Articles | Volume 20, issue 18
https://doi.org/10.5194/bg-20-3873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
AgroBioSciences Program, Mohammed VI Polytechnic University, Hay Moulay Rachid, Ben Guerir 43150, Morocco
Xia Zhu-Barker
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706-1299, USA
Patricia Lazicki
Department of Biosystems Engineering and Soil science, University of Tennessee Knoxville, Tennessee 37996, USA
William Horwath
Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
Related authors
No articles found.
Xueru Huang, Xia Zhu-Barker, William R. Horwath, Sarwee J. Faeflen, Hongyan Luo, Xiaoping Xin, and Xianjun Jiang
Biogeosciences, 13, 5609–5617, https://doi.org/10.5194/bg-13-5609-2016, https://doi.org/10.5194/bg-13-5609-2016, 2016
Short summary
Short summary
The effect of Fe oxide on N transformation processes were different in soils as a function of pH. 15N-labelled ammonium and nitrate were used separately to determine N transformation rates combined with Fe oxide (ferrihydrite) addition. Iron oxide addition stimulated net nitrification in the low-pH soil (pH 5.1), while the opposite occurred in the high-pH soil (pH 7.8). Fe oxide increased NH3-N availability by stimulating N mineralization and inhibiting N immobilization at low pH.
This article is included in the Encyclopedia of Geosciences
Related subject area
Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Technical Note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
The Effects of Land Use on Soil Carbon Stocks in the UK
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
This article is included in the Encyclopedia of Geosciences
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
This article is included in the Encyclopedia of Geosciences
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
This article is included in the Encyclopedia of Geosciences
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
This article is included in the Encyclopedia of Geosciences
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
This article is included in the Encyclopedia of Geosciences
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
EGUsphere, https://doi.org/10.5194/egusphere-2024-578, https://doi.org/10.5194/egusphere-2024-578, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies are focusing on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
This article is included in the Encyclopedia of Geosciences
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
This article is included in the Encyclopedia of Geosciences
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
This article is included in the Encyclopedia of Geosciences
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell A. T. Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
EGUsphere, https://doi.org/10.5194/egusphere-2023-3125, https://doi.org/10.5194/egusphere-2023-3125, 2024
Short summary
Short summary
Soils store organic carbon composed of different compounds from plants and microbes that stays in the soils for different lengths of time. To understand this process, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
This article is included in the Encyclopedia of Geosciences
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
This article is included in the Encyclopedia of Geosciences
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
This article is included in the Encyclopedia of Geosciences
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
This article is included in the Encyclopedia of Geosciences
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
This article is included in the Encyclopedia of Geosciences
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
This article is included in the Encyclopedia of Geosciences
Peter Levy, Laura Bentley, Bridget Emmett, Angus Garbutt, Aidan Keith, Inma Lebron, and David Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1681, https://doi.org/10.5194/egusphere-2023-1681, 2023
Short summary
Short summary
We collated a large data set (15790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects were large. This has important implications for agri-environment schemes, seeking to sequester carbon in the soil by altering land use, because the effect of a given intervention is very hard to verify.
This article is included in the Encyclopedia of Geosciences
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
This article is included in the Encyclopedia of Geosciences
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
This article is included in the Encyclopedia of Geosciences
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
This article is included in the Encyclopedia of Geosciences
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
This article is included in the Encyclopedia of Geosciences
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
This article is included in the Encyclopedia of Geosciences
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
This article is included in the Encyclopedia of Geosciences
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
This article is included in the Encyclopedia of Geosciences
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
This article is included in the Encyclopedia of Geosciences
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
This article is included in the Encyclopedia of Geosciences
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
This article is included in the Encyclopedia of Geosciences
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
This article is included in the Encyclopedia of Geosciences
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
This article is included in the Encyclopedia of Geosciences
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
This article is included in the Encyclopedia of Geosciences
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
This article is included in the Encyclopedia of Geosciences
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
This article is included in the Encyclopedia of Geosciences
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
This article is included in the Encyclopedia of Geosciences
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
This article is included in the Encyclopedia of Geosciences
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
This article is included in the Encyclopedia of Geosciences
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
This article is included in the Encyclopedia of Geosciences
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
This article is included in the Encyclopedia of Geosciences
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
This article is included in the Encyclopedia of Geosciences
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
This article is included in the Encyclopedia of Geosciences
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
This article is included in the Encyclopedia of Geosciences
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
This article is included in the Encyclopedia of Geosciences
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
This article is included in the Encyclopedia of Geosciences
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
This article is included in the Encyclopedia of Geosciences
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
This article is included in the Encyclopedia of Geosciences
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
This article is included in the Encyclopedia of Geosciences
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
This article is included in the Encyclopedia of Geosciences
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
This article is included in the Encyclopedia of Geosciences
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
This article is included in the Encyclopedia of Geosciences
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
This article is included in the Encyclopedia of Geosciences
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
This article is included in the Encyclopedia of Geosciences
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
This article is included in the Encyclopedia of Geosciences
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
This article is included in the Encyclopedia of Geosciences
Cited articles
Allison, S. D.: Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes, Biogeochemistry, 81, 361–373, https://doi.org/10.1007/s10533-006-9046-2, 2006.
Amelung, W., Lobe, I., and Du Preez, C. C.: Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping, Eur. J. Soil Sci., 53, 29–35, https://doi.org/10.1046/j.1365-2389.2002.00428.x, 2002.
Apel, K. and Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant. Biol., 55, 373–399, https://doi.org/10.1146/annurev.arplant.55.031903.141701, 2004.
Attygalla, N. W., Baldwin, D. S., Silvester, E., Kappen, P., and Whitworth, K. L.: The severity of sediment desiccation affects the adsorption characteristics and speciation of phosphorus, Environ. Sci.-Proc. Imp., 18, 64–71, https://doi.org/10.1039/c5em00523j, 2016.
Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G., and Russell, M. J.: Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems, P. Natl. Acad. Sci. USA, 116, 4828–4833, https://doi.org/10.1073/pnas.1812098116, 2019.
Baron, M. H., Revault, M., Servagent-Noinville, S., Abadie, J., and Quiquampoix, H.: Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis, J. Colloid. Interf. Sci., 214, 319–332, https://doi.org/10.1006/jcis.1999.6189, 1999.
Barral, M. T., Arias, M., and Guérif, J.: Effects of iron and organic matter on the porosity and structural stability of soil aggregates, Soil Till. Res., 46, 261–272, https://doi.org/10.1016/s0167-1987(98)00092-0, 1998.
Batjes N. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47, 151–163, https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Bayan, M. R. and Eivazi, F.: Selected enzyme activities as affected by free iron oxides and clay particle size, Commun. Soil Sci. Plan., 30, 1561–1571, https://doi.org/10.1080/00103629909370308, 1999.
Benz, M., Brune, A., and Schink, B.: Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria, Arch. Microbiol., 169, 159–165, https://doi.org/10.1007/s002030050555, 1998.
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen availability, Plant Soil, 10, 9–31, https://doi.org/10.1007/bf01343734, 1958.
Birch, H. F.: Further observations on humus decomposition and nitrification, Plant Soil, 11, 262–286, https://doi.org/10.1007/bf01435157, 1959.
Birch, H. F.: Nitrification in soils after different periods of dryness, Plant Soil, 12, 81–96, https://doi.org/10.1007/bf01377763, 1960.
Birch, H. F.: Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil, 20, 43–49, https://doi.org/10.1007/bf01378096, 1964.
Bird, J. A., van Kessel, C., and Horwath W. R.: Nitrogen dynamics in humic fractions under alternative straw management in temperate rice, Soil Sci. Soc. Am. J., 66, 478–488, https://doi.org/10.2136/sssaj2002.4780, 2002.
