Articles | Volume 7, issue 5
https://doi.org/10.5194/bg-7-1543-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-7-1543-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Plankton in the open Mediterranean Sea: a review
I. Siokou-Frangou
Hellenic Centre for Marine Research, 46.7 km Athens-Sounion ave P. O. Box 712, 19013 Anavyssos, Greece
U. Christaki
CNRS, UMR 8187, 62930 Wimereux, France
Université Lille, Nord de France, France
Université du Littoral Côte d'Opale, Laboratoire d'Océanologie et de Géosciences, 32 avenue Foch, 62930 Wimereux, France
M. G. Mazzocchi
Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
M. Montresor
Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
M. Ribera d'Alcalá
Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
D. Vaqué
Instituto de Ciencias del Mar ICM, CSIC, Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
A. Zingone
Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
Related subject area
Biodiversity and Ecosystem Function: Marine
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Composite calcite and opal test in Foraminifera (Rhizaria)
Influence of oxygen minimum zone on macrobenthic community structure in the northern Benguela Upwelling System: a macro-nematode perspective
Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community towards heterotrophy
Contrasting carbon cycling in the benthic food webs between a river-fed, high-energy canyon and an upper continental slope
A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment
Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows
Planktic foraminifera assemblage composition and flux dynamics inferred from an annual sediment trap record in the Central Mediterranean Sea
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Viability of coastal fish larvae under ocean alkalinity enhancement: from organisms to communities
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
This article is included in the Encyclopedia of Geosciences
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
This article is included in the Encyclopedia of Geosciences
Said Mohamed Hashim, Beth Wangui Waweru, and Agnes Muthumbi
Biogeosciences, 21, 2995–3006, https://doi.org/10.5194/bg-21-2995-2024, https://doi.org/10.5194/bg-21-2995-2024, 2024
Short summary
Short summary
The study investigates the impact of decreasing oxygen in the ocean on macrofaunal communities using the BUS as an example. It identifies distinct shifts in community composition and feeding guilds across oxygen zones, with nematodes dominating dysoxic areas. These findings underscore the complex responses of benthic organisms to oxygen gradients, crucial for understanding ecosystem dynamics in hypoxic environments and their implications for marine biodiversity and sustainability.
This article is included in the Encyclopedia of Geosciences
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
This article is included in the Encyclopedia of Geosciences
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
This article is included in the Encyclopedia of Geosciences
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
This article is included in the Encyclopedia of Geosciences
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
This article is included in the Encyclopedia of Geosciences
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José A. Flores, Anna Sanchez Vidal, Irene Llamas Cano, and Francisco J. Sierro
EGUsphere, https://doi.org/10.5194/egusphere-2023-3101, https://doi.org/10.5194/egusphere-2023-3101, 2024
Short summary
Short summary
The Mediterranean Sea is considered a climate change hotspot. Documenting planktic foraminifera population is crucial. In the Sicily Strait, fluxes are higher during winter and positively linked with chlorophyll-a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
This article is included in the Encyclopedia of Geosciences
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
This article is included in the Encyclopedia of Geosciences
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
EGUsphere, https://doi.org/10.5194/egusphere-2024-286, https://doi.org/10.5194/egusphere-2024-286, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as carbon dioxide removal technology for climate change mitigation. With experiments on single species and species communities, we show that fish larvae can be resilient to the resulting perturbation of seawater. Larvae may hence recruit successfully and continue to support fisheries production in regions of OAE. Our findings for fish and marine food webs help to establish an environmentally safe operating space for this ocean-based solution.
This article is included in the Encyclopedia of Geosciences
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
This article is included in the Encyclopedia of Geosciences
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024, https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Short summary
In the deep sea, the interaction between benthic fauna (tracemakers) and substrate can be preserved as traces (i.e. lebensspuren), which are common features of seafloor landscapes, rendering them promising proxies for inferring biodiversity from marine images. No general correlation was observed between traces and benthic fauna. However, a local correlation was observed between specific stations depending on unknown tracemakers, tracemaker behaviour, and lebensspuren morphotypes.
This article is included in the Encyclopedia of Geosciences
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
This article is included in the Encyclopedia of Geosciences
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
This article is included in the Encyclopedia of Geosciences
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
This article is included in the Encyclopedia of Geosciences
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
This article is included in the Encyclopedia of Geosciences
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
This article is included in the Encyclopedia of Geosciences
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
This article is included in the Encyclopedia of Geosciences
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
This article is included in the Encyclopedia of Geosciences
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
This article is included in the Encyclopedia of Geosciences
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
This article is included in the Encyclopedia of Geosciences
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
This article is included in the Encyclopedia of Geosciences
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
This article is included in the Encyclopedia of Geosciences
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
This article is included in the Encyclopedia of Geosciences
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
This article is included in the Encyclopedia of Geosciences
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
This article is included in the Encyclopedia of Geosciences
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
This article is included in the Encyclopedia of Geosciences
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
This article is included in the Encyclopedia of Geosciences
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
This article is included in the Encyclopedia of Geosciences
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
This article is included in the Encyclopedia of Geosciences
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
This article is included in the Encyclopedia of Geosciences
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
This article is included in the Encyclopedia of Geosciences
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
This article is included in the Encyclopedia of Geosciences
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
This article is included in the Encyclopedia of Geosciences
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
This article is included in the Encyclopedia of Geosciences
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
This article is included in the Encyclopedia of Geosciences
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
This article is included in the Encyclopedia of Geosciences
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
This article is included in the Encyclopedia of Geosciences
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
This article is included in the Encyclopedia of Geosciences
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
This article is included in the Encyclopedia of Geosciences
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
This article is included in the Encyclopedia of Geosciences
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
This article is included in the Encyclopedia of Geosciences
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
This article is included in the Encyclopedia of Geosciences
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
This article is included in the Encyclopedia of Geosciences
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
This article is included in the Encyclopedia of Geosciences
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
This article is included in the Encyclopedia of Geosciences
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
This article is included in the Encyclopedia of Geosciences
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
This article is included in the Encyclopedia of Geosciences
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
This article is included in the Encyclopedia of Geosciences
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
This article is included in the Encyclopedia of Geosciences
Cited articles
Acinas, S., Anton, J., and Rodriguez-Valera, F.: Diversity of Free-Living and Attached Bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA, FEMS Microbiol. Ecol., 65, 514–522, 1999.
