Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-2883-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2883-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Joonas J. Virtasalo
CORRESPONDING AUTHOR
Marine Geology, Geological Survey of Finland (GTK), 02150 Espoo, Finland
Peter Österholm
Department of Geology and Mineralogy, Åbo Akademi University, 20500 Turku, Finland
Eero Asmala
CORRESPONDING AUTHOR
Environmental Geochemistry, Geological Survey of Finland (GTK), 02150 Espoo, Finland
Related authors
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Ana Lúcia Lindroth Dauner, Max O. A. Kankainen, Sakari Väkevä, Eero Asmala, Marko Järvinen, Karoliina Koho, and Tom Jilbert
EGUsphere, https://doi.org/10.5194/egusphere-2025-5053, https://doi.org/10.5194/egusphere-2025-5053, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Aquatic vegetated ecosystems are important for global carbon sequestration, but freshwater shorelines remain understudied. We found that the sedimentary organic carbon (SOC) stocks ranged from 0 to 40.8 kg m−2, with a large spatial variability. Large SOC stocks were found in sheltered areas, with the predominance of fine-grained sediments. In exposed areas, vegetation might also impact SOC accumulation. Accounting for shoreline exposure is crucial for improving regional carbon budget estimates.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Cited articles
Agrawal, Y. C. and Pottsmith, H. C.:
Instruments for particle size and settling velocity observations in sediment transport, Mar. Geol., 168, 89–144, https://doi.org/10.1016/S0025-3227(00)00044-X, 2000.
Andriesse, W. and van Mensvoort, M. E. F.:
Acid sulfate soils: distribution and extent, in: Encyclopedia of Soil Science, edited by: Lal, R., CRC Press, Boca Raton, USA, 14–19, https://doi.org/10.1081/E-ESS3-120006641, 2006.
Asmala, E., Bowers, D. G., Autio, R., Kaartokallio, H., and Thomas, D. N.:
Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation, J. Geophys. Res.-Biogeo., 119, 1919–1933, https://doi.org/10.1002/2014JG002722, 2014.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and Voss, M.:
Efficiency of the coastal filter: nitrogen and phosphorus removal in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238, https://doi.org/10.1002/lno.10644, 2017.
Asmala, E., Virtasalo, J. J., Scheinin, M., Newton, S., and Jilbert, T.: Role of particle dynamics in processing of terrestrial nitrogen and phosphorus in the estuarine mixing zone, Limnol. Oceanogr., 67, 1–12, https://doi.org/10.1002/lno.11961, 2022.
Asmala, E., Österholm, P., and Virtasalo, J. J.:
Suspension particle size, water quality and geochemical data from Laihianjoki and Sulvanjoki flocculation experiments, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA, in review, 2023.
Åström, M. and Björklund, A.:
Geochemistry and acidity of sulphide-bearing postglacial sediments of western Finland, Environ. Geochem. Hlth., 19, 155–164, https://doi.org/10.1023/A:1018462824486, 1997.
Åström, M. and Corin, N.:
Abundance, sources and speciation of trace elements in humus-rich streams affected by acid sulphate soils, Aquat. Geochem., 6, 367–383, https://doi.org/10.1023/A:1009658231768, 2000.
Åström, M. E., Österholm, P., Gustafsson, J. P., Nystrand, M., Peltola, P., Nordmyr, L., and Boman, A.:
Attenuation of rare earth elements in a boreal estuary, Geochim. Cosmochim. Ac., 96, 105–119, https://doi.org/10.1016/j.gca.2012.08.004, 2012.
Beck, M., Dellwig, O., Fischer, S., Schnetger, B., and Brumsack, H.-J.:
Trace metal geochemistry of organic carbon-rich watercourses draining the NW German coast, Estuar. Coast. Shelf S., 104–105, 66–79, https://doi.org/10.1016/j.ecss.2012.03.025, 2012.
Bianchi, T. S.:
Biogeochemistry of Estuaries, Oxford University Press, New York, USA, 706 pp., ISBN 0-19-516082-7, 2007.