Boland, D. D., Collins, R. N., Miller, C. J., Glover, C. J., and Waite, T. D.: Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite, Environ. Sci. Technol., 48, 5477–5485, https://doi.org/10.1021/es4043275, 2014.
Bremner J. M., Blackmer A. M., and Waring S. A.: Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils, Soil Biol. Biochem., 12, 263–269, https://doi.org/10.1016/0038-0717(80)90072-3, 1980.
Bruun, T. B., Elberling, B., and Christensen, B. T.: Lability of soil organic carbon in tropical soils with different clay minerals, Soil Biol. Biochem., 42, 888–895, https://doi.org/10.1016/j.soilbio.2010.01.009, 2010.
Bugeja, S. and Castellano, M.: Physicochemical organic matter stabilization across a restored grassland chronosequence, Soil Sci. Soc. Am. J., 82, 1559–1567, https://doi.org/10.2136/sssaj2018.07.0259, 2018.
Burger, M. and Venterea, R. T.: Effects of nitrogen fertilizer types on nitrous oxide emissions, in: Understanding greenhouse gas emissions from agricultural management, edited by: Guo, L., Gunasekara, A. S., and McConnell, L. L., ACS Sym. Ser., 1072, 179–202, https://doi.org/10.1021/bk-2011-1072, 2011.
Caldwell, B. A.: Enzyme activities as a component of soil biodiversity: A review, Pedobiologia, 49, 637–644, https://doi.org/10.1016/j.pedobi.2005.06.003, 2005.
Cambardella, C. A. and Elliott, E. T.: Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils, Soil Sci. Soc. Am. J., 57, 1071–1076, https://doi.org/10.2136/sssaj1993.03615995005700040032x, 1993.
Chacon, S. S., Reardon, P. N., Burgess, C. J., Purvine, S., Chu, R. K., Clauss, T. R., Walter, E., Myrold, D. D., Washton, N., and Kleber, M.: Mineral surfaces as agents of environmental proteolysis: mechanisms and controls, Environ. Sci. Technol., 53, 3018–3026, https://doi.org/10.1021/acs.est.8b05583, 2019.
Chaudhuri, S. K., Lack, J. G., and Coates, J. D.: Biogenic magnetite formation through anaerobic biooxidation of Fe(II), Appl. Environ. Microb., 67, 2844–2848, https://doi.org/10.1128/aem.67.6.2844-2848.2001, 2001.
Chen, C., Hall, S. J., Coward, E., and Thompson, A.: Iron-mediated organic matter decomposition in humid soils can counteract protection, Nat. Commun., 11, 1–13, https://doi.org/10.1038/s41467-020-16071-5, 2020.
Chen, L., Liu, L., Qin, S., Yang, G., Fang, K., Zhu, B., Kuzyakov, Y., Chen, P., Xu, Y., and Yang, Y.: Regulation of priming effect by soil organic matter stability over a broad geographic scale, Nat. Commun., 10, 5112, https://doi.org/10.1038/s41467-019-13119-z, 2019.
Cheng, L., Zhu, J., Chen, G., Zheng, X., Oh, N. H., Rufty, T. W., Richter, D., and Hu, S.: Atmospheric CO2 enrichment facilitates cation release from soil, Ecol. Lett., 13, 284–291, https://doi.org/10.1111/j.1461-0248.2009.01421.x, 2010.
Cornell, R. M. and Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences, and uses, Wiley-VCH, Weinheim, 664, https://doi.org/10.1002/3527602097, 2003.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Coward, E. K., Thompson, A., and Plante, A. F.: Contrasting Fe speciation in two humid forest soils: Insight into organomineral associations in redox-active environments, Geochim. Cosmochim. Ac., 238, 68–84, https://doi.org/10.1016/j.gca.2018.07.007, 2018.
Cui, Q., Song, C., Wang, X., Shi, F., Wang, L., and Guo, Y.: Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of northeast China, Atmos. Environ., 135, 1–8, https://doi.org/10.1016/j.atmosenv.2016.03.053, 2016.
Daly, A. B., Jilling, A., Bowles, T. M., Buchkowski, R. W., Frey, S. D., Kallenbach, C. M., Keiluweit, M., Mooshammer, M., Schimel J. P., and Grandy A. S.: A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen, Biogeochemistry, 154, 211–229, https://doi.org/10.1007/s10533-021-00793-9, 2021.
Datta, R., Anand, S., Moulick, A., Baraniya, D., Imran Pathan, S., Rejsek, K., Vranová, V., Sharma, M., Sharma, D., Kelkar, A., and Formánek, P.: How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review, Int. Agrophys., 31, 287–302, https://doi.org/10.1515/intag-2016-0049, 2017.
Daugherty, E. E., Gilbert, B., Nico, P. S., and Borch, T.: Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter, Environ. Sci. Technol., 51, 11096–11104, https://doi.org/10.1021/acs.est.7b03152, 2017.
Deroo, H., Akter, M., Mendoza, O., Boeckx, P., and Sleutel, S.: Control of paddy soil redox condition on gross and net ammonium fixation and defixation, Geoderma, 400, 115151, https://doi.org/10.1016/j.geoderma.2021.115151, 2021.
Diaz, J. M., Hansel, C. M., Voelker, B. M., Mendes, C. M., Andeer, P. F., and Zhang, T.: Widespread production of extracellular superoxide by heterotrophic bacteria, Science, 340, 1223–1226, https://doi.org/10.1126/science.1237331, 2013.
Ding, B., Li, Z., and Qin, Y.: Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone, Environ. Pollut., 231, 379–386, https://doi.org/10.1016/j.envpol.2017.08.027, 2017.
Ding, B., Chen, Z., Li, Z., Qin, Y., and Chen, S.: Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region, Sci. Total Environ., 662, 600–606, https://doi.org/10.1016/j.scitotenv.2019.01.231, 2019.
Ding, B., Qin, Y., Luo, W., and Li, Z.: Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China, Chemosphere, 239, 124742, https://doi.org/10.1016/j.chemosphere.2019.124742, 2020.
Ding, L. J., An, X. L., Li, S., Zhang, G. L., and Zhu, Y. G.: Nitrogen Loss through Anaerobic Ammonium Oxidation Coupled to Iron Reduction from Paddy Soils in a Chronosequence, Environ. Sci. Technol., 48, 10641–10647, https://doi.org/10.1021/es503113s, 2014.
Ding, Y., Ye, Q., Liu, M., Shi, Z., and Liang, Y.: Reductive release of Fe mineral-associated organic matter accelerated by oxalic acid, Sci. Total Environ., 763, 142937, https://doi.org/10.1016/j.scitotenv.2020.142937, 2021.
Dippold, M., Biryukov, M., and Kuzyakov, Y.: Sorption affects amino acid pathways in soil: Implications from position-specific labeling of alanine, Soil Biol. Biochem., 72, 180–192, https://doi.org/10.1016/j.soilbio.2014.01.015, 2014.
Dubinsky, E. A., Silver, W. L., and Firestone, M. K.: Tropical forest soil microbial communities couple iron and carbon biogeochemistry, Ecology, 91, 2604–2612, https://doi.org/10.1890/09-1365.1, 2010.
Duiker, S. W., Rhoton, F. E., Torrent, J., Smeck, N. E., and Lal, R.: Iron (hydr)oxide crystallinity effects on soil aggregation, Soil. Sci. Soc. Am. J., 67, 606–611, https://doi.org/10.2136/sssaj2003.6060, 2003.
