Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-451-2023
https://doi.org/10.5194/bg-20-451-2023
Research article
 | 
31 Jan 2023
Research article |  | 31 Jan 2023

Bioclimatic change as a function of global warming from CMIP6 climate projections

Morgan Sparey, Peter Cox, and Mark S. Williamson

Related authors

Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023,https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Combining local model calibration with the emergent constraint approach to reduce uncertainty in the tropical land carbon cycle feedback
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023,https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Rate-induced tipping in natural and human systems
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023,https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Testing the assumptions in emergent constraints: Why does the 'Emergent constraint on equilibrium climate sensitivity from global temperature variability' work for CMIP5 and not CMIP6?
Mark S. Williamson, Peter M. Cox, Chris Huntingford, and Femke J. M. M. Nijsse
EGUsphere, https://doi.org/10.5194/egusphere-2023-1093,https://doi.org/10.5194/egusphere-2023-1093, 2023
Short summary
Emergent constraints for the climate system as effective parameters of bulk differential equations
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023,https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023,https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023,https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023,https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023,https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Quantifying land carbon cycle feedbacks under negative CO2 emissions
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023,https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary

Cited articles

Argles, A. P. K., Moore, J. R., and Cox, P. M.: Dynamic Global Vegetation Models: Searching for the balance between demographic process representation and computational tractability, PLOS Climate, 1, 1–18, https://doi.org/10.1371/journal.pclm.0000068, 2022. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. a, b
Boisvert-Marsh, L., Périé, C., and Blois, S. D.: Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes, Ecosphere, 5, 23, https://doi.org/10.1890/ES14-00111.1, 2014. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5195, 2018. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton, T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp585, https://doi.org/10.22033/ESGF/CMIP6.5271, 2019. a
Download
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Altmetrics
Final-revised paper
Preprint