Articles | Volume 21, issue 17
https://doi.org/10.5194/bg-21-4051-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4051-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Planktonic foraminifera assemblage composition and flux dynamics inferred from an annual sediment trap record in the central Mediterranean Sea
Thibauld M. Béjard
CORRESPONDING AUTHOR
Área de Paleontología, Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
Andrés S. Rigual-Hernández
Área de Paleontología, Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
Javier P. Tarruella
Área de Paleontología, Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
José-Abel Flores
Área de Paleontología, Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
Anna Sanchez-Vidal
GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain
Irene Llamas-Cano
GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain
Francisco J. Sierro
Área de Paleontología, Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
Related authors
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Alessandra D'Angelo, Federico Giglio, Stefano Miserocchi, Anna Sanchez-Vidal, Stefano Aliani, Tommaso Tesi, Angelo Viola, Mauro Mazzola, and Leonardo Langone
Biogeosciences, 15, 5343–5363, https://doi.org/10.5194/bg-15-5343-2018, https://doi.org/10.5194/bg-15-5343-2018, 2018
Short summary
Short summary
A 6-year time series of physical parameters and particle fluxes collected by a mooring in Kongsfjorden (Svalbard) suggests that the subglacial and watershed run-off driven by air temperature are the main processes affecting the lithogenic supply. As the Arctic temperature rises, glacier material will increase accordingly. The winter inflow of warm Atlantic waters is progressively increasing, hampering the nutrient supply from the bottom waters and severely reducing the biological production.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018, https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Short summary
Long-term and annual field observations on key organisms are a critical basis for predicting changes in Southern Ocean ecosystems. Coccolithophores are the most abundant calcium-carbonate-producing phytoplankton and play an important role in Southern Ocean biogeochemical cycles. In this study we document the composition, degree of calcification and annual cycle of coccolithophore communities in one of the largest unexplored regions of the world oceans: the Antarctic zone.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
R. Pedrosa-Pàmies, C. Parinos, A. Sanchez-Vidal, A. Gogou, A. Calafat, M. Canals, I. Bouloubassi, and N. Lampadariou
Biogeosciences, 12, 7379–7402, https://doi.org/10.5194/bg-12-7379-2015, https://doi.org/10.5194/bg-12-7379-2015, 2015
Short summary
Short summary
A multi-proxy approach is applied in surface sediments collected from deep slopes and basins (1018-4087 m depth) of the oligotrophic eastern Mediterranean Sea. This study sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary organic matter in the deep basins of the oligotrophic eastern Mediterranean Sea.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
A. S. Rigual-Hernández, T. W. Trull, S. G. Bray, A. Cortina, and L. K. Armand
Biogeosciences, 12, 5309–5337, https://doi.org/10.5194/bg-12-5309-2015, https://doi.org/10.5194/bg-12-5309-2015, 2015
Short summary
Short summary
Diatom and major components of the flux collected by two sediment traps in subantarctic and polar frontal zones were studied. Despite significant differences in the composition and magnitude of the flux, POC flux was similar between sites. The development of a group of bloom-forming diatoms during summer led to the formation of aggregates and enhanced POC export. Our results suggest that high biogenic silica accumulation rates should be interpreted as a proxy for iron-limited diatom assemblages.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
M. Higueras, P. Kerhervé, A. Sanchez-Vidal, A. Calafat, W. Ludwig, M. Verdoit-Jarraya, S. Heussner, and M. Canals
Biogeosciences, 11, 157–172, https://doi.org/10.5194/bg-11-157-2014, https://doi.org/10.5194/bg-11-157-2014, 2014
C. Parinos, A. Gogou, I. Bouloubassi, R. Pedrosa-Pàmies, I. Hatzianestis, A. Sanchez-Vidal, G. Rousakis, D. Velaoras, G. Krokos, and V. Lykousis
Biogeosciences, 10, 6069–6089, https://doi.org/10.5194/bg-10-6069-2013, https://doi.org/10.5194/bg-10-6069-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
P. Lopez-Fernandez, S. Bianchelli, A. Pusceddu, A. Calafat, A. Sanchez-Vidal, and R. Danovaro
Biogeosciences, 10, 3405–3420, https://doi.org/10.5194/bg-10-3405-2013, https://doi.org/10.5194/bg-10-3405-2013, 2013
J. Martín, X. Durrieu de Madron, P. Puig, F. Bourrin, A. Palanques, L. Houpert, M. Higueras, A. Sanchez-Vidal, A. M. Calafat, M. Canals, S. Heussner, N. Delsaut, and C. Sotin
Biogeosciences, 10, 3221–3239, https://doi.org/10.5194/bg-10-3221-2013, https://doi.org/10.5194/bg-10-3221-2013, 2013
A. Pusceddu, M. Mea, M. Canals, S. Heussner, X. Durrieu de Madron, A. Sanchez-Vidal, S. Bianchelli, C. Corinaldesi, A. Dell'Anno, L. Thomsen, and R. Danovaro
