Forest Ecol. Manag., 403, 161–185, https://doi.org/10.1016/j.foreco.2017.04.045, 2017.
Hodge, A.:
Plastic plants and patchy soils, J. Exp. Bot., 57, 401–411, https://doi.org/10.1093/jxb/eri280, 2006.
ilmenichetti: ilmenichetti/mycelium: Biogeoscience paper appendix, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7799834, 2023.
Kruschke, J. K. and Liddell, T. M.:
The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective, Psychon. B. Rev., 25, 178–206, https://doi.org/10.3758/s13423-016-1221-4, 2018.
Iotti, M., Leonardi, M., Lancellotti, E., Salerni, E., Oddis, M., Leonardi, P., Perini, C., Pacioni, G., and Zambonelli, A.:
Spatio-temporal dynamic of tuber magnatum mycelium in natural truffle grounds, PLOS ONE, 9, 1–18, https://doi.org/10.1371/journal.pone.0115921, 2014.
Jansa, J., Finlay, R., Wallander, H., Smith, F. A., and Smith, S. E.:
Role of mycorrhizal symbioses in phosphorus cycling, in: Phosphorus in Action, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-15271-9, 137–168, 2011.
Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V., Potočić, N., Waldner, P., Benham, S., Hansen, K., Merilä, P., Ponette, Q., de la Cruz, A. C., Roskams, P., Nicolas, M., Croisé, L., Ingerslev, M., Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.: Tree mineral nutrition is deteriorating in Europe, Glob. Change Biol., 21, 418–430, https://doi.org/10.1111/gcb.12657, 2015.
Jörgensen, K.: Comparing effects of endogenous and anthropogenic nitrogen supply on ectomycorrhizal fungi, PhD thesis, Swedish University of Agricultural sciences, https://publications.slu.se/?file=publ/show&id=114298 (last access: 11 April 2023), 2021.
Karlsson, G. P., Akselsson, C., Hellsten, S., and Karlsson, P. E.: Krondroppsnätet i mellersta Sverige – övervakning av luftföroreningar och dess effekter i skogsmiljön, https://www.diva-portal.org/smash/get/diva2:1091868/FULLTEXT01.pdf (last access: 11 April 2023), 2017.
Kuylenstierna, J. C. I., Hicks, W. K., Cinderby, S., and Cambridge, H.: Critical loads for nitrogen deposition and their exceedance at European scale, Environ. Pollut., 102, 591–598, https://doi.org/10.1016/S0269-7491(98)80087-0, 1998.
Leake, J. R., Donnelly, D. P., Saunders, E. M., Boddy, L., and Read, D. J.:
Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: Effects of litter patches and interaction a wood-decomposer fungus, Tree Physiol., 21, 71–82, https://doi.org/10.1093/treephys/21.2-3.71, 2001.
Leake, J. R., Duran, A. L., Hardy, K. E., Johnson, I., Beerling, D. J., Banwart, S. A., and Smits, M. M.: Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering, Mineral. Mag., 72, 85–89, https://doi.org/10.1180/minmag.2008.072.1.85, 2008.
Leppälammi-Kujansuu, J., Ostonen, I., Strömgren, M., Nilsson, L. O., Kleja, D. B., Sah, S. P., and Helmisaari, H. S.:
Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production, Plant Soil, 366, 287–303, https://doi.org/10.1007/s11104-012-1431-0, 2013.
Lilleskov, E. A., Hobbie, E. A., and Horton, T. R.: Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic N deposition, Fungal Ecol., 4, 174–183, https://doi.org/10.1016/j.funeco.2010.09.008, 2011.
Malhi, Y., Baldocchi, D. D., and Jarvis, P. G.:
The carbon balance of tropical, temperate and boreal forests, Plant Cell Environ., 22, 715–740, https://doi.org/10.1046/j.1365-3040.1999.00453.x, 1999.
Morel, M., Jacob, C., Fitz, M., Wipf, D., Chalot, M., and Brun, A.:
Characterization and regulation of PiDur3, a permease involved in the acquisition of urea by the ectomycorrhizal fungus Paxillus involutus, Fungal Genet. Biol., 45, 912–921, https://doi.org/10.1016/j.fgb.2008.01.002, 2008.
Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M., Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M. J., Stoddard, J. L., Weathers, K. C., and Dennis, R. L.: Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States, Ecol. Appl., 21, 3049–3082, https://doi.org/10.1890/10-2341.1, 2011.
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe, Nat. Commun., 4, https://doi.org/10.1038/ncomms3934, 2013.
Pietikäinen, J., Pettersson, M., and Bååth, E.:
Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiol. Ecol., 52, 49–58, https://doi.org/10.1016/j.femsec.2004.10.002, 2005.
Prietzel, J., Falk, W., Reger, B., Uhl, E., Pretzsch, H., and Zimmermann, L.: Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change, Glob. Change Biol., 26, 5796–5815, https://doi.org/10.1111/gcb.15265, 2020.
R Core Team R: A language and environment for statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 11 April 2023), 2013.
Rillig, M. C., Mardatin, N. F., Leifheit, E. F., and Antunes, P. M.: Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates, Soil Biol. Biochem., 42, 1189–1191, https://doi.org/10.1016/j.soilbio.2010.03.027, 2010.