Dümig, A., Häusler, W., Steffens, M., and Kögel-Knabner, I.: Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations, Geochim. Cosmochim. Ac., 85, 1–18, https://doi.org/10.1016/j.gca.2012.01.046, 2012.
Dunham-Cheatham, S. M., Zhao, Q., Obrist, D., and Yang, Y.: Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic–aerobic transition, Geoderma, 376, 114535, https://doi.org/10.1016/j.geoderma.2020.114535, 2020.
Eusterhues, K., Rumpel, C., and Kögel-Knabner, I.: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores, Eur. J. Soil Sci., 56, 753–763, https://doi.org/10.1111/j.1365-2389.2005.00710.x, 2005.
Eusterhues, K., Hädrich, A., Neidhardt, J., Küsel, K., Keller, T. F., Jandt, K. D., and Totsche, K. U.: Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite, Biogeosciences, 11, 4953–4966, https://doi.org/10.5194/bg-11-4953-2014, 2014.
Favre, F., Stucki, J. W., and Boivin, P.: Redox properties of structural Fe in ferruginous smectite. A discussion of the standard potential and its environmental implications, Clay. Clay Miner., 54, 466–472, https://doi.org/10.1346/ccmn.2006.0540407, 2006.
Feng, J., Wei, K., Chen, Z., Lü, X., Tian, J., Wang, C., and Chen, L.: Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry, Global Biogeochem. Cy., 33, 559–569, https://doi.org/10.1029/2018gb006112, 2019.
Filimonova, S., Kaufhold, S., Wagner, F., Häusler, W., and Kögel-Knabner, I.: The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol, Geochim. Cosmochim. Ac., 180, 284–302, https://doi.org/10.1016/j.gca.2016.02.033, 2016.
Fuchs, H.: Das lernende Unternehmen, in: Die Kunst, (k)eine perfekte Führungskraft zu sein, Gabler Verlag, Wiesbaden, 110–110, https://doi.org/10.1007/978-3-322-82766-1_40, 1999.
Gao, J., Jansen, B., Cerli, C., Helmus, R., Mikutta, R., Dultz, S., Guggenberger, G., and Kalbitz, K.: Competition and surface conditioning alter the adsorption of phenolic and amino acids on soil minerals, Eur. J. Soil Sci., 68, 667–677, https://doi.org/10.1111/ejss.12459, 2017.
Gao, J., Jansen, B., Cerli, C., Helmus, R., Mikutta, R., Dultz, S., Guggenberger, G., Vogel, C., and Kalbitz, K.: Organic matter coatings of soil minerals affect adsorptive interactions with phenolic and amino acids, Eur. J. Soil Sci., 69, 613–624, https://doi.org/10.1111/ejss.12562, 2018.
García-Oliva, F., Lancho, J. F. G., Montaño, N. M., and Islas, P.: Soil carbon and nitrogen dynamics followed by a forest-to-pasture conversion in Western Mexico, Agroforest. Syst., 66, 93–100, https://doi.org/10.1007/s10457-005-2917-z, 2006.
Gärdenäs, A. I., Ågren, G. I., Bird, J. A., Clarholm, M., Hallin, S., Ineson, P., Kätterer, T., Knicker, H., Nilsson, S. I., Näsholm, T., Ogle, S., Paustian, K., Persson, T., and Stendahl, J.: Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale, Soil Biol. Biochem., 43, 702–717, https://doi.org/10.1016/j.soilbio.2010.04.006, 2011.
Garrido-Ramírez, E. G., Theng, B. K., and Mora, M. L.: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review, Appl. Clay Sci., 47, 182–192, https://doi.org/10.1016/j.clay.2009.11.044, 2010.
Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter, A., Urich, T., Gittel, A., Šantrůčková, H., Bárta, J., Lashchinskiy, N., Mueller, C. W., Fuß, R., and Guggenberger, G.: Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia, Eur. J. Soil Sci., 66, 722–734, https://doi.org/10.1111/ejss.12269, 2015.
Georgiou, C. D., Sun, H. J., McKay, C. P., Grintzalis, K., Papapostolou, I., Zisimopoulos, D., Panagiotidis, K., Zhang, G., Koutsopoulou, E., Christidis, G. E., and Margiolaki, I.: Evidence for photochemical production of reactive oxygen species in desert soils, Nat. Commun., 6, 1–11, https://doi.org/10.1038/ncomms8100, 2015.
Gianfreda, L., Rao, M. A., and Violante, A.: Formation and activity of urease-tannate complexes affected by aluminum, iron, and manganese, Soil Sci. Soc. Am. J., 59, 805–810, https://doi.org/10.2136/sssaj1995.03615995005900030024x, 1995.
Gligorovski, S., Strekowski, R., Barbati, S., and Vione, D.: Environmental implications of hydroxyl radicals (OH), Chem. Rev., 115, 13051–13092, https://doi.org/10.1021/cr500310b, 2015.
Golchin, A., Oades, J., Skjemstad, J., and Clarke, P.: Soil structure and carbon cycling, Soil Res., 32, 1043–1068, https://doi.org/10.1071/sr9941043, 1994.
Gotoh, S. and Patrick Jr., W. H.: Transformation of iron in a waterlogged soil as influenced by redox potential and pH, Soil Sci. Soc. Am. J., 38, 66–71, https://doi.org/10.2136/sssaj1974.03615995003800010024x, 1974.
Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. F.: Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models, Environ. Sci. Technol., 28, 38–46, https://doi.org/10.1021/es00050a007, 1994.
Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. F.: Adsorption and desorption of different organic matter fractions on iron oxide, Geochim. Cosmochim. Ac., 59, 219–229, https://doi.org/10.1016/0016-7037(94)00282-q, 1995.
Gu, C., Zhang, S., Han, P., Hu, X., Xie, L., Li, Y., Brooks, M., Liao, X., and Qin, L.: Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape, Front. Plant Sci., 10, 386, https://doi.org/10.3389/fpls.2019.00368, 2019.
Hall, S. J., and Silver, W. L.: Iron oxidation stimulates organic matter decomposition in humid tropical forest soils, Glob. Change Biol., 19, 2804–2813, https://doi.org/10.1111/gcb.12229, 2013.
Hall, S. J., Silver, W. L., and Amundson, R.: Greenhouse gas fluxes from Atacama Desert soils: a test of biogeochemical potential at the Earth's arid extreme, Biogeochemistry, 111, 303–315, https://doi.org/10.1007/s10533-011-9650-7, 2012.
Hall, S. J., Berhe, A. A., and Thompson, A.: Order from disorder: do soil organic matter composition and turnover co-vary with iron phase crystallinity?, Biogeochemistry, 140, 93–110, https://doi.org/10.1007/s10533-018-0476-4, 2018.
Han, J., Shi, L., Yakun, W., Chen, Z., and Wu, L.: The regulatory role of endogenous iron on greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China, Environ. Sci. Pollut. R., 25, 14511–14520, https://doi.org/10.1007/s11356-018-1666-2, 2018.
Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., McGuire, A. D., Camill, P., Jorgenson, T., Kuhry, P., Michaelson, G. J., and O'Donnell, J. A.: Field information links permafrost carbon to physical vulnerabilities of thawing, Geophys. Res. Lett., 39, L15704, https://doi.org/10.1029/2012gl051958, 2012.
Hassan, W., Chen, W., Cai, P., and Huang, Q.: Oxidative enzymes, the ultimate regulator: implications for factors affecting their efficiency, J. Environ. Qual., 42, 1779–90, https://doi.org/10.2134/jeq2013.05.0204, 2013.