Biogeosciences, 10, 2659–2670, https://doi.org/10.5194/bg-10-2659-2013, https://doi.org/10.5194/bg-10-2659-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Marine
Characterizing regional oceanography and bottom environmental conditions at two contrasting sponge grounds on the northern Labrador Shelf
Seasonal foraging behavior of Weddell seals in relation to oceanographic environmental conditions in the Ross Sea, Antarctica
Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps
Early life stages of fish under ocean alkalinity enhancement in coastal plankton communities
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Growth response of Emiliania huxleyi to ocean alkalinity enhancement
Composite calcite and opal test in Foraminifera (Rhizaria)
Influence of oxygen minimum zone on macrobenthic community structure in the northern Benguela Upwelling System: a macro-nematode perspective
Phytoplankton adaptation to steady or changing environments affects marine ecosystem functioning
Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community towards heterotrophy
Contrasting carbon cycling in the benthic food webs between a river-fed, high-energy canyon and an upper continental slope
A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment
Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
Evert de Froe, Igor Yashayaev, Christian Mohn, Johanne Vad, Furu Mienis, Gerard Duineveld, Ellen Kenchington, Erica Head, Steve W. Ross, Sabena Blackbird, George A. Wolff, J. Murray Roberts, Barry MacDonald, Graham Tulloch, and Dick van Oevelen
Biogeosciences, 21, 5407–5433, https://doi.org/10.5194/bg-21-5407-2024, https://doi.org/10.5194/bg-21-5407-2024, 2024
Short summary
Short summary
Deep-sea sponge grounds are distributed globally and are considered hotspots of biological diversity and biogeochemical cycling. To date, little is known about the environmental constraints that control where deep-sea sponge grounds occur and what conditions favour high sponge biomass. Here, we characterize oceanographic conditions at two contrasting sponge grounds. Our results imply that sponges and associated fauna benefit from strong tidal currents and favourable regional ocean currents.
Hyunjae Chung, Jikang Park, Mijin Park, Yejin Kim, Unyoung Chun, Sukyoung Yun, Won Sang Lee, Hyun A. Choi, Ji Sung Na, Seung-Tae Yoon, and Won Young Lee
Biogeosciences, 21, 5199–5217, https://doi.org/10.5194/bg-21-5199-2024, https://doi.org/10.5194/bg-21-5199-2024, 2024
Short summary
Short summary
Understanding how marine animals adapt to variations in marine environmental conditions is paramount. In this paper, we investigated the influence of changes in seawater and light conditions on the seasonal foraging behavior of Weddell seals in the Ross Sea, Antarctica. Our findings could serve as a baseline and establish a foundational understanding for future research, particularly concerning the impact of marine environmental changes on the ecosystem of the Ross Sea Marine Protected Area.
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
Biogeosciences, 21, 4521–4532, https://doi.org/10.5194/bg-21-4521-2024, https://doi.org/10.5194/bg-21-4521-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as a carbon dioxide removal technology for climate change mitigation. With an experiment on species communities, we show that larval and juvenile fish can be resilient to the resulting perturbation of seawater. Fish may hence recruit successfully and continue to support fisheries' production in regions of OAE. Our findings help to establish an environmentally safe operating space for this ocean-based solution.
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Giulia Faucher, Mathias Haunost, Allanah Joy Paul, Anne Ulrike Christiane Tietz, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2201, https://doi.org/10.5194/egusphere-2024-2201, 2024
Short summary
Short summary
OAE is being evaluated for its capacity to absorb atmospheric CO2 in the ocean, storing it long-term to mitigate climate change. As researchers plan for field tests to gain practical insights into OAE, sharing knowledge on its environmental impact on marine ecosystems is urgent. Our study examined NaOH-induced alkalinity increases on Emiliania huxleyi, a key coccolithophore species. We found that to prevent negative impacts on this species, the increase in ΔTA should not exceed 600 µmol kg-1.
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Said Mohamed Hashim, Beth Wangui Waweru, and Agnes Muthumbi
Biogeosciences, 21, 2995–3006, https://doi.org/10.5194/bg-21-2995-2024, https://doi.org/10.5194/bg-21-2995-2024, 2024
Short summary
Short summary
The study investigates the impact of decreasing oxygen in the ocean on macrofaunal communities using the BUS as an example. It identifies distinct shifts in community composition and feeding guilds across oxygen zones, with nematodes dominating dysoxic areas. These findings underscore the complex responses of benthic organisms to oxygen gradients, crucial for understanding ecosystem dynamics in hypoxic environments and their implications for marine biodiversity and sustainability.