Acinas, S., Rodr{\'i}guez-Valera, F., and Pedr{ó}s-Ali{ó}, C.: Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA, Appl. Environ. Ecol., 24, 27–40, 1997.
Agostini, V. and Bakun, A.: ‘Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus), Fish. Oceanogr., 11, 129–142, 2002.
Alcaraz, M.: Summer zooplankton metabolism and its relations to primary production in the Western Mediterranean, edited by: Minas, J. H. and Nival, P., Oc{é}anographie p{é}lagique m{é}diterran{é}enne, Oceanol. Acta SP 9, 185–191, 1988.
Alcaraz, M.: Vertical distribution of zooplankton biomass during summer stratification in the Western Mediterranean, Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16–21 September 1984, 135–143, 1985.
Alcaraz, M., Calbet, A., Estrada, M., Marras{é}, C., Saiz, E., and Trepat, I.: Physical control of zooplankton communities in the Catalan Sea, Prog. Oceanogr., 74, 294–312, 2007.
Alcaraz, M., Saiz, E., and Estrada, M.: Excretion of ammonia by zooplankton and its potential contribution to nitrogen requirements for primary production in the Catalan Sea (NW Mediterranean), Mar. Biol., 119, 69–76, 1994.
Alldredge, A.L.: Discarded appendicularian houses as sources of food, surface habitats and particulate organic matter in planktonic environments, Limnol. Oceanogr., 21, 14–23, 1976.
Alonso, M.D., Rodriguez, J.J., and Borrego, J.: Characterization of marine bacteriophages isolated from the Alboran Sea (Western Mediterranean), J. Plankton Res., 24, 1079–1087, 2002.
Andersen, V.: Salp and pyrosomid blooms and their importance in biogeochemical cycles, in: The Biology of Pelagic Tunicates, edited by: Bone, Q., Oxford University Press, New York, 125–137, 1998.
Andersen, V., Gubanova, A., Nival, P., and Ruellet, T.: Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2. Vertical distributions and migrations, J. Plankton Res., 23, 243–261, 2001b.
Andersen, V., Devey, C., Gubanova, A., Picheral, M., Melnikov, V., Tsarin, S., and Prieur, L.: Vertical distributions of zooplankton across the Almeria Oran frontal zone (Mediterranean Sea), J. Plankton Res., 26, 275–293, 2004.
Andersen, V., Goutx, M., Prieur, L., and Dolan, J. R.: Short-scale temporal variability of physical, biological and biogeochemical processes in the NW Mediterranean Sea: an introduction, Biogeosciences, 6, 453–461, 2009.
Andersen, V., Nival, P., Caparroy, P., and Gubanova, A.: Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 1. Abundance and specific composition, J. Plankton Res., 23, 227–242, 2001a.
Angel, M.V.: Marine Planktonic Ostracods: Keys and Notes for Identification of the Species, in: Synopsis of the British Fauna (New Series), edited by: Kermack, D. M. and Barnes, R. S. K., and Crothers, J. H., vol. 48, Shrewsbury for the Linnean Society of London and The Estuarine and Coastal Sciences Association by the Field Studies Council, London, p. 239, 1993.
Antoine, D., Morel, A., and André, J.: Algal pigment distribution and primary production in the eastern Mediterranean as derived from Coastal Zone Color Scanner observations, J. Geophys. Res., 100, 16193–16209, 1995.
Arin, L., Mor{á}n, X. A. G., and Estrada, M.: Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): short term variability related to mesoscale hydrodynamics, J. Plankton Res., 24, 1019–1033, 2002.
Artale, V., Astraldi, M., Buffoni, G., and Gasparini, G. P.: Seasonal variability of gyre-scale circulation in the northern Tyrrhenian Sea, J. Geophys. Res., 99, 14127–14137, 1994.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo, A.: The Adriatic Sea general circulation, J. Phys. Oceanogr., 27, 1515–1532, 1997.
Astraldi, M., Conversano, F., Civitarese, G., Gasparini, G. P., Ribera d'Alcal{á}, M., and Vetrano, A.: Water mass properties and chemical signatures in the central Mediterranean region, J. Mar. Syst., 33–34, 155–177, 2002.
Bacha, M. and Amara, R.: Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean), Estuar. Coast. Shelf Sci., 85, 257–264, 2009.
Banse, K.: Zooplankton: pivotal role in the control of ocean production, ICES J. Mar. Sci., 52, 265–277, 1995.
Barale, V., Jaquet, J.M., and Ndiaye, M.: Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998–2003), Remote Sens. Env., 112, 3300–3313, 2008.
Barlow, R. G., Mantoura, R. F. C., Cummings, D. G., and Fileman, T. W.: Pigment chemotaxonomic distributions of phytoplankton during summer in the western Mediterranean, Deep-Sea Res. Pt. II, 44, 833–850, https://doi.org/10.1016/S0967-0645(96)00089-6, 1997.
Barquero, S., Cabal, J.A., Anad{ó}n, R., Fern{á}ndez, E., Varela, M., and Bode, A.: Ingestion rates of phytoplankton by copepod size fractions on a bloom associated with an off-shelf front off NW Spain, J. Plankton Res., 20, 957–972, 1998.
Benovi{ć}, A., Luči{ć}, D., Onofri, V., Batisti{ć}, M., and Njire, J.: Bathymetric distribution of medusae in the open waters of the Middle and South Adriatic Sea during spring 2002, J. Plankton Res., 27, 79–89, 2005.
Bergametti, G.: Atmospheric input to the western Mediterranean Sea: geochemical and meterological aspects, Ph.D. thesis, Universit{é} Paris. 7, France, 302 pp., 1987.