Heckman, K., Welty-Bernard, A., Rasmussen, C., and Schwartz, E.: Geologic controls of soil carbon cycling and microbial dynamics in temperate conifer forests, Chem. Geol., 267, 12–23, https://doi.org/10.1016/j.chemgeo.2009.01.004, 2009.
Heckman, K. A., Welty-Bernard, A., Vázquez-Ortega, A., Schwartz, E., Chorover, J., and Rasmussen, C.: The influence of goethite and gibbsite on soluble nutrient dynamics and microbial community composition, Biogeochemistry, 112, 179–195, https://doi.org/10.1007/s10533-012-9715-2, 2012.
Heckman, K., Throckmorton, H., Horwath, W. R., Swanston, C. W., and Rasmussen, C.: Variation in the molecular structure and radiocarbon abundance of mineral-associated organic matter across a lithosequence of forest soils, Soil Syst., 2, 36, https://doi.org/10.3390/soilsystems2020036, 2018.
Henneberry, Y. K., Kraus, T. E. C., Nico, P. S., and Horwath, W. R.: Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions, Org. Geochem., 48, 81–89, https://doi.org/10.1016/j.orggeochem.2012.04.005, 2012.
Henneberry, Y., Kraus, T. E. C., Krabbenhoft, D. P., and Horwath, W. R.: Investigating the temporal effects of metal-based coagulants to remove mercury from solution in the presence of dissolved organic matter, Environ. Manage., 57, 220–228, https://doi.org/10.1007/s00267-015-0601-2, 2016.
Hlady, V. V. and Buijs, J.: Protein adsorption on solid surfaces, Curr. Opin. Biotech., 7, 72–77, https://doi.org/10.1016/s0958-1669(96)80098-x, 1996.
Hu, Y., Zheng, Q., and Wanek, W.: Flux analysis of free amino sugars and amino acids in soils by isotope tracing with a novel liquid chromatography/high resolution mass spectrometry platform, Anal. Chem., 89, 9192–9200, https://doi.org/10.1021/acs.analchem.7b01938, 2017.
Hu, Y., Zheng, Q., Zhang, S., Noll, L., and Wanek, W.: Significant release and microbial utilization of amino sugars and d-amino acid enantiomers from microbial cell wall decomposition in soils, Soil Biol. Biochem., 123, 115–125, https://doi.org/10.1016/j.soilbio.2018.04.024, 2018.
Hu, Y., Zheng, Q., Noll, L., Zhang, S., and Wanek, W.: Direct measurement of the in situ decomposition of microbial-derived soil organic matter, Soil Biol. Biochem., 141, 107660, https://doi.org/10.1016/j.soilbio.2019.107660, 2020.
Huang, P. M.: Role of soil minerals in transformations of natural organics and xenobiotics in soil, in: Soil Biochemistry, edited by: Bollag, J. M. and Stotzki, G., Routledge, New York, 29–116, https://doi.org/10.1201/9780203739389-2, 1990.
Huang, S. and Jaffé, P. R.: Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions, Biogeosciences, 12, 769–779, https://doi.org/10.5194/bg-12-769-2015, 2015.
Huang, S. and Jaffé, P. R.: Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6, PLOS ONE, 13, e0194007, https://doi.org/10.1371/journal.pone.0194007, 2018.
Huang, S., Chen, C., Peng, X., and Jaffé, P. R.: Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments, Soil Biol. Biochem., 98, 148–158, https://doi.org/10.1016/j.soilbio.2016.04.012, 2016.
Huang, X., Kanerva, P., Salovaara, H., Loponen, J., and Sontag-Strohm, T.: Oxidative modification of a proline-rich gliadin peptide, Food Chem., 141, 2011–2016, https://doi.org/10.1016/j.foodchem.2013.05.066, 2013.
Huang, X., Gao, D., Peng, S., and Tao, Y.: Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors, J. Environ. Sci., 26, 1034–1039, https://doi.org/10.1016/s1001-0742(13)60531-8, 2014.
Huang, X., Zhu-Barker, X., Horwath, W. R., Faeflen, S. J., Luo, H., Xin, X., and Jiang, X.: Effect of iron oxide on nitrification in two agricultural soils with different pH, Biogeosciences, 13, 5609–5617, https://doi.org/10.5194/bg-13-5609-2016, 2016.
Iversen, C. M.: Digging deeper: fine-root responses to rising atmospheric CO concentration in forested ecosystems, New Phytol., 186, 346–357, https://doi.org/10.1111/j.1469-8137.2009.03122.x, 2010.
Jeewani, P. H., Van Zwieten, L., Zhu, Z., Ge, T., Guggenberger, G., Luo, Y., and Xu, J.: Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients, Soil Biol. Biochem., 160, 108312, https://doi.org/10.1016/j.soilbio.2021.108312, 2021.
Jiang, Z., Liu, Y., Yang, J., Brookes, P. C., and Gunina, A.: Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms, Geoderma, 385, 114877, https://doi.org/10.1016/j.geoderma.2020.114877, 2021.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L., and Grandy, A. S.: Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes, Biogeochemistry, 139, 103–122, https://doi.org/10.1007/s10533-018-0459-5, 2018.
Jilling, A., Keiluweit, M., Gutknecht, J. L. M., and Grandy, A. S.: Priming mechanisms providing plants and microbes access to mineral-associated organic matter, Soil Biol. Biochem., 158, 108265, https://doi.org/10.1016/j.soilbio.2021.108265, 2021.
Johnson, K., Purvis, G., Lopez-Capel, E., Peacock, C., Gray, N., Wagner, T., März, C., Bowen, L., Ojeda, J., Finlay, N., Robertson, S., Worrall, F., and Greenwell, C.: Towards a mechanistic understanding of carbon stabilization in manganese oxides, Nat. Commun., 6, 7628, https://doi.org/10.1038/ncomms8628, 2015.
Joss, H., Patzner, M. S., Maisch, M., Mueller, C. W., Kappler, A., and Bryce, C.: Cryoturbation impacts iron-organic carbon associations along a permafrost soil chronosequence in northern Alaska, Geoderma, 413, 115738, https://doi.org/10.1016/j.geoderma.2022.115738, 2022.
Kaiser, K. and Zech, W.: Dissolved organic matter sorption by mineral constituents of subsoil clay fractions, J. Plant Nutr. Soil Sc., 163, 531–535, https://doi.org/10.1002/1522-2624(200010)163:5<531::aid-jpln531>3.0.co;2-n, 2000a.
Kaiser, K. and Zech, W.: Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases, Eur. J. Soil Sci., 51, 403–411, https://doi.org/10.1046/j.1365-2389.2000.00320.x, 2000b.
Keiluweit, M. and Kuyper, T. W.: Proteins unbound – how ectomycorrhizal fungi can tap a vast reservoir of mineral-associated organic nitrogen, New Phytol., 228, 406–408, https://doi.org/10.1111/nph.16796, 2020.
Keiluweit, M., Bougoure, J. J., Zeglin, L. H., Myrold, D. D., Weber, P. K., Pett-Ridge, J., Kleber, M., and Nico, P. S.: Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon, Geochim. Cosmochim. Ac., 95, 213–226, https://doi.org/10.1016/j.gca.2012.07.001, 2012.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by root exudates, Nat. Clim. Change, 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
Kelleher, B. P., Willeford, K. O., Simpson, A. J., Simpson, M. J., Stout, R., Rafferty, A., and Kingery, W. L.: Acid phosphatase interactions with organo-mineral complexes: influence on catalytic activity, Biogeochemistry, 71, 285–297, https://doi.org/10.1023/b:biog.0000049348.53070.6f, 2004.