Isabell Hochfeld and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-1246, https://doi.org/10.5194/egusphere-2024-1246, 2024
Short summary
Short summary
Ecosystem models disagree on future changes in marine ecosystem functioning. We suspect that the lack of phytoplankton adaptation represents a major uncertainty factor, given the key role that phytoplankton play in marine ecosystems. Using an evolutionary ecosystem model, we found that phytoplankton adaptation can notably change simulated ecosystem dynamics. Future models should include phytoplankton adaptation, otherwise they can systematically overestimate future ecosystem-level changes.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024, https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Short summary
In the deep sea, the interaction between benthic fauna (tracemakers) and substrate can be preserved as traces (i.e. lebensspuren), which are common features of seafloor landscapes, rendering them promising proxies for inferring biodiversity from marine images. No general correlation was observed between traces and benthic fauna. However, a local correlation was observed between specific stations depending on unknown tracemakers, tracemaker behaviour, and lebensspuren morphotypes.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Cited articles
Aldridge, D., Beer, C. J., and Purdie, D. A.: Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean, Biogeosciences, 9, 1725–1739, https://doi.org/10.5194/bg-9-1725-2012, 2012.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Astraldi, M., Gasparini, G. P., Gervasio, L., and Salusti, E.: Dense Water Dynamics along the Channel of Sicily (Mediterranean Sea), J. Phys. Oceanogr., 31, 3457–3475, https://doi.org/10.1175/1520-0485(2001)031<3457:DWDATS>2.0.CO;2, 2001.
Astraldi, M., Gasparini, G. P., Vetrano, A., and Vignudelli, S.: Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea, Deep-Sea Res. Pt. I, 49, 661–680, https://doi.org/10.1016/S0967-0637(01)00059-0, 2002.
Avnaim-Katav, S., Herut, B., Rahav, E., Katz, T., Weinstein, Y., Alkalay, R., Berman-Frank, I., Zlatkin, O., and Almogi-Labin, A.: Sediment trap and deep sea coretop sediments as tracers of recent changes in planktonic foraminifera assemblages in the southeastern ultra-oligotrophic Levantine Basin, Deep-Sea Res. Pt. II, 171, 104669, https://doi.org/10.1016/j.dsr2.2019.104669, 2020.
Azibeiro, L. A., Kučera, M., Jonkers, L., Cloke-Hayes, A., and Sierro, F. J.: Nutrients and hydrography explain the composition of recent Mediterranean planktonic foraminiferal assemblages, Mar. Micropaleontol., 179, 102201, https://doi.org/10.1016/j.marmicro.2022.102201, 2023.
Balestra, B., Grunert, P., Ausin, B., Hodell, D., Flores, J.-A., Alvarez-Zarikian, C. A., Hernandez-Molina, F. J., Stow, D., Piller, W. E., and Paytan, A.: Coccolithophore and benthic foraminifera distribution patterns in the Gulf of Cadiz and Western Iberian Margin during Integrated Ocean Drilling Program (IODP) Expedition 339, J. Marine Syst., 170, 50–67, https://doi.org/10.1016/j.jmarsys.2017.01.005, 2017.
Bárcena, M. A., Flores, J. A., Sierro, F. J., Pérez-Folgado, M., Fabres, J., Calafat, A., and Canals, M.: Planktonic response to main oceanographic changes in the Alboran Sea (Western Mediterranean) as documented in sediment traps and surface sediments, Mar. Micropaleontol., 53, 423–445, https://doi.org/10.1016/j.marmicro.2004.09.009, 2004.
Barker, S. and Elderfield, H.: Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO 2, Science, 297, 833–836, https://doi.org/10.1126/science.1072815, 2002.
Bé, A. W. H., Hutson, W. H., and Be, A. W. H.: Ecology of Planktonic Foraminifera and Biogeographic Patterns of Life and Fossil Assemblages in the Indian Ocean, Micropaleontology, 23, 369–414, https://doi.org/10.2307/1485406, 1977.
Beer, C. J., Schiebel, R., and Wilson, P. A.: Testing planktonic foraminiferal shell weight as a surface water [CO ] proxy using plankton net samples, Geology, 38, 103–106, https://doi.org/10.1130/G30150.1, 2010.
Bejard, T.: Béjard et al., 2023. Supplementary data. Planktic foraminifera population in a modern Central Mediterranean Sea sediment trap compared to basin-wide and seafloor assemblages, Mendeley Data, V1 [data set], https://doi.org/10.17632/tp4v6hm7dc.1, 2023.
Béjard, T. M., Rigual-Hernández, A. S., Flores, J. A., Tarruella, J. P., Durrieu de Madron, X., Cacho, I., Haghipour, N., Hunter, A., and Sierro, F. J.: Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era, Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, 2023.
Béranger, K., Mortier, L., Gasparini, G.-P., Gervasio, L., Astraldi, M., and Crépon, M.: The dynamics of the Sicily Channel: a comprehensive study from observations and models, Deep-Sea Res. Pt. II, 51, 411–440, https://doi.org/10.1016/j.dsr2.2003.08.004, 2004.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean Sea: a historical review of experimental investigations, Advances in Oceanography and Limnology, 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2010.
Bethoux, J. P., Gentili, B., Morin, P., Nicolas, E., Pierre, C., and Ruiz-Pino, D.: The Mediterranean Sea: a miniature ocean for climatic and environmental studies and a key for the climatic functioning of the North Atlantic, Progr. Oceanogr., 44, 131–146, https://doi.org/10.1016/S0079-6611(99)00023-3, 1999.