Berland, B. R., Bonin, D. J., and Maestrini, S. Y.: Azote ou phosphore? Considerations sur le "paradoxe nutrionnel" de la mer M{é}diterran{é}e., Oceanol. Acta, 3, 135–142, 1980.
Berland, B. R., Burlakova, Z., Georgieva, L., Izmestieva, M., Kholodov, V., Krupatkina, D., Maestrini, S., and Zaika, V.: Phytoplancton estival de la Mer du Levant, biomasse et facteurs limitants, Production et Relation Trophique dans les Ecosystemes Marins IFREMER Act. Coll., 5, 61–83, 1987.
Berman, T., Townsend, D. W., El Sayed, S. Z., Trees, G. C., and Azov, Y.: Optical transparency, chlorophyll and primary productivity in the Eastern Mediterranean near the Israeli Coast, Oceanol. Acta, 7, 367–372, 1984.
Bernard, C. and Rassoulzadegan, F.: Seasonal variations of mixotrophic ciliates in the northwest Mediterranean Sea, Mar. Ecol.-Prog. Ser., 108, 295–301, 1994.
Bethoux, J. P.: Oxygen consuption, new production, vertical advection and environmental evolution in the Mediterranean Sea, Deep-Sea Res., 36, 769–780, 1989.
Bethoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., and Ruiz-Pino, D.: Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change, Mar. Chem., 63, 155–169, 1998.
Bianchi, C.N.: Biodiversity issues for the forthcoming tropical Mediterranean Sea, Hydrobiologia, 580, 7–21, 2007.
Bianchi, C. N. and Morri, C.: Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research, Mar. Pollut. Bull., 40, 367–376, 2000.
Bianchi, F., Boldrin, A., Civitarese, G., Del Negro, P., Giordani, P., Malaguti, A., Socal, G., Rabitti, S., and Turchetto, M.: Biogenic particulate matter and primary productivity in the Southern Adriatic and Northern Ionian seas, in: 4th MTP-Workshop MATER., vol. Abstracts Volume, 120–121, Les Presses Litteraires, Perpignan (France), 1999.
Bignami, F., B{ö}hm, E., D'Acunzo, E., D'Archino, R., and Salusti, E.: On the dynamics of surface cold filaments in the Mediterranean Sea, J. Mar. Syst., 74, 429–442, 2008.
Billen, G., Servais, P., and Becquevort, S.: Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom up or top-down control?, Hydrobiologia, 207, 37–42, 1990.
Boldrin, A., Miserocchi, S., Rabitti, S., Turchetto, M., Balboni, V., and Socal, G.: Particulate matter in the southern Adriatic and Ionian Sea: characterisation and downward fluxes, J. Mar. Syst., 33–34, 389–410, 2002.
Bone, Q.: The Biology of Pelagic Tunicates, Oxford University Press, Oxford, 1998.
Bongiorni, L., Magagnini, M., Armeni, M., Noble, R., and Danovaro, R.: Viral production decay rates and life strategies along a trophic gradient in the North Adriatic Sea, Appl. Environ. Microb., 71, 6644–6650, 2005.
Bonnet, D., Richardson, A., Harris, R., Hirst, A., Beaugrand, G., Edwards, M., Ceballos, S., Diekman, R., Lopez-Urrutia, A., Valdes, L., Carlotti, F., Molinero, J. C., Weikert, H., Greve, W., Lucic, D., Albaina, A., Yahia, N. D., Umani, S. F., Miranda, A., dos Santos, A., Cook, K., Robinson, S., and de Puelles, M. L. F.: An overview of Calanus helgolandicus ecology in European waters, Prog. Oceanogr., 65, 1–53, 2005.
Boras, J.A., Sala, M.M., V{á}zquez-Dom{\'i}nguez, E., Weinbauer, M.G., and Vaqu{é}, D.: Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean), Environ. Microbiol., 11, 1181–1193, 2009.
Borme, D., Tirelli, V., Brandt, S.B., Fonda Umani, S., and Arneri, E.: Diet of Engraulis encrasicolus in the northern Adriatic Sea (Mediterranean): ontogenetic changes and feeding selectivity, Mar. Ecol.-Progr. Ser., 302, 193–209, 2009.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, GB1005, https://doi.org/10.1029/2003GB002034, 2004.
B{ö}ttger-Schnack, R.: Vertical structure of small metazoan plankton, especially non-calanoid copepods, II. Deep Eastern Mediterranean (Levantine Sea), Oceanol. Acta, 20, 399–419, 1997.
Boucher, J.: Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration, Deep-Sea Res., 29, 953–965, 1984.
Boucher, J., and Thiriot, A.: Zooplancton et micronecton estivaux des deux cents premiers m{è}tres en M{é}diterran{é}e Occidentale, Mar. Biol., 15, 47–56, 1972.
Brautovic, I., Bojanic, N., Batistic, M., and Caric, M.: Annual variability of planktonic ostracods (Crustacea) in the South Adriatic Sea, Mar. Ecol.-Evolut. Persp., 27, 124–132, 2006.
Bricaud, A., Bosc, E., and Antoine, D.: Algal biomass and sea surface temperature in the Mediterranean Basin. Intercomparison of data from various satellite sensors, and implications for primary production estimates, Remote Sens. Environ., 81, 163–178, 2002.
Brunet, C., Casotti, R., Vantrepotte, V., and Conversano, F.: Vertical variability and diel dynamics of picophytoplankton in the Strait of Sicily, Mediterranean Sea, in summer, Mar. Ecol.-Prog. Ser., 346, 15–26, 2007.
Brunet, C., Casotti, R., Vantrepotte, V., Corato, F., and Conversano, F.: Picophytoplankton diversity and photoacclimation in the Strait of Sicily (Mediterranean Sea) in summer. I. Mesoscale variations, Aquat. Microb. Ecol., 44, 127–141, 2006.