Bigham, J. M. and Nordstom, D. K.:
Iron and aluminum hydroxysulfates from acid sulfate waters, Rev. Mineral. Geochem., 40, 351–403, https://doi.org/10.2138/rmg.2000.40.7, 2000.
Boman, A., Fröjdö, S., Backlund, K., and Åström, M. E.:
Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide, Geochim. Cosmochim. Ac., 74, 1268–1281, https://doi.org/10.1016/j.gca.2009.11.026, 2010.
Bordin, G., Perttilä, M., and Scheinen, H.:
Distribution of total and ASV-labile cadmium, lead, and copper in sea water in the northern parts of the Baltic Sea in 1985–1986, Mar. Pollut. Bull., 19, 325–327, https://doi.org/10.1016/0025-326X(88)90428-6, 1988.
Boyle, E., Collier, R., Dengler, A. T., Edmond, J. M., Ng, A. C., and Stallard, R. F.:
On the chemical mass-balance in estuaries, Geochim. Cosmochim. Ac., 38, 1719–1728, https://doi.org/10.1016/0016-7037(74)90188-4, 1974.
Breilin, O., Kotilainen, A., Nenonen, K., and Räsänen, M.:
The unique moraine morphology, stratotypes and ongoing geological processes at the Kvarken Archipelago on the land uplift area in the western coast of Finland, in: Quaternary Studies in the Northern and Arctic Regions of Finland: Proceedings of the Workshop Organized within the Finnish National Committee for Quaternary Research (INQUA), Kilpisjärvi Biological Station, Finland, 13–14 January 2005, edited by: Ojala, A. E. K., Geological Survey of Finland, Special Paper, 40, 97–111, 2005.
Canuel, E. A. and Hardison, A. K.:
Sources, ages, and alteration of organic matter in estuaries, Annu. Rev. Mar. Sci., 8, 409–434, https://doi.org/10.1146/annurev-marine-122414-034058, 2016.
Carstea, E. M., Popa, C. L., Baker, A., and Bridgeman, J.:
In situ fluorescence measurements of dissolved organic matter: a review, Sci. Total Environ., 699, 134361, https://doi.org/10.1016/j.scitotenv.2019.134361, 2020.
Coble, P.:
Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy, Mar. Chem., 51, 325–346, https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Dent, D. L. and Pons, L. J.:
A world perspective on acid sulphate soils, Geoderma, 67, 263–276, https://doi.org/10.1016/0016-7061(95)00013-E, 1995.
Fältmarsch, R. M., Åström, M. E., and Vuori, K.-M.:
Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review, Boreal Environ. Res., 13, 444–456, 2008.
Fu, J., Tang, X.-L., Zhang, J., and Balzer, W.:
Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China, Cont. Shelf Res., 57, 59–72, https://doi.org/10.1016/j.csr.2012.06.015, 2013.
Gregory, J. and O'Melia, C. R.:
Fundamentals of flocculation, Crit. Rev. Env. Contr., 19, 185–230, https://doi.org/10.1080/10643388909388365, 1989.
Hamilton-Taylor, J., Postill, A. S., Tipping, E., and Harper, M. P.:
Laboratory measurements and modeling of metal–humic interactions under estuarine conditions, Geochim. Cosmochim. Ac., 66, 403–415, https://doi.org/10.1016/S0016-7037(01)00777-3, 2002.
Häusler, K., Moros, M., Wacker, L., Hammerschmidt, L., Dellwig, O., Leipe, T., Kotilainen, A., and Arz, H. W.:
Mid- to late Holocene environmental separation of the northern and central Baltic Sea basins in response to differential land uplift, Boreas, 46, 111–128, https://doi.org/10.1111/bor.12198, 2017.
Hudd, R. and Kjellman, J.:
Bad matching between hatching and acidification: a pitfall for the burbot, Lota lota, off the river Kyrönjoki, Baltic Sea, Fish. Res., 55, 153–160, https://doi.org/10.1016/S0165-7836(01)00303-4, 2002.