Kieloaho, A. J., Pihlatie, M., Dominguez Carrasco, M., Kanerva, S., Parshintsev, J., Riekkola, M. L., Pumpanen, J., and Heinonsalo, J.: Stimulation of soil organic nitrogen pool: The effect of plant and soil organic matter degrading enzymes, Soil Biol. Biochem., 96, 97–106, https://doi.org/10.1016/j.soilbio.2016.01.013, 2016.
Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24, https://doi.org/10.1007/s10533-007-9103-5, 2007.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Mineral–organic associations: formation, properties, and relevance in soil environments, in: Advances in Agronomy, edited by: Sparks, D. L., Academic Press, Elsevier, 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., and Nunan, N.: Dynamic interactions at the mineral–organic matter interface, Nat. Rev. Earth. Environ., 2, 402–421, https://doi.org/10.1038/s43017-021-00162-y, 2021.
Knicker, H.: Soil organic N - An under-rated player for C sequestration in soils?, Soil Biol. Biochem., 43, 1118–1129, https://doi.org/10.1016/j.soilbio.2011.02.020, 2011.
Kögel-Knabner, I.: Chemical structure of organic N and organic P in soil, in: nucleic acids and proteins in soil, edited by: Nannipieri, P. and Smalla, K., Springer, Berlin, Heidelberg, 23–48, https://doi.org/10.1007/3-540-29449-x_2, 2006.
Kopittke, P. M., Hernandez-Soriano, M. C., Dalal, R. C., Finn, D., Menzies, N. W., Hoeschen, C., and Mueller, C. W.: Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter, Glob. Change Biol., 24, 1762–1770, https://doi.org/10.1111/gcb.14009, 2018.
Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and quantification of priming effects, Soil Biol. Biochem., 32, 1485–1498, https://doi.org/10.1016/s0038-0717(00)00084-5, 2000.
Kwan, W. P. and Voelker, B. M.: Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems, Environ. Sci. Technol., 37, 1150–1158, https://doi.org/10.1021/es020874g, 2003.
Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y.: Preservation of organic matter in sediments promoted by iron, Nature, 483, 198–200, https://doi.org/10.1038/nature10855, 2012.
Lecomte, S. M., Achouak, W., Abrouk, D., Heulin, T., Nesme, X., and Haichar, F. E. Z.: Diversifying anaerobic respiration strategies to compete in the rhizosphere, Front. Environ. Sci., 6, 139, https://doi.org/10.3389/fenvs.2018.00139, 2018.
Lehmann, J., and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–66, https://doi.org/10.1038/nature16069, 2015.
Leinweber, P. and Schulten, H. R.: Nonhydrolyzable forms of soil organic nitrogen: Extractability and composition, J. Plant. Nutr. Soil Sci., 163, 433–439, https://doi.org/10.1002/1522-2624(200008)163:4<433::aid-jpln433>3.0.co;2-f, 2000.
Li, C., Zhang, B., Ertunc, T., Schaeffer, A., and Ji, R.: Birnessite-induced binding of phenolic monomers to soil humic substances and nature of the bound residues, Environ. Sci. Technol., 46, 8843–8850, https://doi.org/10.1021/es3018732, 2012.
Li, H., Bölscher, T., Winnick, M., Tfaily, M. M., Cardon, Z. G., and Keiluweit, M.: Simple plant and microbial exudates destabilize mineral-associated organic matter via multiple pathways, Environ. Sci. Technol., 55, 3389–3398, https://doi.org/10.1021/acs.est.0c04592, 2021.
Li, J. and Richter, D. D.: Effects of two-century land use changes on soil iron crystallinity and accumulation in Southeastern Piedmont region, USA, Geoderma, 173–174, 184–191, https://doi.org/10.1016/j.geoderma.2011.12.021, 2012.
Li, X., Li, H., and Yang, G.: Promoting the adsorption of metal ions on kaolinite by defect sites: a molecular dynamics study, Sci. Rep.-UK., 5, 14377, https://doi.org/10.1038/srep14377, 2015a.
Li, X., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., Cheng, L., Li, Y., and Hu, X.: Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland, Environ. Sci. Technol., 49, 11560–11568, https://doi.org/10.1021/acs.est.5b03419, 2015b.
Li, Y., Wang, M., Zhang, Y., Koopal, L. K., and Tan, W.: Goethite effects on transport and activity of lysozyme with humic acid in quartz sand, Colloid. Surface. A., 604, 125319, https://doi.org/10.1016/j.colsurfa.2020.125319, 2020.
Lipson, D. A., Jha, M., Raab, T. K., and Oechel, W. C.: Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil, J. Geophys. Res.-Biogeo., 115, G00I06, https://doi.org/10.1029/2009jg001147, 2010.
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445, https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Ma, B., Stirling, E., Liu, Y., Zhao, K., Zhou, J., Singh, B. K., Tang, C., Dahlgren, R. A., and Xu, J.: Soil biogeochemical cycle couplings inferred from a function-taxon network, Research, 2021, 7102769, https://doi.org/10.34133/2021/7102769, 2021.
Matrajt, G. and Blanot, D.: Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation, Amino Acids, 26, 153–158, https://doi.org/10.1007/s00726-003-0047-3, 2004.
Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., and Jardine, P. M.: Relation between soil order and sorption of dissolved organic carbon in temperate subsoils, Soil Sci. Soc. Am. J., 76, 1027–1037, https://doi.org/10.2136/sssaj2011.0340, 2012.
Mendes, I. C., Bandick, A. K., Dick, R. P., and Bottomley, P. J.: Microbial biomass and activities in soil aggregates affected by winter cover crops, Soil Sci. Soc. Am. J., 63, 873–881, https://doi.org/10.2136/sssaj1999.634873x, 1999.
Merino, C., Kuzyakov, Y., Godoy, K., Cornejo, P., and Matus, F.: Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter, Sci. Rep.-UK, 10, 1–12, https://doi.org/10.1038/s41598-020-67953-z, 2020.
Michalet, R.: Hematite identification in pseudo-particles of Moroccan rubified soils, Clay Miner., 28, 233–242, https://doi.org/10.1180/claymin.1993.028.2.05, 1993.
Mikutta, R., Mikutta, C., Kalbitz, K., Scheel, T., Kaiser, K., and Jahn, R.: Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms, Geochim. Cosmochim. Ac., 71, 2569–2590, https://doi.org/10.1016/j.gca.2007.03.002, 2007.
Mueller, C. W., Rethemeyer, J., Kao-Kniffin, J., Löppmann, S., Hinkel, K. M., and G. Bockheim, J.: Large amounts of labile organic carbon in permafrost soils of northern Alaska, Glob. Change Biol., 21, 2804–2817, https://doi.org/10.1111/gcb.12876, 2015.
Muruganandam, S., Israel, D. W., and Robarge, W. P.: Activities of nitrogen-mineralization enzymes associated with soil aggregate size fractions of three tillage systems, Soil Sci. Soc. Am. J., 73, 751–759, https://doi.org/10.2136/sssaj2008.0231, 2009.
Navrotsky, A., Mazeina, L., and Majzlan, J.: Size-driven structural and thermodynamic complexity in iron oxides, Science, 319, 1635, https://doi.org/10.1126/science.1148614, 2008.
Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., and De Yoreo, J. J.: Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding, Nat. Commun., 8, 1–8, https://doi.org/10.1038/s41467-017-00407-9, 2017.
Noll, L., Zhang, S., Zheng, Q., Hu, Y., and Wanek, W.: Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content, Soil Biol. Biochem., 133, 37–49, https://doi.org/10.1016/j.soilbio.2019.02.016, 2019.