Bustillos-Guzm{á}n, J., Claustre, H., and Marty, J. C.: Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal north-western Mediterranean Sea, Mar. Ecol.-Prog. Ser., 124, 247–258, 1995.
Calbet, A.: Mesozooplankton grazing impact on primary production: direct and indirect trophic interactions in the oligotrophic open-ocean, Limnol. Oceanogr., 46, 1824–1830, 2001.
Calbet, A. and Saiz, E.: The ciliate-copepod link in marine ecosystems, Aquat. Microb. Ecol., 38, 157–167, 2005.
Calbet, A., Alcaraz, M., Saiz, E., Estrada, M., and Trepat, I.: Planktonic herbivorous food webs in the Catalan Sea (NW Mediterranean): temporal variability and comparison of indices of phyto-zooplankton coupling based on state variables and rate processes, J. Plankton Res., 18, 2329–2347, 1996.
Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., and Duarte, C. M.: Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions, J.Plankton Res., 23, 319–331, 2001.
Calbet, A., Carlotti, F., and Gaudy, R.: The feeding ecology of the copepod Centropages typicus (Kroyer), Prog. Oceanogr., 72, 137–150, 2007.
Calbet, A., Saiz, E., and Alcaraz, M.: Copepod egg production in the NW Mediterranean: effects of winter environmental conditions, Mar. Ecol.-Prog. Ser., 237, 173–184, 2002.
Casotti, R., Landolfi, A., Brunet, C., D'Ortenzio, F., Mangoni, O., Ribera d'Alcal{á}, M., and Denis, M.: Composition and dynamics of the phytoplankton of the Ionian Sea (eastern Mediterranean), J. Geophys. Res., 108, 8116, https://doi.org/10.1029/2002JC001541, 2003.
Castellani, C., Irigoien, X., Harris, R., and Lampitt, R.: Feeding and egg production of Oithona similis in the North Atlantic, Mar. Ecol.-Prog. Ser., 288, 173–182, 2005.
Cerino, F. and Zingone, A.: Decrypting cryptomonads: a challenge for molecular taxonomy, The Systematic Association Special Volume Series, vol. 75, 197–214, CRC Press, Boca Raton, 2007.
Champalbert, G.: Characteristics of zooplankton standing stock and communities in the western Mediterranean: relation to hydrology, Sci. Mar., 60(Suppl. 2), 97–113, 1996.
Cho, B.C. and Azam, F.: Biogeochemical significance of bacterial biomass in the ocean's euphotic zone, Mar. Ecol.-Prog. Ser., 63, 253–259, 1990.
Christaki, U., Gaudy, R., and Kerambrun, P.: Study of the effects of migratory zooplankton on microbial populations in surface waters of the N. W. Mediterranean, J. Exp. Mar. Biol. Ecol., 225, 173–183, 1998.
Christaki, U., Van Wambeke, F. V., and Bianchi, M.: Heterotrophic bacterial growth and substrate utilization in the oligotrophic Eastern Mediterranean (Aegean Sea), Mediterr. Mar. Sci., 4, 23–39, 2003.
Christaki, U., Van Wambeke, F., Christou, E. D., Conan, P., and Gaudy, R.: Food web structure variability in the surface layer, at a fixed station influenced by the North Western Mediterranean Current, Hydrobiologia, 321, 145–153, 1996.
Christaki, U., Van Wambeke, F., and Dolan, J. R.: Nanoflagellates (mixotrophs, heterotrophs, and autotrophs) in the oligotrophic eastern Mediterranean: standing stocks, bacterivory and relationships with bacterial production, Mar. Ecol.-Prog. Ser., 181, 297–307, 1999.
Christaki, U., Giannakourou, A., Van Wambeke, F., and Gregor{\`i}, G.: Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea, J. Plankton Res., 23, 1297–1310, 2001.
Christaki, U., Van Wambeke, F., Pagou, K., Gotsis-Skretas, O., Asimakopoulou, G., Giannakourou, A., Siokou-Fragou, I., Christou, E., Zervoudaki, T., Gregor{\`i}, G., and Likoussis, V.: Planktonic food web stucture and dynamics in the Mediterranean – Longitudinal trends, in: 8th Symposium on Aquatic Microbial Ecology (SAME 8), Taormina, 25–31 October 2002, 2002.
Christensen, J. P., Packard, T. T., Dortch, F. Q., Minas, H. J., Gascard, J. C., Richez, C., and Garfield, P. C.: Carbon oxidation in the deep Mediterranean Sea: Evidence for dissolved organic carbon source, Global Biogeochem. Cy., 3, 315–335, 1989.
Christou, E., Siokou-Frangou, I., Mazzocchi, M. G., and Aguzzi, L.: Mesozooplankton abundance in the Eastern Mediterranean during spring 1992, Rapports et Proces-Verbaux des Reunions – Commission Internationale pour l'Exploration Scientifique de la Mer M{é}diterran{é}e., 35, 410–411, 1998.
Civitarese, G., and Gacic, M.: Had the Eastern Mediterranean Transient an impact on the new production in the Southern Adriatic?, Geophys. Res. Lett., 28, 1627–1630, 2001.
Claustre, H., and Marty, J. C.: Specific phytoplantkon biomasses and their relation to primary production in the Tropical North Atlantic, Deep-Sea Res. Pt. I, 42, 1475–1493, 1995.
Claustre, H., Kerherve, P., Marty, J. C., Prieur, L., Videau, C., and Hecq, J.H.: Phytoplankton dynamics associated with a geostrophic front: ecological and biogeochemical implications, J. Mar. Res., 52, 711–742, 1994.
Coma, R., Ribes, M., Gili, J.-M., and Zabala, M.: Seasonality in coastal benthic ecosystems, Trends Ecol. Evol., 15, 448–453, 2000.
Conan, P., Pujo-Pay, M., Raimbault, P., and Leveau, M.: Variabilit{é} hydrologique et biologique du golfe du Lion. II. Productivit{é} sur le bord interne du courant, Oceanol. Acta, 21, 767–781, 1998.