Jilbert, T., Asmala, E., Schröder, C., Tiihonen, R., Myllykangas, J.-P., Virtasalo, J. J., Kotilainen, A., Peltola, P., Ekholm, P., and Hietanen, S.:
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments, Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, 2018.
Job, T., Penny, D., and Morgan, B.:
Geochemical signatures of acidic drainage recorded in estuarine sediments after an extreme drought, Sci. Total Environ., 749, 141435, https://doi.org/10.1016/j.scitotenv.2020.141435, 2020.
Kakkuri, J.:
Fennoscandian land uplift: past, present and future, in: From the Earth's Core to Outer Space, edited by: Haapala, I., Lecture Notes in Earth System Sciences, Springer, Berlin, Heidelberg, 137, 127–136, https://doi.org/10.1007/978-3-642-25550-2_8, 2012.
Khoo, C. L. L., Sipler, R. E., Fudge, A. R., Foroutani, M. B., Boyd, S. G., and Ziegler, S. E.:
Salt-induced flocculation of dissolved organic matter and iron is controlled by their concentration and ratio in boreal coastal systems, J. Geophys. Res.-Biogeo., 127, e2022JG006844, https://doi.org/10.1029/2022JG006844, 2022.
Korhonen, J. and Haavalammi, E.:
Hydrologinen vuosikirja 2006–2010/Hydrological Yearbook 2006–2010, Suomen Ympäristö, Helsinki, 8/2012, 234 pp., http://hdl.handle.net/10138/38812 (last access: 26 May 2023), 2012.
Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., and Suikkanen, S.:
A retrospective view of the development of the Gulf of Bothnia ecosystem, J. Marine Syst., 167, 78–92, https://doi.org/10.1016/j.jmarsys.2016.11.020, 2017.
Lahermo, P., Väänänen, P., Tarvainen, T., and Salminen, R.:
Geochemical Atlas of Finland, Part 3, Environmental geochemistry – stream waters and sediments, Geological Survey of Finland, Espoo, Finland, 149 pp., ISBN 9516906788, 1996.
Lee, B. J., Fettweis, M., Toorman, E., and Molz, F. J.:
Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone, J. Geophys. Res., 117, C03014, https://doi.org/10.1029/2011JC007552, 2012.
Massicotte, P.:
eemR: tools for pre-processing emission-excitation-matrix (EEM) fluorescence data, CRAN [code], https://CRAN.R-project.org/package=eemR (last access: 3 July 2023), 2016.
Mikkelsen, O. A., Hill, P. S., and Milligan, T. G.:
Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera, J. Sea Res., 55, 87–102, https://doi.org/10.1016/j.seares.2005.09.003, 2006.
Moffet, J. W. and Ho, J.:
Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway, Geochim. Cosmochim. Ac., 60, 3415–3424, https://doi.org/10.1016/0016-7037(96)00176-7, 1996.
Mosley, L. M. and Liss, P. S.:
Particle aggregation, pH changes and metal behaviour during estuarine mixing: review and integration, Mar. Freshwater Res., 71, 300–310, https://doi.org/10.1071/MF19195, 2020.
Muller, F. L. L. and Batchelli, S.:
Copper binding by terrestrial versus marine organic ligands in the coastal plume of River Thurso, North Scotland, Estuar. Coast. Shelf S., 133, 137e146, https://doi.org/10.1016/j.ecss.2013.08.024, 2013.
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., and Aiken, G. R.:
The measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison, Environ. Sci. Technol., 44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Nordmyr, L., Åström, M., and Peltola, P.:
Metal pollution of estuarine sediments caused by leaching of acid sulphate soils, Estuar. Coast. Shelf S., 76, 141–152, https://doi.org/10.1016/j.ecss.2007.07.002, 2008a.
Nordmyr, L., Österholm, P., and Åström, M.:
Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils, Mar. Environ. Res., 66, 378–393, https://doi.org/10.1016/j.marenvres.2008.06.001, 2008b.
Nyman, A., Johnson, A., Yu, C., Dopson, M., and Åström, M.:
Multi-element features of active acid sulfate soils across the Swedish coastal plains, Appl. Geochem., 152, 105653, https://doi.org/10.1016/j.apgeochem.2023.105653, 2023.