Bijma, J., Faber, W. W., and Hemleben, C.: Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures, J. Foramin. Res., 20, 95–116, https://doi.org/10.2113/gsjfr.20.2.95, 1990.
Bijma, J., Hönisch, B., and Zeebe, R. E.: Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark: COMMENT, Geochem. Geophy. Geosy., 3, 1–7, https://doi.org/10.1029/2002GC000388, 2002.
Bouzinac, C., Font, J., and Millot, C.: Hydrology and currents observed in the channel of Sardinia during the PRIMO-1 experiment from November 1993 to October 1994, J. Marine Syst., 20, 333–355, https://doi.org/10.1016/S0924-7963(98)00074-8, 1999.
Chapman, M. R.: Seasonal production patterns of planktonic foraminifera in the NE Atlantic Ocean: Implications for paleotemperature and hydrographic reconstructions: CURRENTS, Paleoceanography, 25, PA1101, https://doi.org/10.1029/2008PA001708, 2010.
Chernihovsky, N., Torfstein, A., and Almogi-Labin, A.: Seasonal flux patterns of planktonic foraminifera in a deep, oligotrophic, marginal sea: Sediment trap time series from the Gulf of Aqaba, northern Red Sea, Deep-Sea Res. Pt. I, 140, 78–94, https://doi.org/10.1016/j.dsr.2018.08.003, 2018.
Chernihovsky, N., Torfstein, A., and Almogi-Labin, A.: Daily timescale dynamics of planktonic foraminifera shell-size distributions, Front. Mar. Sci., 10, 1126398, https://doi.org/10.3389/fmars.2023.1126398, 2023.
Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat, B., Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli, G., and Lirer, F.: Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach, Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, 2016.
de Moel, H., Ganssen, G. M., Peeters, F. J. C., Jung, S. J. A., Kroon, D., Brummer, G. J. A., and Zeebe, R. E.: Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?, Biogeosciences, 6, 1917–1925, https://doi.org/10.5194/bg-6-1917-2009, 2009.
D'Ortenzio, F.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
Ducassou, E., Hassan, R., Gonthier, E., Duprat, J., Hanquiez, V., and Mulder, T.: Biostratigraphy of the last 50 kyr in the contourite depositional system of the Gulf of Cádiz, Mar. Geol., 395, 285–300, https://doi.org/10.1016/j.margeo.2017.09.014, 2018.
Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P., Bosse, A., Estournel, C., Somot, S., Bourrin, F., Bouin, M. N., Beauverger, M., Beguery, L., Calafat, A., Canals, M., Cassou, C., Coppola, L., Dausse, D., D'Ortenzio, F., Font, J., Heussner, S., Kunesch, S., Lefevre, D., Le Goff, H., Martín, J., Mortier, L., Palanques, A., and Raimbault, P.: Interaction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012: shelf cascading and open-sea convection, Geophys. Res. Lett., 40, 1379–1385, https://doi.org/10.1002/grl.50331, 2013.
Fox, L., Stukins, S., Hill, T., and Miller, C. G.: Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton, Sci. Rep., 10, 1620, https://doi.org/10.1038/s41598-020-58501-w, 2020.
Garcia-Solsona, E., Pena, L. D., Paredes, E., Pérez-Asensio, J. N., Quirós-Collazos, L., Lirer, F., and Cacho, I.: Rare earth elements and Nd isotopes as tracers of modern ocean circulation in the central Mediterranean Sea, Progr. Oceanogr., 185, 102340, https://doi.org/10.1016/j.pocean.2020.102340, 2020.
Gasparini, G. P., Smeed, D. A., Alderson, S., Sparnocchia, S., Vetrano, A., and Mazzola, S.: Tidal and subtidal currents in the Strait of Sicily, J. Geophys. Res., 109, 2003JC002011, https://doi.org/10.1029/2003JC002011, 2004.
Gasparini, G. P., Ortona, A., Budillon, G., Astraldi, M., and Sansone, E.: The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Channel of Sicily and in the Tyrrhenian Sea, Deep-Sea Res. Pt. I, 52, 915–935, https://doi.org/10.1016/j.dsr.2005.01.001, 2005.
Gaudy, R., Youssara, F., Diaz, F., and Raimbault, P.: Biomass, metabolism and nutrition of zooplankton in the Gulf of Lions (NW Mediterranean), Oceanol. Acta, 26, 357–372, https://doi.org/10.1016/S0399-1784(03)00016-1, 2003.
Grifoll, M., Cerralbo, P., Guillén, J., Espino, M., Hansen, L. B., and Sánchez-Arcilla, A.: Characterization of bottom sediment resuspension events observed in a micro-tidal bay, Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019, 2019.
Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab, M., Guglielmi, V., Touratier, F., and Falco, C.: Acidification of the Mediterranean Sea from anthropogenic carbon penetration, Deep-Sea Res. Pt. I, 102, 1–15, https://doi.org/10.1016/j.dsr.2015.04.005, 2015.