Coombs, S. H., Giovanardi, O., Halliday, N. C., Franceschini, G., Conway, D. V. P., Manzueto, L., Barrett, C. D., and McFadzen, I. R. B.: Wind mixing, food availability and mortality of anchovy larvae Engraulis encrasicolus in the northern Adriatic Sea, Mar. Ecol.-Progr. Ser., 248, 221–235, 2003.
Corinaldesi, C., Crevatin, E., Del Negro, P., Marini, M., Russo, A., Fonda-Umani, S., and Danovaro, R.: Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis, Appl. Environ. Ecol., 69, 2664–2673, 2003.
Cornils, A., Niehoff, B., Richter, C., Al-Najjar, T., and Schnack-Schiel, S.B.: Seasonal abundance and reproduction of clausocalanid copepods in the northern Gulf of Aqaba (Red Sea), J. Plankton Res., 29, 57–70, 2007.
Crise, A., Allen, J. I., Baretta, J., Crispi, G., Mosetti, R., and Solidoro, C.: The Mediterranean pelagic ecosystem response to physical forcing, Progr. Oceanogr., 44, 219–243, 1999.
Cros, L. and Fortuno, J.-M.: Atlas of northwestern Mediterranean coccolithophores, Sci. Mar., 66, 7–182, 2002.
Cruzado, A., and Vel{á}squez, Z.R.: Nutrients and phytoplankton in the Gulf of Lions, northwestern Mediterranean, Cont. Shelf Res., 10, 931–942, 1990.
Cruzado, A., Vel{á}squez, Z., P{é}rez, M. C., Baham{ó}n, N., Grimaldo, N. S., and Ridolfi, F.: Nutrient fluxes from the Ebro River and subsequent across-shelf dispersion, Cont. Shelf Res., 22, 349–360, 2002.
Dafner, E. V., Semp{é}r{é}, R., and Bryden, H. L.: Total organic carbon distribution and budget through the Strait of Gibraltar in April 1998, Mar. Chem., 73, 223–252, 2001.
Dallot, S., Goy, J., and Carre, C.: Peuplements de carnivores planctoniques g{é}latineux et structures productives en M{é}diterran{é}e occidentale, edited by: Minas, J. H. and Nival, P., Oc{é}anographie p{é}lagique m{é}diterran{é}enne, Oceanol. Acta SP 9, 193–209, 1988.
Decembrini, F., Caroppo, C., and Azzaro, M.: Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean), Deep-Sea Res. Pt. II, 56, 687–699, 2009.
Degobbis, D., and Gilmartin, M.: Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea, Oceanol. Acta, 13, 31–45, 1990.
Deibel, D. and Lee, S. H.: Retention efficiency of submicrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoeffeni, Mar. Ecol.-Prog. Ser., 35, 243–250, 1992.
del Giorgio, P. A., Cole, J. J., and Cimbleris, A.: Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems, Nature, 385, 148–151, 1997.
Delgado, M., Latasa, M., and Estrada, M.: Variability in the size-fractionated distribution of the phytoplankton across the Catalan front of the north-west Mediterranean, J. Plankton Res., 14, 753–771, 1992.
Di Capua, I. and Mazzocchi, M. G.: Population structure of the copepods Centropages typicus and Temora stylifera in different environmental conditions, ICES J. Mar. Sci., 61, 632–644, 2004.
Dolan, J. R. and Marras{é}, C.: Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, N. W. Mediterranean, Deep-Sea Res. Pt. I, 42, 1965–1987, 1995.
Dolan, J.R., Claustre, H., Carlotti, F., Plouvenez, S., and Moutin, T.: Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean, Deep-Sea Res. Pt.I, 49, 1217–1232, 2002.
Dolan, J. R., Thingstad, F. T., and Rassoulzadegan, F.: Phosphate transfer between microbial size-fractions in Villefranche Bay (N. W. Mediterranean Sea), France in autumn 1992, Ophelia, 41, 71–85, 1995.
Dolan, J.R., Vidussi, F., and Claustre, H.: Planktonic ciliates in the Mediterranean Sea: longitudinal trends, Deep-Sea Res. Pt. I, 46, 2025–2039, 1999.
D'Ortenzio, F. and Ribera d'Alcal{á}, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, 2009.
D'Ortenzio, F., Iudicone, D., Montegut, C. D., Testor, P., Antoine, D., Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophys. Res. Lett., 32, L12605, https://doi.org/10.1029/2005GL022463, 2005.
D'Ortenzio, F., Ragni, M., Marullo, S., and Ribera d'Alcal{á}, M.: Did biological activity in the Ionian Sea change after the Eastern Mediterranean Transient? Results from the analysis of remote sensing observations, J. Geophys. Res., 108, 8113, https://doi.org/10.1029/2002JC001556, 2003.
Duarte, C. M., Agust{\'i}, S., Kennedy, H., and Vaqu{é}, D.: The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral, Prog. Oceanogr., 44, 245–270, 1999.
Ducklow, H.: Factors regulating bottom up control of bacterial biomass in open ocean plankton communities, Arch. Hydrobiol. Beitr. Ergebn. Limnol., 37, 207–217, 1992.
Dugdale, R. C. and Wilkerson, F. P.: Nutrient sources and primary production in the eastern Mediterranean, Oceanol. Acta, Special Issue, 179–184, 1988.
Dur{ó}, A. and Saiz, E.: Distribution and trophic ecology of chaetognaths in the western Mediterranean in relation to an inshore-offshore gradient, J. Plankton Res., 22, 339–361, 2000.
Ediger, D. and Yilmaz, A.: Characteristics of deep chlorophyll maximum in the North-eastern Mediterranean with respect to environmental conditions, J. Mar. Syst., 9, 291–303, 1996.