Olagoke, F. K., Kaiser, K., Mikutta, R., Kalbitz, K., and Vogel, C.: Persistent activities of extracellular enzymes adsorbed to soil minerals, Microorganisms, 8, 1796, https://doi.org/10.3390/microorganisms8111796, 2020.
Op De Beeck, M., Troein, C., Peterson, C., Persson, P., and Tunlid, A.: Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus, New Phytol., 218, 335–343, https://doi.org/10.1111/nph.14971, 2018.
Park, W., Nam, Y. K., Lee, M. J., and Kim, T. H.: Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to /Fe3+ medium, Biotechnol. Bioproc. E., 14, 680–685, https://doi.org/10.1007/s12257-009-0026-y, 2009.
Patzner, M. S., Mueller, C. W., Malusova, M., Baur, M., Nikeleit, V., Scholten, T., Hoeschen, C., Byrne, J. M., Borch, T., Kappler, A., and Bryce, C.: Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-020-20102-6, 2020.
Peng, X., Yan, X., Zhou, H., Zhang, Y., and Sun, H.: Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization, Soil Till. Res., 46, 89–98, https://doi.org/10.1016/j.still.2014.04.003, 2015.
Pentráková, L., Su, K., Pentrák, M., and Stucki, J. W.: A review of microbial redox interactions with structural Fe in clay minerals, Clay Miner., 48, 543–560, https://doi.org/10.1180/claymin.2013.048.3.10, 2013.
Petridis, L., Ambaye, H., Jagadamma, S., Kilbey, S. M., Lokitz, B. S., Lauter, V., and Mayes, M. A.: Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization, Environ. Sci. Technol., 48, 79–84, https://doi.org/10.1021/es403430k, 2014.
Piccolo, A., Spaccini, R., Nebbioso, A., and Mazzei, P.: Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter, Environ. Sci. Technol., 45, 6697–6702, https://doi.org/10.1021/es201572f, 2011.
Poggenburg, C., Mikutta, R., Schippers, A., Dohrmann, R., and Guggenberger, G.: Impact of natural organic matter coatings on the microbial reduction of iron oxides, Geochim. Cosmochim. Ac., 224, 223–248, https://doi.org/10.1016/j.gca.2018.01.004, 2018.
Porras, R. C., Hicks Pries, C. E., Torn, M. S., and Nico, P. S.: Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon, Sci. Total Environ., 613–614, 342–351, https://doi.org/10.1016/j.scitotenv.2017.08.290, 2018.
Possinger, A. R., Zachman, M. J., Enders, A., Levin, B. D. A., Muller, D. A., Kourkoutis, L. F., and Lehmann, J.: Organo–organic and organo–mineral interfaces in soil at the nanometer scale, Nat. Commun., 11, 6103, https://doi.org/10.1038/s41467-020-19792-9, 2020.
Pulford, I. D. and Tabatabai, M. A.: Effect of waterlogging on enzyme activities in soils, Soil Biol. Biochem., 20, 215–219, https://doi.org/10.1016/0038-0717(88)90039-9, 1988.
Quiquampoix, H. and Ratcliffe, R. G.: A 31P NMR study of the adsorption of bovine serum albumin on montmorillonite using phosphate and the paramagnetic cation Mn2+: modification of conformation with pH, J. Colloid. Interf. Sci., 148, 343–352, https://doi.org/10.1016/0021-9797(92)90173-j, 1992.
Quiquampoix, H., Abadie, J., Baron, M., Leprince, F., Matumoto-Pintro, P., Ratcliffe, R. G., and Staunton, S.: Mechanisms and consequences of protein adsorption on soil mineral surfaces, ACS Sym. Ser., 602, 321–333, https://doi.org/10.1021/bk-1995-0602.ch023, 1995.
Rabe, M., Verdes, D., and Seeger, S.: Understanding protein adsorption phenomena at solid surfaces, Adv. Colloid Interfac., 162, 87–106, https://doi.org/10.1016/j.cis.2010.12.007, 2011.
Rani, A. S., Das, M. L. M., and Satyanarayana, S.: Preparation and characterization of amyloglucosidase adsorbed on activated charcoal, J. Mol. Catal. B-Enzym., 10, 471–476, https://doi.org/10.1016/s1381-1177(99)00116-2, 2000.
Reuter, H., Gensel, J., Elvert, M., and Zak, D.: Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine, Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, 2020.
Roden, E. E.: Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics, Geochim. Cosmochim. Ac., 68, 3205–3216, https://doi.org/10.1016/j.gca.2004.03.028, 2004.
Roden, E. E.: Geochemical and microbiological controls on dissimilatory iron reduction, C. R. Geosci., 338, 456–467, https://doi.org/10.1016/j.crte.2006.04.009, 2006.
Roden, E. E. and Wetzel, R. G.: Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr., 41, 1733–1748, https://doi.org/10.4319/lo.1996.41.8.1733, 1996.
Rodionov, A., Amelung, W., Urusevskaja, I., and Zech, W.: Origin of the enriched labile fraction (ELF) in Russian Chernozems with different site history, Geoderma, 102, 299–315, https://doi.org/10.1016/s0016-7061(01)00038-6, 2001.
Sahrawat, K. L.: Ammonium production in submerged soils and sediments: the role of reducible iron, Commun. Soil Sci. Plan., 35, 399–411, https://doi.org/10.1081/css-120029721, 2004.
Sahrawat, K. L. and Narteh, L. T.: Organic matter and reducible iron control of ammonium production in submerged soils, Commun. Soil Sci. Plan., 32, 1543–1550, https://doi.org/10.1081/css-100104211, 2001.
Sarkar, J. M. and Burns, R. G.: Synthesis and properties of β-d-glucosidasephenolic copolymers as analogues of soil humic-enzyme complexes, Soil Biol. Biochem., 16, 619–625, https://doi.org/10.1016/0038-0717(84)90082-8, 1984.
Schimel, J., Becerra, C. A., and Blankinship, J.: Estimating decay dynamics for enzyme activities in soils from different ecosystems, Soil Biol. Biochem., 114, 5–11, https://doi.org/10.1016/j.soilbio.2017.06.023, 2017.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: challenges of a changing paradigm, Ecology, 85, 591–602, https://doi.org/10.1890/03-8002, 2004.
Schöning, I., Knicker, H., and Kögel-Knabner, I.: Intimate association between -alkyl carbon and iron oxides in clay fractions of forest soils, Org. Geochem., 36, 1378–1390, https://doi.org/10.1016/j.orggeochem.2005.06.005, 2005.
Schulten, H. R. and Schnitzer, M.: The chemistry of soil organic nitrogen: a review, Biol. Fert. Soils, 26, 1–15, https://doi.org/10.1007/s003740050335, 1997.
Scott, E. E. and Rothstein, D. E.: The dynamic exchange of dissolved organic matter percolating through six diverse soils, Soil Biol. Biochem., 69, 83–92, https://doi.org/10.1016/j.soilbio.2013.10.052, 2014.
Servagent-Noinville, S., Revault, M., Quiquampoix, H., and Baron, M.: Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J. Colloid. Interf. Sci., 221, 273–283, https://doi.org/10.1006/jcis.1999.6576, 2000.
Shah, F., Nicolás, C., Bentzer, J., Ellström, M., Smits, M., Rineau, F., Canbäck, B., Floudas, D., Carleer, R., Lackner, G., Braesel, J., Hoffmeister, D., Henrissat, B., Ahrén, D., Johansson, T., Hibbett, D. S., Martin, F., Persson, P., and Tunlid, A.: Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors, New Phytol., 209, 1705–1719, https://doi.org/10.1111/nph.13722, 2016.
Shimizu, M., Zhou, J., Schröder, C., Obst, M., Kappler, A., and Borch, T.: Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitate, Environ. Sci. Technol., 47, 13375–13384, https://doi.org/10.1021/es402812j, 2013.