Hassoun, A. E. R., Bantelman, A., Canu, D., Comeau, S., Galdies, C., Gattuso, J.-P., Giani, M., Grelaud, M., Hendriks, I. E., Ibello, V., Idrissi, M., Krasakopoulou, E., Shaltout, N., Solidoro, C., Swarzenski, P. W., and Ziveri, P.: Ocean acidification research in the Mediterranean Sea: Status, trends and next steps, Front. Mar. Sci., 9, 892670, https://doi.org/10.3389/fmars.2022.892670, 2022.
Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., and Rohling, E. J.: Compilation of planktonic foraminifera modern data from the Mediterranean Sea, PANGAEA, https://doi.org/10.1594/PANGAEA.227305, 2005.
Hazan, O., Silverman, J., Sisma-Ventura, G., Ozer, T., Gertman, I., Shoham-Frider, E., Kress, N., and Rahav, E.: Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters, Front. Mar. Sci., 5, 1, https://doi.org/10.3389/fmars.2018.00001, 2018.
Hemleben, C.: Modern Planktonic Foraminifera, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4612-3544-6, 1989.
Hernández-Almeida, I., Bárcena, M. A., Flores, J. A., Sierro, F. J., Sanchez-Vidal, A., and Calafat, A.: Microplankton response to environmental conditions in the Alboran Sea (Western Mediterranean): One year sediment trap record, Mar. Micropaleontol., 78, 14–24, https://doi.org/10.1016/j.marmicro.2010.09.005, 2011.
Heussner, S., Ratti, C., and Carbonne, J.: The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment, Cont. Shelf Res., 10, 943–958, https://doi.org/10.1016/0278-4343(90)90069-X, 1990.
Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J., Delsaut, N., and Saragoni, G.: Spatial and temporal variability of downward particle fluxes on a continental slope: Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean), Mar. Geol., 234, 63–92, https://doi.org/10.1016/j.margeo.2006.09.003, 2006.
Houpert, L., Durrieu de Madron, X., Testor, P., Bosse, A., D'Ortenzio, F., Bouin, M. N., Dausse, D., Le Goff, H., Kunesch, S., Labaste, M., Coppola, L., Mortier, L., and Raimbault, P.: Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007–2013 Period, J. Geophys. Res.-Oceans, 121, 8139–8171, https://doi.org/10.1002/2016JC011857, 2016.
Huertas, I. E., Ríos, A. F., García-Lafuente, J., Navarro, G., Makaoui, A., Sánchez-Román, A., Rodriguez-Galvez, S., Orbi, A., Ruíz, J., and Pérez, F. F.: Atlantic forcing of the Mediterranean oligotrophy, Global Biogeochem. Cy., 11, GB004167, https://doi.org/10.1029/2011GB004167, 2012.
Incarbona, A., Sprovieri, M., Lirer, F., and Sprovieri, R.: Surface and deep water conditions in the Sicily channel (central Mediterranean) at the time of sapropel S5 deposition, Palaeogeogr. Palaeocl., 306, 243–248, https://doi.org/10.1016/j.palaeo.2011.04.030, 2011.
Incarbona, A., Jonkers, L., Ferraro, S., Sprovieri, R., and Tranchida, G.: Sea Surface Temperatures and Paleoenvironmental Variability in the Central Mediterranean During Historical Times Reconstructed Using Planktonic Foraminifera, Paleoceanog. Paleoclimatol., 34, 394–408, https://doi.org/10.1029/2018PA003529, 2019.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Jonkers, L., Hillebrand, H., and Kucera, M.: Global change drives modern plankton communities away from the pre-industrial state, Nature, 570, 372–375, https://doi.org/10.1038/s41586-019-1230-3, 2019.
Jouini, M., Béranger, K., Arsouze, T., Beuvier, J., Thiria, S., Crépon, M., and Taupier-Letage, I.: The Sicily Channel surface circulation revisited using a neural clustering analysis of a high-resolution simulation, J. Geophys. Res.-Oceans, 121, 4545–4567, https://doi.org/10.1002/2015JC011472, 2016.
Kemle-von Mücke, S. and Oberhänsli, H.: The Distribution of Living Planktonic Foraminifera in Relation to Southeast Atlantic Oceanography, in: Use of Proxies in Paleoceanography, edited by: Fischer, G. and Wefer, G., Springer Berlin Heidelberg, Berlin, Heidelberg, 91–115, https://doi.org/10.1007/978-3-642-58646-0_3, 1999.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Krom, M. D., Kress, N., Brenner, S., and Gordon, L. I.: Phosphorus limitation of primary productivity in the eastern Mediterranean Sea, Limnol. Oceanogr., 36, 424–432, https://doi.org/10.4319/lo.1991.36.3.0424, 1991.
Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N., Carbo, P., Mantoura, R. F. C., Spyres, G., Thingstad, T. F., Wassmann, P., Wexels-Riser, C., Kitidis, V., Law, C. S., and Zodiatis, G.: Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: Results from a phosphorus starved system, Deep-Sea Res. Pt. II, 52, 2879–2896, https://doi.org/10.1016/j.dsr2.2005.08.009, 2005.
Kuroyanagi, A. and Kawahata, H.: Vertical distribution of living planktonic foraminifera in the seas around Japan, Mar. Micropaleontol., 53, 173–196, https://doi.org/10.1016/j.marmicro.2004.06.001, 2004.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., Oddo, P., and Vichi, M.: The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses, J. Marine Syst., 135, 137–149, https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014.
Lermusiaux, P. F. J. and Robinson, A. R.: Features of dominant mesoscale variability, circulation patterns and dynamics in the Channel of Sicily, Deep-Sea Res. Pt. I, 48, 1953–1997, https://doi.org/10.1016/S0967-0637(00)00114-X, 2001.
Lirer, F., Sprovieri, M., Vallefuoco, M., Ferraro, L., Pelosi, N., Giordano, L., and Capotondi, L.: Planktonic foraminifera as bio-indicators for monitoring the climatic changes that have occurred over the past 2000 years in the southeastern Tyrrhenian Sea, Integr. Zool., 9, 542–554, https://doi.org/10.1111/1749-4877.12083, 2014.
Lohmann, G. P. and Schweitzer, P. N.: Globorotalia truncatulinoides' Growth and chemistry as probes of the past thermocline: 1. Shell size, Paleoceanography, 5, 55–75, https://doi.org/10.1029/PA005i001p00055, 1990.
Lombard, F., Erez, J., Michel, E., and Labeyrie, L.: Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera, Limnol. Oceanogr., 54, 210–218, https://doi.org/10.4319/lo.2009.54.1.0210, 2009.
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H., and Jorissen, F.: Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach, Biogeosciences, 8, 853–873, https://doi.org/10.5194/bg-8-853-2011, 2011.
Macias, D., Cózar, A., Garcia-Gorriz, E., González-Fernández, D., and Stips, A.: Surface water circulation develops seasonally changing patterns of floating litter accumulation in the Mediterranean Sea. A modelling approach, Mar. Pollut. Bull., 149, 110619, https://doi.org/10.1016/j.marpolbul.2019.110619, 2019.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.: Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Mallo, M., Ziveri, P., Mortyn, P. G., Schiebel, R., and Grelaud, M.: Low planktic foraminiferal diversity and abundance observed in a spring 2013 west–east Mediterranean Sea plankton tow transect, Biogeosciences, 14, 2245–2266, https://doi.org/10.5194/bg-14-2245-2017, 2017.
Margaritelli, G., Lirer, F., Schroeder, K., Alberico, I., Dentici, M. P., and Caruso, A.: Globorotalia truncatulinoides in Central – Western Mediterranean Sea during the Little Ice Age, Mar. Micropaleontol., 161, 101921, https://doi.org/10.1016/j.marmicro.2020.101921, 2020.
Margaritelli, G., Lirer, F., Schroeder, K., Cloke-Hayes, A., Caruso, A., Capotondi, L., Broggy, T., Cacho, I., and Sierro, F. J.: Globorotalia truncatulinoides in the Mediterranean Basin during the Middle–Late Holocene: Bio-Chronological and Oceanographic Indicator, Geosciences, 12, 244, https://doi.org/10.3390/geosciences12060244, 2022.
Marshall, B. J., Thunell, R. C., Henehan, M. J., Astor, Y., and Wejnert, K. E.: Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series, Paleoceanography, 28, 363–376, https://doi.org/10.1002/palo.20034, 2013.
Milker, Y. and Schmiedl, G.: A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea, Palaeontol. Electron., 15, 1–134, https://doi.org/10.26879/271, 2012.
Millero, F. J., Morse, J., and Chen, C.-T.: The carbonate system in the western Mediterranean sea, Deep-Sea Res. Pt. A., 26, 1395–1404, https://doi.org/10.1016/0198-0149(79)90007-4, 1979.
Millot, C.: Mesoscale and seasonal variabilities of the circulation in the western Mediterranean, Dynam. Atmos. Oceans, 15, 179–214, https://doi.org/10.1016/0377-0265(91)90020-G, 1991.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Marine Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea, edited by: Saliot, A., Springer Berlin Heidelberg, Berlin, Heidelberg, vol. 5K, 29–66, https://doi.org/10.1007/b107143, 2005.
Morán, X. and Estrada, M.: Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean), Mar. Ecol. Prog. Ser., 212, 53–67, https://doi.org/10.3354/meps212053, 2001.
Moy, A. D., Howard, W. R., Bray, S. G., and Trull, T. W.: Reduced calcification in modern Southern Ocean planktonic foraminifera, Nat. Geosci., 2, 276–280, https://doi.org/10.1038/ngeo460, 2009.