Estrada, M.: Phytoplankton assemblages across a NW Mediterranean front: changes from winter mixing to spring stratification, in: Homage to Ramon Margalef; or, Why there such pleasure in studying nature, edited by: Ros, J. and Pratt, N., Oecologia Aquatica, vol. 10, Universitat de Barcelona, Barcelona, 157–185, 1991.
Estrada, M.: Primary production in the northwestern Mediterranean, Sci. Mar., 60(Suppl. 2), 55–64, 1996.
Estrada, M. and Salat, J.: Phytoplankton assemblages of deep and surface water layers in a Mediterranean frontal zone, Sci. Mar., 53(2–3), 203–214, 1989.
Estrada, M., Marras{é}, C., Latasa, M., Berdalet, E., Delgado, M., and Riera, T.: Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean, Mar. Ecol.-Prog. Ser., 92, 289–300, 1993.
Estrada, M., Varela, R., Salat, J., Cruzado, A., and Arias, E.: Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean), J. Plankton Res., 21, 1–20, 1999.
Estrada, M., Vives, F., and Alcaraz, M.: Life and the Productivity of the Open Sea, in: Western Mediterranean, edited by: Margalef, R., Key Environments, Pergamon Press, Oxford, 148–197, 1985.
Fern{á}ndez, M., Bianchi, M., and Van Wambeke, F.: Bacterial biomass, heterotrophic production and utilization of dissolved organic matter photosynthetically produced in the Almeria-Oran front, J. Mar. Syst., 5, 313–325, 1994.
Fern{á}ndez de Puelles, M.-L., Pinot, J.-M., and Valencia, J.: Seasonal and interannual variability of zooplankton community in waters off Mallorca island (Balearic Sea, Western Mediterranean): 1994–1999, Oceanol. Acta, 26, 673–686, 2003.
Fern{á}ndez de Puelles, M.-L., Valencia, J., Jansa, J., and Morillas, A.: Hydrographic characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001, ICES, J. Mar. Sci., 61, 654–666, 2004.
Fern{á}ndez de Puelles, M.-L., Alemany, F., and Jansa, J.: Zooplankton time-series in the Balearic Sea (Western Mediterranean): Variability during the decade 1994–2003, Prog. Oceanogr., 74, 329–354, 2007.
Fiala, M., Sournia, A., Claustre, H., Marty, J. C., Prieur, L., and Vetion, G.: Gradients of phytoplankton abundance, composition and photosynthetic pigments across the Almeria-Oran front (SW Mediterranean sea), J. Mar. Syst., 5, 223–233, 1994.
Fiorentini, L., Caddy, J. F., and De Leiva, J. I.: Long-and short-term trends of Mediterranean fishery resources, Studies and Reviews no. 69, Food and Agriculture Organization fo the United Nations, 72 pp., 1997.
Fonda Umani, S.: Pelagic production and biomass in the Adriatic Sea, Sci. Mar., 60(Suppl. 2), 65–77, 1996.
Fonda Umani, S., and de Olaz{á}bal, A.: Tuscan Northern Tyrrhenian netzooplankton Autumn 1986. Rapp.Comm. int. Mer M{é}dit, 31, 235, 1988.
Forcada, J., Aguilar, A., Hammond, P., Pastor, X., and Aguilar, R.: Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean sea during the summer, J. Zool., 238, 23–34, 1996.
Foulon, E., Not, F., Jalabert, F., Cariou, T., Massana, R., and Simon, N.: Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes, Environ. Microbiol., 10, 2433–2443, 2008.
Fragopoulu, N., Siokou-Frangou, I., Christou, E., and Mazzocchi, M. G.: Patterns of vertical distribution of Pseudocalanidae and Paracalanidae (copepoda) in pelagic waters (0 to 300 m) of the Eastern Mediterranean Sea, Crustaceana, 74, 49–68, 2001. \bibitem[{Frontier et al.(2004)Frontier, Pichod-Viale, Lepr{ê}tre, Davoult, and Luczak}] {FrontieretalEcosystemes2004}Frontier, S., Pichod-Viale, D., Lepr{ê}tre, A., Davoult, D., and Luczak, C.: {\'E}cosyst{è}mes. Structure, Fonctionemment, {\'E}volution, Dunod, Paris, France, 549 pp., 2004.
Gacic, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., and Mauri, E.: The open-ocean convection in the southern Adriatic: A controlling mechanism of the spring phytoplankton bloom, Cont. Shelf Res., 22, 1897–1908, 2002.
Gasol, J. M.: A framework for the assessment of top-down vs. bottom-up control of heterotrophic nanoflagellates abundance, Mar. Ecol.-Prog. Ser., 113, 291–300, 1994.
Gasol, J. M., del Giorgio, P., and Duarte, C. M.: Biomass distribution in marine planktonic communities, Limnol. Oceanogr., 42, 1353–1363, 1997.
Gasol, J. M., Doval, M., Pinhassi, J., Calderon-Paz, J., Guixa-Boixareu, N., Vaqu{é}, D., and Pedr{ó}s-Ali{ó}, C.: Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean, Mar. Ecol.-Prog. Ser., 164, 107–124, 1998.
Gaudy, R.: Features and peculiarities of zooplankton communities from the Western Mediterranean, in: Mediterranean Marine Ecosystem, edited by: Moraitou-Apostolopoulou, M. and Kiortsis, V., Plenum Press, New York, London, 1985.
Gaudy, R. and Champalbert, G.: Space and time variations in zooplankton distribution south of Marseille, Oceanol. Acta, 21, 793–802, 1998.
Gaudy, R. and Youssara, F.: Variations of zooplankton metabolism and feeding in the frontal area of the Alboran Sea (western Mediterranean) in winter, Oceanol. Acta, 26, 179–189, 2003.
Gaudy, R., Youssara, F., Diaz, F., and Raimbault, P.: Biomass, metabolism and nutrition of zooplankton in the Gulf of Lions (NW Mediterranean), Oceanol. Acta, 26, 357–372, 2003.