Silva, L. C., Doane, T. A., Corrêa, R. S., Valverde, V., Pereira, E. I., and Horwath, W. R.: Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands, Ecol. Appl., 25, 1226–1234, https://doi.org/10.1890/14-2151.1, 2015.
Silva-Sánchez, A., Soares, M., and Rousk, J.: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality, Soil Biol. Biochem., 134, 25–35, https://doi.org/10.1016/j.soilbio.2019.03.008, 2019.
Sinsabaugh, R. L.: Phenol oxidase, peroxidase and organic matter dynamics of soil, Soil Biol. Biochem., 42, 391–404, https://doi.org/10.1016/j.soilbio.2009.10.014, 2010.
Sinsabaugh, R. L., Hill, B. H., and Follstad Shah, J. J.: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment, Nature, 462, 795–798, https://doi.org/10.1038/nature08632, 2009.
Six, J., Feller, C., Denef, K., Ogle, S. M., de Moraes Sa, J. C. , and Albrecht, A.: Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage, Agronomie, 22, 755–775, https://doi.org/10.1051/agro:2002043, 2002.
Sposito, G.: Electron shuttling by natural organic matter: twenty years after, in: Aquatic redox chemistry, edited by: Tratnyek, P. G., Grundl, T. J., and Haderlein, S. B., ACS Symp. Ser., 113–127, https://doi.org/10.1021/bk-2011-1071.ch006, 2011.
Stadtman, E. R. and Levine, R. L.: Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207–218, https://doi.org/10.1007/s00726-003-0011-2, 2003.
Stucki, J. W.: Properties and behaviour of iron in clay minerals, in: Developments in clay science, edited by: Bergaya F. and Lagaly, G., Elsevier, 559–611, https://doi.org/10.1016/b978-0-08-098258-8.00018-3, 2013.
Suda, A. and Makino, T.: Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review, Geoderma, 270, 68–75, https://doi.org/10.1016/j.geoderma.2015.12.017, 2016.
Swenson, T. L., Bowen, B. P., Nico, P. S., and Northen, T. R.: Competitive sorption of microbial metabolites on an iron oxide mineral, Soil Biol. Biochem., 90, 34–41, https://doi.org/10.1016/j.soilbio.2015.07.022, 2015.
Tabatabai, M.: Effects of trace elements on urease activity in soils, Soil Biol. Biochem., 9, 9–13, https://doi.org/10.1016/0038-0717(77)90054-2, 1977.
Tamrat, W. Z., Rose, J., Grauby, O., Doelsch, E., Levard, C., Chaurand, P., and Basile-Doelsch, I.: Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands, Geochim. Cosmochim. Ac., 260, 15–28, https://doi.org/10.1016/j.gca.2019.05.043, 2019.
Tan, W., Yuan, Y., Zhao, X., Dang, Q., Yuan, Y., Li, R., Cui, D., and Xi, B.: Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields, Sci. Total Environ., 676, 378–386, https://doi.org/10.1016/j.scitotenv.2019.04.288, 2019.
Tian, Z., Wang, T., Tunlid, A., and Persson, P.: proteolysis of iron oxide-associated bovine serum albumin, Environ. Sci. Technol., 54, 5121–5130, https://doi.org/10.1021/acs.est.0c00860, 2020.
Tietjen, T. and Wetzel, R. G.: Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation, Aquat. Ecol., 37, 331–339, https://doi.org/10.1023/b:aeco.0000007044.52801.6b, 2003.
Tong, M., Yuan, S., Ma, S., Jin, M., Liu, D., Cheng, D., Liu, X., Gan, Y., and Wang, Y.: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments, Environ. Sci. Technol., 50, 214–221, https://doi.org/10.1021/acs.est.5b04323, 2016.
Treat, C. C., Jones, M. C., Camill, P., Gallego-Sala, A., Garneau, M., Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel, J., Mathijssen, P. J. H., O'Donnell, J. A., Oksanen, P. O., Ronkainen, T. M., Sannel, A. B. K., Talbot, J., Tarnocai, C., and Väliranta, M.: Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils, J. Geophys. Res.-Biogeo., 121, 78–94, https://doi.org/10.1002/2015jg003061, 2016a.
Treat, C. C., Wollheim, W. M., Varner, R. K., and Bowden, W. B.: Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils, Environ. Res. Lett., 11, 064013, https://doi.org/10.1088/1748-9326/11/6/064013, 2016b.
Trusiak, A., Treibergs, L. A., Kling, G. W., and Cory, R. M.: The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters, Geochim. Cosmochim. Ac., 224, 80–95, https://doi.org/10.1016/j.gca.2017.12.022, 2018.
Turner, S., Schippers, A., Meyer-Stüve, S., Guggenberger, G., Gentsch, N., Dohrmann, R., Condron, L. M., Eger, A., Almond, P. C., Peltzer, D. A., Richardson, S. J., and Mikutta, R.: Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities, Soil Biol. Biochem., 68, 31–43, https://doi.org/10.1016/j.soilbio.2013.09.016, 2014.
Van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C., and Aerts, R.: Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands, Biogeochemistry, 76, 69–83, https://doi.org/10.1007/s10533-005-2053-x, 2005.
Van Veen, J. A., and Kuikman, P. J.: Soil structural aspects of decomposition of organic matter by micro-organisms, Biogeochemistry, 11, 213–233, https://doi.org/10.1007/bf00004497, 1990.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea: How can it occur?, Biogeochemistry, 13, 87–115, https://doi.org/10.1007/bf00002772, 1991.
Vogel, C., Mueller, C. W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., and Kögel-Knabner, I.: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms3947, 2014.
Vogel, C., Heister, K., Buegger, F., Tanuwidjaja, I., Haug, S., Schloter, M., and Kögel-Knabner, I.: Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions, Biol. Fert. Soils, 51, 427–442, https://doi.org/10.1007/s00374-014-0987-7, 2015.
Wade, J., Waterhouse, H., Roche, L. M., and Horwath, W. R.: Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils, Geoderma, 315, 120–129, https://doi.org/10.1016/j.geoderma.2017.11.039, 2018.
Wagai, R. and Mayer, L. M.: Sorptive stabilization of organic matter in soils by hydrous iron oxides, Geochim. Cosmochim. Ac., 71, 25–35, https://doi.org/10.1016/j.gca.2006.08.047, 2007.
Wagai, R., Kajiura, M., and Asano, M.: Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis, SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, 2020.
Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., and Richter, A.: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique, Soil Biol. Biochem., 42, 1293–1302, https://doi.org/10.1016/j.soilbio.2010.04.001, 2010.
Wang, B., Lerdau, M., and He, Y.: Widespread production of nonmicrobial greenhouse gases in soils, Glob. Change Biol., 23, 4472–4482, https://doi.org/10.1111/gcb.13753, 2017.
Wang, M., Hu, R., Zhao, J., Kuzyakov, Y., and Liu, S.: Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils, Geoderma, 271, 173–180, https://doi.org/10.1016/j.geoderma.2016.02.022, 2016.
Wang, X.-C. and Lee, C.: Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments, Mar. Chem., 44, 1–23, https://doi.org/10.1016/0304-4203(93)90002-6, 1993.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H.: Ecological linkages between aboveground and belowground biota, Science, 304, 1629–1633, https://doi.org/10.1126/science.1094875, 2004.
Warren, C.: What are the products of enzymatic cleavage of organic N?, Soil Biol. Biochem., 154, 108152, https://doi.org/10.1016/j.soilbio.2021.108152, 2021.