Navarro, G., Almaraz, P., Caballero, I., Vázquez, Á., and Huertas, I. E.: Reproduction of Spatio-Temporal Patterns of Major Mediterranean Phytoplankton Groups from Remote Sensing OC-CCI Data, Front. Mar. Sci., 4, 246, https://doi.org/10.3389/fmars.2017.00246, 2017.
Nielsen, S. N.: Numerical Ecology, Legendre P. and Legendre L., second ed., Elsevier, Amsterdam, p. 853, 1998., Ecol. Model., 132, 303–304, https://doi.org/10.1016/S0304-3800(00)00291-X, 2000.
Ortiz, J. D. and Mix, A. C.: Comparison of Imbrie-Kipp Transfer Function and modern analog temperature estimates using sediment trap and core top foraminiferal faunas, Paleoceanography, 12, 175–190, https://doi.org/10.1029/96PA02878, 1997.
Osborne, E. B., Thunell, R. C., Marshall, B. J., Holm, J. A., Tappa, E. J., Benitez-Nelson, C., Cai, W., and Chen, B.: Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin, Paleoceanography, 31, 1083–1102, https://doi.org/10.1002/2016PA002933, 2016.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea, Global Planet. Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2017.
Pallacks, S., Ziveri, P., Schiebel, R., Vonhof, H., Rae, J. W. B., Littley, E., Garcia-Orellana, J., Langer, G., Grelaud, M., and Martrat, B.: Anthropogenic acidification of surface waters drives decreased biogenic calcification in the Mediterranean Sea, Commun. Earth Environ., 4, 301, https://doi.org/10.1038/s43247-023-00947-7, 2023.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis, Progr. Oceanogr., 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003, 2015.
Poore, R. Z., Tedesco, K. A., and Spear, J. W.: Seasonal Flux and Assemblage Composition of Planktonic Foraminifers from a Sediment-Trap Study in the Northern Gulf of Mexico, J. Coast. Res., 63, 6–19, https://doi.org/10.2112/SI63-002.1, 2013.
Prell, W.: The Stability of Low-Latitude Sea-Surface Temperatures, an Evaluation of the CLIMAP Reconstruction with Emphasis on the Positive SST Anomalies, Report No. TR025, US Department of Energy, 1985.
Pujol, C. and Grazzini, C. V.: Distribution patterns of live planktonic foraminifers as related to regional hydrography and productive systems of the Mediterranean Sea, Mar. Micropaleontol., 25, 187–217, https://doi.org/10.1016/0377-8398(95)00002-I, 1995.
Raimbault, P., Pouvesle, W., Diaz, F., Garcia, N., and Sempéré, R.: Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater, Mar. Chem., 66, 161–169, https://doi.org/10.1016/S0304-4203(99)00038-9, 1999.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Retailleau, S., Schiebel, R., and Howa, H.: Population dynamics of living planktonic foraminifers in the hemipelagic southeastern Bay of Biscay, Mar. Micropaleontol., 80, 89–100, https://doi.org/10.1016/j.marmicro.2011.06.003, 2011.
Rigual-Hernández, A. S., Sierro, F. J., Bárcena, M. A., Flores, J. A., and Heussner, S.: Seasonal and interannual changes of planktonic foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) and their implications for paleoceanographic studies: Two 12-year sediment trap records, Deep-Sea Res. Pt. I, 66, 26–40, https://doi.org/10.1016/j.dsr.2012.03.011, 2012.
Robinson, A. R. and Golnaraghi, M.: The Physical and Dynamical Oceanography of the Mediterranean Sea, in: Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by: Malanotte-Rizzoli, P. and Robinson, A. R., Springer Netherlands, Dordrecht, 255–306, https://doi.org/10.1007/978-94-011-0870-6_12, 1994.
Robinson, A. R., Sellschopp, J., Warn-Varnas, A., Leslie, W. G., Lozano, C. J., Haley Jr., P. J., Anderson, L. A., and Lermusiaux, P. F. J.: The Atlantic Ionian Stream, J. Marine Syst., 20, 129–156, https://doi.org/10.1016/S0924-7963(98)00079-7, 11999.
Salmon, K. H., Anand, P., Sexton, P. F., and Conte, M.: Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic, Biogeosciences, 12, 223–235, https://doi.org/10.5194/bg-12-223-2015, 2015.
Schiebel, R.: Planktonic foraminiferal sedimentation and the marine calcite budget, Global Biogeochem. Cy., 16, 3-1–3-21, https://doi.org/10.1029/2001GB001459, 2002.
Schiebel, R. and Hemleben, C.: Modern planktonic foraminifera, Paläontol. Z., 79, 135–148, https://doi.org/10.1007/BF03021758, 2005.
Schiebel, R. and Hemleben, C.: Planktonic Foraminifers in the Modern Ocean, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schiebel, R., Waniek, J., Bork, M., and Hemleben, C.: Planktonic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients, Deep-Sea Res. Pt. I, 48, 721–740, https://doi.org/10.1016/S0967-0637(00)00065-0, 2001.