Ghiglione, J.F., Larcher, M., and Lebaron, P.: Spatial and temporal scales of variation in bacterioplankton community structure in the NW Mediterranean Sea, Aquat. Microb. Ecol., 40, 229–240., 2005.
Ghiglione, J.F., Palacios, C., Marty, J. C., Mével, G., Labrune, C., Conan, P., Pujo-Pay, M., Garcia, N., and Goutx, M.: Role of environmental factors for the vertical distribution (0–1000 m) of marine bacterial communities in the NW Mediterranean Sea, Biogeosciences, 5, 1751–1764, 2008.
Goericke, R.: Response of phytoplankton community structure and taxon-specific growth rates to seasonally varying physical forcing in the Sargasso Sea off Bermuda, Limnol. Oceanogr., 43, 921–935, 1998.
Goffart, A., Hecq, J.-H., and Legendre, L.: Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over the last two decades: a response to changing climate?, Mar. Ecol.-Prog. Ser., 236, 45–60, 2002.
Goldman, J.: Potential role of large oceanic diatoms in new primary production, Deep-Sea Res. Pt. I, 40, 159–168, 1993.
G{ó}mez, F.: Endemic and Indo-Pacific plankton in the Mediterranean Sea: A study based on dinoflagellate records, J. Biogeogr., 33, 261–270, 2006.
Gonz{á}lez, H. E. and Smetacek, V.: The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material, Mar. Ecol.-Prog. Ser., 113, 233–246, 1994.
Gordon, N., Angel, D., Neori, A., Kress, N., and Kimor, B.: Heterotrophic dinoflagellates with symbiotic cyanobacteria and nitrogen limitation in the Gulf of Aqaba, Mar. Ecol.-Prog. Ser., 107, 83–88, 1994.
Gorsky, G. and Palazzoli, I.: Aspect de la biologie de l'appendiculaire Oikopleura dioica Fol. 1872 (Chordata: Tunicata), Oceanis, 15, 39–49, 1989.
Gotsis-Skretas, O., Pagou, K., Moraitou-Apostolopoulou, M., and Ignatiades, L.: Seasonal horizontal and vertical variability in primary production and standing stocks of phytoplankton and zooplankton in the Cretan Sea and the Straits of the Cretan Arc (March 1994–January 1995), Prog. Oceanogr., 44, 625–649, 1999.
Gould, R. J. and Wiesenburg, D.: Single species dominance in a subsurface phytoplankton concentration at a Mediterranean Sea front, Limnol. Oceanogr., 35, 211–220, 1990.
Granata, T., Estrada, M., Zika, U., and Merry, C.: Evidence for enhanced primary production resulting from relative vorticity induced upwelling in the Catalan Current, Sci. Mar., 68(S1), 113–119, 2004.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Lo{ÿ}e-Pilot, M. D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., and Ziveri, P.: The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea, Progr. Oceanogr., 44, 147–190, 1999.
Guixa-Boixereu, N., Lysnes, K., and Pedr{ó}s-Ali{ó}, C.: Viral lysis and bacterivory during a phytoplankton bloom in a coastal water microcosm, Appl. Environ. Ecol., 65, 1949–1958, 1999{a}.
Guixa-Boixereu, N., Vaqu{é}, D., Gasol, J., and Pedr{ó}s-Ali{ó}, C.: Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system, Aquat. Microb. Ecol., 19, 205–213, 1999{b}.
Hagstr{ö}m, A., Azam, F., Andersson, J., Wikner, J., and Rassoulzadegan, F.: Microbial loop in an oligotrophic marine ecosystem: Possible role of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol.-Prog. Ser., 49, 171–178, 1988.
Head, R. N., Medina, G., Huskin, I., Anadon, R., and Harris, R. P.: Phytoplankton and mesozooplankton distribution and composition during transects of the Azores Subtropical Front, Deep-Sea Res. Pt. II, 49, 4023–4034, 2002.
Herut, B., Almogi-Labin, A., Jannink, N., and Gertman, I.: The seasonal dynamics of nutrient and chlorophyll a concentrations on the SE Mediterranean shelf slope, Oceanol. Acta, 23, 771–782, 2000.
Hopkins, T.: Estuarine Transport Processes, in: Physical Processes in the Mediterranean Basins, 269–310, University of South Carolina Press, Columbia, 1978.
Hure, J., Ianora, A., and Scotto di Carlo, B.: Spatial and temporal distribution of copepod communities in the Adriatic Sea, J. Plankton Res., 2, 295–316, 1980.
Hwang, J.-S. and Turner, J.: Behaviour of cyclopoid, harpacticoid, and calanoid copepods from coastal waters of Taiwan, P. S. Z. N. I.: Mar. Ecol., 16, 207–216, 1995.
Iermano, I., Liguori, G., Iudicone, D., Buongiorno Nardelli, B., Colella, S., Zingone, A., Saggiomo, V., and Ribera d'Alcal{á}, M.: Dynamics of short-living filaments and their relationship with intense rainfall events and river flows, in: European Geosciences Union, General Assembly 2009, Wien, Abstract: EGU2009-8508, 2009.
Ignatiades, L.: The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean, J. Plankton Res., 20, 985–995, 1998.
Ignatiades, L., Georgopoulos, D., and Karydis, M.: Description of the phytoplanktonic community of the oligotrophic waters of the SE Aegean Sea (Mediterranean), Mar. Ecol. PSZNI, 16, 13–26, 1995.
Ignatiades, L., Gotsis-Skretas, O., Pagou, K., and Krasakopoulou, E.: Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea, J. Plankton Res., 31, 411–428, 2009.
Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., and Gotsis-Skretas, O.: Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean), J. Mar. Syst., 36, 11–28, 2002.
Isari, S., Ramfos, A., Somarakis, S., Koutsikopoulos, C., Kallianiotis, A., and Fragopoulu, N.: Mesozooplankton distribution in relation to hydrology of the Northeastern Aegean Sea, Eastern Mediterranean, J. Plankton Res., 28, 241–255, 2006.