Nystrand, M. I. and Österholm, P.:
Metal species in a boreal river system affected by acid sulfate soils, Appl. Geochem., 31, 133–141, https://doi.org/10.1016/j.apgeochem.2012.12.015, 2013.
Nystrand, M. I., Österholm, P., Nyberg, M. E., and Gustafsson, J. P.:
Metal speciation in rivers affected by enhanced soil erosion and acidity, Appl. Geochem., 27, 906–916, https://doi.org/10.1016/j.apgeochem.2012.01.009, 2012.
Nystrand, M. I., Österholm, P., Yu, C., and Åström, M.:
Distribution and speciation of metals, phosphorus, sulfate and organic material in brackish estuary water affected by acid sulfate soils, Appl. Geochem., 66, 264–274, https://doi.org/10.1016/j.apgeochem.2016.01.003, 2016.
Olsson, T., Jakkila, J., Veijalainen, N., Backman, L., Kaurola, J., and Vehviläinen, B.:
Impacts of climate change on temperature, precipitation and hydrology in Finland – studies using bias corrected Regional Climate Model data, Hydrol. Earth Syst. Sci., 19, 3217–3238, https://doi.org/10.5194/hess-19-3217-2015, 2015.
Österholm, P. and Åström, M.:
Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland, Appl. Geochem., 17, 1209–1218, https://doi.org/10.1016/S0883-2927(01)00133-0, 2002.
Österholm, P. and Åström, M.:
Meteorological impacts on the water quality in the Pajuluoma acid sulphate area, W. Finland, Appl. Geochem., 23, 1594–1606, https://doi.org/10.1016/j.apgeochem.2008.01.011, 2008.
Pettersson, C., Allard, B., and Borén, H.:
River discharge of humic substances and humic-bound metals to the Gulf of Bothnia, Estuar. Coast. Shelf S., 44, 533–541, https://doi.org/10.1006/ecss.1996.0159, 1997.
Pirinen, P., Simola, H., Aalto, J., Kaukoranta, J.-P., Karlsson, P., and Ruuhela, R.:
Climatological statistics of Finland 1981–2010, Finnish Meteorological Institute, Helsinki, Reports 2012:1, 83 pp., 2012.
Pontér, C., Ingri, J., and Boström, K.:
Geochemistry of manganese in the Kalix River, northern Sweden, Geochim. Cosmochim. Ac., 56, 1485–1494, https://doi.org/10.1016/0016-7037(92)90218-8, 1992.
Pujo-Pay, M. and Raimbault, P.:
Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters, Mar. Ecol. Prog. Ser., 105, 203–207, https://doi.org/10.3354/meps105203, 1994.
Rhoads, D. C. and Boyer, L. F.:
The effects of marine benthos on physical properties of sediments: a successional perspective, in: Animal-Sediment Relations, edited by: McCall, P. L. and Tevesz, M. J. S., Topics in Geobiology, Springer, Boston, MA, 100, 3–52, https://doi.org/10.1007/978-1-4757-1317-6_1, 1982.
Roos, M. and Åström, M.:
Hydrochemistry of rivers in an acid sulphate soil hotspot area in western Finland, Agr. Food Sci., 14, 24–33, https://doi.org/10.2137/1459606054224075, 2005.
Saarinen, T., Vuori, K.-M., Alasaarela, E., and Kløve, B.:
Long-term trends and variation of acidity, CODMn and colour in coastal rivers of Western Finland in relation to climate and hydrology, Sci. Total Environ., 408, 5019–5027, https://doi.org/10.1016/j.scitotenv.2010.07.009, 2010.
Saarnisto, M. and Saarinen, T.:
Deglaciation chronology of the Scandinavian Ice Sheet from the Lake Onega Basin to the Salpausselkä end moraines, Global Planet. Change, 31, 387–405, https://doi.org/10.1016/S0921-8181(01)00131-X, 2001.