Schiebel, R., Waniek, J., Zeltner, A., and Alves, M.: Impact of the Azores Front on the distribution of planktic foraminifers, shelled gastropods, and coccolithophorids, Deep-Sea Res. Pt. II, 49, 4035–4050, https://doi.org/10.1016/S0967-0645(02)00141-8, 2002.
Schiebel, R., Zeltner, A., Treppke, U. F., Waniek, J. J., Bollmann, J., Rixen, T., and Hemleben, C.: Distribution of diatoms, coccolithophores and planktonic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea, Mar. Micropaleontol., 51, 345–371, https://doi.org/10.1016/j.marmicro.2004.02.001, 2004.
Schmidt, D. N., Lazarus, D., Young, J. R., and Kucera, M.: Biogeography and evolution of body size in marine plankton, Earth-Sci. Rev., 78, 239–266, https://doi.org/10.1016/j.earscirev.2006.05.004, 2006.
Schneider, A., Wallace, D. W. R., and Körtzinger, A.: Alkalinity of the Mediterranean Sea, Geophys. Res. Lett., 34, 2006GL028842, https://doi.org/10.1029/2006GL028842, 2007.
Schroeder, K., Gasparini, G. P., Borghini, M., Cerrati, G., and Delfanti, R.: Biogeochemical tracers and fluxes in the Western Mediterranean Sea, spring 2005, J. Marine Syst., 80, 8–24, https://doi.org/10.1016/j.jmarsys.2009.08.002, 2010.
Schroeder, K., Chiggiato, J., Josey, S. A., Borghini, M., Aracri, S., and Sparnocchia, S.: Rapid response to climate change in a marginal sea, Sci. Rep., 7, 4065, https://doi.org/10.1038/s41598-017-04455-5, 2017.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples, Sci. Data, 4, 170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Sierro, F. J., Hodell, D. A., Curtis, J. H., Flores, J. A., Reguera, I., Colmenero‐Hidalgo, E., Bárcena, M. A., Grimalt, J. O., Cacho, I., Frigola, J., and Canals, M.: Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events, Paleoceanography, 20, 2004PA001051, https://doi.org/10.1029/2004PA001051, 2005.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Skinner, L. C. and McCave, I. N.: Analysis and modelling of gravity- and piston coring based on soil mechanics, Mar. Geol., 199, 181–204, https://doi.org/10.1016/S0025-3227(03)00127-0, 2003.
Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., and Moriya, K.: Characterizing photosymbiosis in modern planktonic foraminifera, Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, 2019.
Takahashi, K. and Be, A. W. H.: Planktonic foraminifera: factors controlling sinking speeds, Deep-Sea Res. Pt. A, 31, 1477–1500, https://doi.org/10.1016/0198-0149(84)90083-9, 1984.
Thunell, R. C.: Distribution of recent planktonic foraminifera in surface sediments of the Mediterranean Sea, Mar. Micropaleontol., 3, 147–173, https://doi.org/10.1016/0377-8398(78)90003-8, 1978.
Toucanne, S., Mulder, T., Schönfeld, J., Hanquiez, V., Gonthier, E., Duprat, J., Cremer, M., and Zaragosi, S.: Contourites of the Gulf of Cadiz: A high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50 000 years, Palaeogeogr. Palaeocl., 246, 354–366, https://doi.org/10.1016/j.palaeo.2006.10.007, 2007.
Warn-Varnas, A., Sellschopp, J., Haley, P. J., Leslie, W. G., and Lozano, C. J.: Channel of Sicily water masses, Dynam. Atmos. Oceans, 29, 437–469, https://doi.org/10.1016/S0377-0265(99)00014-7, 1999.
Wilke, I., Meggers, H., and Bickert, T.: Depth habitats and seasonal distributions of recent planktonic foraminifers in the Canary Islands region (29° N) based on oxygen isotopes, Deep-Sea Res. Pt. I, 56, 89–106, https://doi.org/10.1016/j.dsr.2008.08.001, 2009.
Wolfteich, C. M.: Sattelite-derived sea surface temperature, mesoscale variability, and foraminiferal production in the North Atlantic, MSc, MIT and WHOI, Cambridge, MS, 91 pp., http://hdl.handle.net/1721.1/17355, 1994.
Wu, H., Liu, N., Peng, J., Ge, Y., and Kong, B.: Analysis and modelling on coring process of deep-sea gravity piston corer, J. Eng., 2020, 900–905, https://doi.org/10.1049/joe.2020.0077, 2020.
Zarkogiannis, S. D., Iwasaki, S., Rae, J. W. B., Schmidt, M. W., Mortyn, P. G., Kontakiotis, G., Hertzberg, J. E., and Rickaby, R. E. M.: Calcification, Dissolution and Test Properties of Modern Planktonic Foraminifera From the Central Atlantic Ocean, Front. Mar. Sci., 9, 864801, https://doi.org/10.3389/fmars.2022.864801, 2022.
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of...
Altmetrics
Final-revised paper
Preprint