Rosenqvist, L., Hansen, K., Vesterdal, L., Denier Van Der Gon, H., Van Der Salm, C., Bleeker, A., and Johansson, M.-B.: Nitrogen Deposition and Nitrate Leaching Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands, in: Environmental Effects of Afforestation in North-Western Europe, Plant Veg., 1, Dordrecht, Nederland. Springer, 79–108, 2007.
Rosenstock, N. P., Berner, C., Smits, M. M., Krám, P., and Wallander, H.:
The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests, New Phytol., 211, 542–553, https://doi.org/10.1111/nph.13928, 2016.
Rosling, A., Lindahl, B. D., and Finlay, R. D.:
Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates, New Phytol., 162, 795–802, https://doi.org/10.1111/j.1469-8137.2004.01080.x, 2004.
Rousk, J. and Bååth, E.:
Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique, Soil Biol. Biochem., 39, 2173–2177, https://doi.org/10.1016/j.soilbio.2007.03.023, 2007.
Schwartz, E., Hayer, M., Hungate, B. A., Koch, B. J., McHugh, T. A., Mercurio, W., Morrissey, E. M., and Soldanova, K.: Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples, Curr. Opin. Biotechnol., 41, 14–18, https://doi.org/10.1016/j.copbio.2016.03.003, 2016.
Smith, S. E. and Read, D. J.: Mycorrhizal Symbiosis, 3rd Edn., Academic Press, London, https://doi.org/10.1016/B978-0-12-370526-6.X5001-6, 2008.
Smits, M. M., Bonneville, S., Benning, L. G., Banwart, S. A., and Leake, J. R.: Plant-driven weathering of apatite – the role of an ectomycorrhizal fungus, Geobiology, 10, 445–456, https://doi.org/10.1111/j.1472-4669.2012.00331.x, 2012.
Stan Development Team: RStan: the R interface to Stan, R package version 2.21.8, https://mc-stan.org/ (last access: 11 April 2023), 2021.
Suz, L. M., Bidartondo, M. I., van der Linde, S., and Kuyper, T. W.: Ectomycorrhizas and tipping points in forest ecosystems, New Phytol., 231, 1700–1707, https://doi.org/10.1111/nph.17547, 2021.
Talkner, U., Meiwes, K. J., Potočić, N., Seletković, I., Cools, N., De Vos, B., and Rautio, P.: Phosphorus nutrition of beech (Fagus sylvatica L.) is decreasing in Europe, Ann. Forest Sci., 72, 919–928, https://doi.org/10.1007/s13595-015-0459-8, 2015.
Taniguchi, T., Kitajima, K., Douhan, G. W., Yamanaka, N., and Allen, M. F.: A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA, Mycorrhiza, 28, 665–677, https://doi.org/10.1007/s00572-018-0859-3, 2018.
van der Linde, S., Suz, L. M., Orme, C. D. L., Cox, F., Andreae, H., Asi, E., Atkinson, B., Benham, S., Carroll, C., Cools, N., De Vos, B., Dietrich, H.-P., Eichhorn, J., Gehrmann, J., Grebenc, T., Gweon, H. S., Hansen, K., Jacob, F., Kristofel, F., Lech, P., Manninger, M., Martin, J., Meesenburg, H., Merila, P., Nicolas, M., Pavlenda, P., Rautio, P., Schaub, M., Schrock, H.-W., Seidling, W., Šramek, V., Thimonier, A., Thomsen, I. M., Titeux, H., Vanguelova, E., Verstraeten, A., Vesterdal, L., Waldner, P., Wijk, S., Zhang, Y., Žlindra, D., and Bidartondo, M. I.: Author Correction: Environment and host as large-scale controls of ectomycorrhizal fungi, Nature, 561, E42–E42, https://doi.org//10.1038/s41586-018-0312-y, 2018.
Wallander, H. and Nylund, J.-E.:
Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L., New Phytol., 120, 495–503, https://doi.org/10.1111/j.1469-8137.1992.tb01798.x, 1992.
Wallander, H. and Pallon, J.:
Temporal changes in the elemental composition of Rhizopogon rhizomorphs during colonization of patches with fresh organic matter or acid-washed sand, Mycologia, 97, 295–303, https://doi.org/10.1080/15572536.2006.11832804, 2005.
Wallander, H., Nilsson, L. O., Hagerberg, D., and Bååth, E.: Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field, New Phytol., 151, 753–760, https://doi.org/10.1046/j.0028-646x.2001.00199.x, 2001.
Wallander, H., Johansson, U., Sterkenburg, E., Brandström Durling, M., and Lindahl, B. D.: Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests, New Phytol., 187, 1124–1134, https://doi.org/10.1111/j.1469-8137.2010.03324.x, 2010.
Wallander, H., Ekblad, A., Godbold, D. L., Johnson, D., Bahr, A., Baldrian, P., Björk, R. G., Kieliszewska-Rokicka, B., Kjøller, R., Kraigher, H., Plassard, C., and Rudawska, M.:
Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review, Soil Biol. Biochem., 57, 1034–1047, https://doi.org/10.1016/j.soilbio.2012.08.027, 2013.
Yamanaka, T.:
Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor, Mycol. Res., 103, 811–816, https://doi.org/10.1017/S0953756298007801, 1999.
Zheng, H., Vesterdal, L., Schmidt, I. K., and Rousk, J.:
Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils, Soil Biol. Biochem., 167, 108613, https://doi.org/10.1016/j.soilbio.2022.108613, 2022.
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal...
Altmetrics
Final-revised paper
Preprint