Sauramo, M.:
The Quaternary geology of Finland, Bulletin de la Commission Géologique de Finlande, Helsinki, 86, 1–110, 1929.
Schwertmann, U.:
Solubility and dissolution of iron oxides, Plant Soil, 130, 1–25, https://doi.org/10.1007/BF00011851, 1991.
Shiller, A. M. and Boyle, E. A.:
Trace elements in the Mississippi River Delta outflow region: behavior at high discharge, Geochim. Cosmochim. Ac., 55, 3241–3251, https://doi.org/10.1016/0016-7037(91)90486-O, 1991.
Sholkovitz, E. R.:
Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater, Geochim. Cosmochim. Ac., 40, 831–845, https://doi.org/10.1016/0016-7037(76)90035-1, 1976.
Sholkovitz, E. R.:
The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing, Earth Planet. Sc. Lett., 41, 77–86, https://doi.org/10.1016/0012-821X(78)90043-2, 1978.
Sohlenius, G. and Öborn, I.:
Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation, Geoderma, 122, 167–175, https://doi.org/10.1016/j.geoderma.2004.01.006, 2004.
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson, K. N.:
Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Sundström, R., Åström, M., and Österholm, P.:
Comparison of the metal content in acid sulfate soil runoff and industrial effluents in Finland, Environ. Sci. Technol., 36, 4269–4272, https://doi.org/10.1021/es020022g, 2002.
Sutela, T. and Vehanen, T.:
The effects of acidity and aluminium leached from acid-sulphate soils on riverine fish assemblages, Boreal Environ. Res., 22, 385–391, 2017.
Thomas, L. P., Marino, B. M., Szupiany, R. N., and Gallo, M. N.:
Characterisation of the suspended particulate matter in a stratified estuarine environment employing complementary techniques, Cont. Shelf Res., 148, 37–43, https://doi.org/10.1016/j.csr.2017.08.024, 2017.
Turner, A. and Mawji, E.:
Hydrophobicity and reactivity of trace metals in the low-salinity zone of a turbid estuary, Limnol. Oceanogr., 50, 1011–1019, https://doi.org/10.4319/lo.2005.50.3.1011, 2005.
van den Berg, C. M. G., Merks, A. G. A., and Duursma, E. K.:
Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary, Estuar. Coast. Shelf S., 24, 785–797, https://doi.org/10.1016/0272-7714(87)90152-1, 1987.
Virtasalo, J. J., Kotilainen, A. T., Räsänen, M. E., and Ojala, A. E. K.:
Late-glacial and post-glacial deposition in a large, low relief, epicontinental basin: the northern Baltic Sea, Sedimentology, 54, 1323–1344, https://doi.org/10.1111/j.1365-3091.2007.00883.x, 2007.
Virtasalo, J. J., Österholm, P., Kotilainen, A. T., and Åström, M. E.:
Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea, Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, 2020.
Wallin, J., Karjalainen, A. K., Schultz, E., Järvistö, J., Leppänen, M., and Vuori, K.-M.:
Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries, Sci. Total Environ., 508, 452–461, https://doi.org/10.1016/j.scitotenv.2014.11.073, 2015.
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., and Lydeikaite, Z.:
Extreme sea levels at selected stations on the Baltic Sea coast, Oceanologia, 56, 259–290, https://doi.org/10.5697/oc.56-2.259, 2014.
Yli-Halla, M., Puustinen, M., and Koskiaho, J.:
Area of cultivated acid sulfate soils in Finland, Soil Use Manage., 15, 62–67, https://doi.org/10.1111/j.1475-2743.1999.tb00065.x, 1999.
Yu, C., Virtasalo, J. J., Karlsson, T., Peltola, P., Österholm, P., Burton, E. D., Arppe, L., Hogmalm, J. K., Ojala, A. E. K., and Åström, M. E.:
Iron behavior in a northern estuary: large pools of non-sulfidized Fe(II) associated with organic matter, Chem. Geol., 413, 73–85, https://doi.org/10.1016/j.chemgeo.2015.08.013, 2015.
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to...
Altmetrics
Final-revised paper
Preprint