Wei, Y., Wu, X., Xia, J., Shen, X., and Cai, C.: Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces, PLOS ONE, 11, e0160960, https://doi.org/10.1371/journal.pone.0160960, 2016.
Whalen, E. D., Grandy, A. S., Sokol, N. W., Keiluweit, M., Ernakovich, J., Smith, R. G., and Frey, S. D.: Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding, Glob. Change Biol., 28, 7167–7185, https://doi.org/10.1111/gcb.16413, 2022.
Wilmoth, J. L.: Redox heterogeneity entangles soil and climate interactions, Sustainability, 13, 10084, https://doi.org/10.3390/su131810084, 2021.
Wilmoth, J. L., Moran, M. A., and Thompson, A.: Transient O2 pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome, Microbiome, 6, 1–14, https://doi.org/10.1186/s40168-018-0574-5, 2018.
Wilson, J. S. and Baldwin, D. S.: Exploring the “Birch effect” in reservoir sediments: influence of inundation history on aerobic nutrient release, Chem. Ecol., 4, 379–386, https://doi.org/10.1080/02757540802497582, 2008.
Wu, X., Cai, C., Wang, J., Wei, Y., and Wang, S.: Spatial variations of aggregate stability in relation to sesquioxides for zonal soils, South-central China, Soil Till. Res., 157, 11–22, https://doi.org/10.1016/j.still.2015.11.005, 2016.
Xu, C., Zhang, K., Zhu, W., Xiao, J., Zhu, C., Zhang, N., Yu, F., Li, S., Zhu, C., Tu, Q., Chen, X., Zhu, J., Hu, S., Koide, R. T., Firestone, M. K., and Cheng, L.: Large losses of ammonium-nitrogen from a rice ecosystem under elevated CO2, Sci. Adv., 6, 1–13, https://doi.org/10.1126/sciadv.abb7433, 2020.
Xu, J., Sahai, N., Eggleston, C. M., and Schoonen, M. A. A.: Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life, Earth. Planet. Sc. Lett., 363, 156–167, https://doi.org/10.1016/j.epsl.2012.12.008, 2013.
Xu, Z., Yang, Z., Wang, H., and Jiang, J.: Assessing redox properties of natural organic matters with regard to electron exchange capacity and redox-active functional groups, J. Chem., 2020, 1–8, https://doi.org/10.1155/2020/2698213, 2020.
Xue, B., Huang, L., Huang, Y., Zhou, F., Li, F., Kubar, K. A., Li, X., Lu, J., and Zhu, J.: Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils, Soil Till. Res., 187, 161–171, https://doi.org/10.1016/j.still.2018.12.010, 2019.
Yan, J., Pan, G., Li, L., Quan, G., Ding, C., and Luo, A.: Adsorption, immobilization, and activity of β-glucosidase on different soil colloids, J. Colloid. Interf. Sci., 348, 565–570, https://doi.org/10.1016/j.jcis.2010.04.044, 2010.
Yang, G., Peng, Y., Marushchak, M. E., Chen, Y., Wang, G., Li, F., Zhang, D., Wang, J., Yu, J., Liu, L., Qin, S., Kou, D., and Yang, Y.: Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw, Environ. Sci. Technol., 52, 9162–9169, https://doi.org/10.1021/acs.est.8b02271, 2018.
Yang, W. H., Weber, K. A., and Silver, W. L.: Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction, Nat. Geosci.,5, 538–541, https://doi.org/10.1038/ngeo1530, 2012.
Yang, Z., Gao, J., Yang, M., and Sun, Z.: Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China, J. Arid Land., 8, 749–759, https://doi.org/10.1007/s40333-016-0012-0, 2016.
Yang, Z., Liao, Y., Fu, X., Zaporski, J., Peters, S., Jamison, M., Liu, Y., Wullschleger, S. D., Graham, D. E., and Gu, B.: Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β-glucosidase, Sci. Total Environ., 686, 1194–1201, https://doi.org/10.1016/j.scitotenv.2019.05.479, 2019.
Yu, G. H., Sun, F. S., Yang, L., He, X. H., and Polizzotto, M. L.: Influence of biodiversity and iron availability on soil peroxide: Implications for soil carbon stabilization and storage, Land Degrad. Dev., 31, 463–472, https://doi.org/10.1002/ldr.3463, 2020.
Yu, W. H., Li, N., Tong, D. S., Zhou, C. H., Lin, C. X., and Xu, C. Y.: Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review, Appl. Clay Sci., 80–81, 443–452, https://doi.org/10.1016/j.clay.2013.06.003, 2013.
Yuan, Y., Zhao, W., Zhang, Z., Xiao, J., Li, D., Liu, Q., Yin, H., and Yin, H.: Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots, Soil Biol. Biochem., 121, 16–23, https://doi.org/10.1016/j.soilbio.2018.03.002, 2018.
Zhang, J., Presley, G. N., Hammel, K. E., Ryu, J. S., Menke, J. R., Figueroa, M., Hu, D., Orr, G., and Schilling, J. S.: Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta, P. Natl. Acad. Sci. USA, 113, 10968–10973, https://doi.org/10.1073/pnas.1608454113, 2016.
Zhang, X. W., Kong, L. W., Cui, X. L., and Yin, S.: Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS, B. Eng. Geol. Environ., 75, 1493–1503, https://doi.org/10.1007/s10064-015-0781-2, 2016.
Zhang, Y. and Scherer, H.: Mechanisms of fixation and release of ammonium in paddy soils after floodingII. Effect of transformation of nitrogen forms on ammonium fixation, Biol. Fert. Soils, 31, 517–521, https://doi.org/10.1007/s003740000202, 2000.
Zhao, L., Dong, H., Kukkadapu, R., Agrawal, A., Liu, D., Zhang, J., and Edelmann, R. E.: Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002, Geochim. Cosmochim. Ac., 119, 231–247, https://doi.org/10.1016/j.gca.2013.05.033, 2013.
Zhao, Q., Callister, S. J., Thompson, A. M., Kukkadapu, R. K., Tfaily, M. M., Bramer, L. M., Qafoku, N. P., Bell, S. L., Hobbie, S. E., Seabloom, E. W., Borer, E. T., and Hofmockel, K. S.: Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites, Sci. Total Environ., 736, 137839, https://doi.org/10.1016/j.scitotenv.2020.137839, 2020.
Zhou, G. W., Yang, X. R., Li, H., Marshall, C. W., Zheng, B. X., Yan, Y., Su, J. Q., and Zhu, Y. G.: Electron shuttles enhance anaerobic ammonium oxidation coupled to Iron(III) reduction, Environ. Sci. Technol., 50, 9298–9307, https://doi.org/10.1021/acs.est.6b02077, 2016.
Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K., and Cheng, W.: Rhizosphere priming effects on soil carbon and nitrogen mineralization, Soil Biol. Biochem., 76, 183–192, https://doi.org/10.1016/j.soilbio.2014.04.033, 2014.
Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R., and Glass, J. B.: The importance of abiotic reactions for nitrous oxide production, Biogeochemistry, 126, 251–267, https://doi.org/10.1007/s10533-015-0166-4, 2015.
Zinder, B., Furrer, G., and Stumm, W.: The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides, Geochim. Cosmochim. Ac., 50, 1861–1869, https://doi.org/10.1016/0016-7037(86)90244-9, 1986.
Zou, J., Huang, J., Zhang, H., and Yue, D.: Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization, Front. Environ. Sci. En., 15, 5, https://doi.org/10.1007/s11783-020-1297-y, 2020.
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
There is a strong link between nitrogen availability and iron minerals in soils. These minerals...
Altmetrics
Final-revised paper
Preprint