Jenkinson, I. R.: Halosphaera viridis, Ditylum brightwellii and other phytoplankton in the north-eastern North Atlantic in spring: sinking, rising and relative abundance, Ophelia, 26, 233–253, 1986.
Karageorgis, A., Gardner, W., Georgopoulos, D., Mishonov, A., Krasakopoulou, E., and Anagnostou, C.: Particle dynamics in the Eastern Mediterranean Sea: A synthesis based on light transmission, PMC, and POC archives (1991–2001), Deep-Sea Res. Pt. I, 55, 177–202, 2008.
Karner, M. and Rassoulzadegan, F.: Extracellular enzyme activity: Indications for high short-term variability in a coastal marine ecosystem, Microb. Ecol., 30, 143–156, 1995.
Katara, I., Illian, J., Pierce, G. J., Scott, B., and Wang, J.: Atmospheric forcing on chlorophyll concentration in the Mediterranean, Hydrobiologia, 612, 33–48, 2008.
Katechakis, A., Stibor, H., Sommer, U., and Hansen, T.: Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean), J. Plankton Res., 26, 589–603, 2004.
Kehayias, G.: Quantitative aspects of feeding of chaetognaths in the eastern Mediterranean pelagic waters, J. Mar. Biol. Assoc. UK, 83, 559–569, 2003.
Kemp, A., Pike, J., Pearce, R., and Lange, C.: The "Fall dump" – a new perspective on the role of a "shade flora" in the annual cycle of diatom production and export flux, Deep-Sea Res. Pt. II, 47, 2129–2154, 2000.
Kimor, B. and Wood, E.: A plankton study in the eastern Mediterranean Sea, Mar. Biol., 29, 321–333, 1975.
Kiørboe, T. and Sabatini, M.: Scaling of fecundity, growth and development in marine planktonic copepods, Mar. Ecol.-Prog. Ser., 120, 285–298, 1995.
Klein, B., Roether, W., Kress, N., Manca, B. B., Ribera d'Alcal{á}, M., Souvermezoglou, E., Theocharis, A., Civitarese, G., and Luchetta, A.: Accelerated oxygen consumption in Eastern Mediterranean deep waters following the recent changes in thermohaline circulation, J. Geophys. Res., 108(C9), 8107, https://doi.org/10.1029/2002JC001454, 2003.
Koppelmann, R. and Weikert, H.: Spatial and temporal distribution patterns of deep-sea mesozooplankton in the eastern Mediterranean – indications of a climatically induced shift?, Mar. Ecol.-Evol. Persp., 28, 259–275, 2007.
Kouvarakis, G., Mihalopoulos, N., Tselepides, A., and Stavrakakis, S.: On the importance of atmospheric inputs of inorganic nitrogen species on the productivity of the eastern Mediterranean Sea, Global Biogeochem. Cy., 15, 805–817, 2001.
Krom, M. D., Herut, B., and Mantoura, R. F. C.: Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation, Limnol. Oceanogr., 49, 1582–1592, 2004.
Krom, M. D., Kress, N., Brenner, S., and Gordon, L.: Phosphorous limitation of primary productivity in the Eastern Mediterranean Sea, Limnol. Oceanogr., 36, 424–432, 1991.
Krom, M. D., Wassmann, P., and Zohary, T.: On the nature of phosphorus cycling and limitation in the Eastern Mediterranean, in: Deep-Sea Res. Pt.II, vol. 52, Pergamon, Oxford, 2005.
Kršini{ć}, F.: Vertical distribution of protozoan and microcopepod communities in the South Adriatic Pit, J. Plankton Res., 20, 1033–1060, 1998.
Kršinic, F. and Grbec, B.: Some distributional characteristics of small zooplankton at two stations in the Otranto Strait (Eastern Mediterranean), Hydrobiologia, 482, 119–136, 2002.
La Ferla, R., Azzaro, M., Civitarese, G., and Ribera d'Alcal{á}, M.: Distribution patterns of carbon oxidation in the Eastern Mediterranean Sea: evidence of changes in remineralization processes, J. Geophys. Res., 108, 8111, https://doi.org/10.1029/2002JC001602, 2003.
Latasa, M., Estrada, M., and Delgado, M.: Plankton-pigment relationships in the Northwestern Mediterranean during stratification, Mar. Ecol.-Prog. Ser., 88, 61–73, 1992.
Latasa, M., Moran, X.A.G., Scharek, R., and Estrada, M.: Estimating the carbon flux through main phytoplankton groups in the Northwestern Mediterranean, Limnol. Oceanogr., 50,1447–1458, 2005.
Lef{è}vre, D., Minas, H. J., Minas, M., Robinson, C., Williams, P.J. Le B, and Woodward, E. M. S.: Review of gross community production, primary production, net community production and dark community respiration in the Gulf of Lions, Deep-Sea Res. Pt. II, 44, 801–832, 1997.
Legendre, L. and Rassoulzadegan, F.: Plankton and nutrient dynamics in marine waters, Ophelia, 41, 153–172, 1995.
Lem{é}e, R., Rochelle-Newall, E., Van Wambeke, F., Pizay, M., Rinaldi, P., and Gattuso, J.: Seasonal variation of bacterial production, respiration and growth efficiency in the open NW MediterraneanSea, Aquat. Microb. Ecol., 29, 227–237, 2002.
L{é}vy, M., Memery, L., and Andr{é}, J. M.: Simulation of primary production and export fluxes in the Northwestern Mediterranean Sea, J. Mar. Res., 56, 197–238, 1998a.
L{é}vy, M., Memery, L., and Madec, G.: The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model, J. Mar. Syst., 16, 7–21, 1998b.
Li, W.: Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean, Nature, 419, 154–157, 2002.
Li, W., Zohary, T., Yacobi, Y. Z., and Wood, A. M.: Ultraphytoplankton in the eastern Mediterranean Sea: towards deriving phytoplankton biomass from flow cytometric measurements of abundance, fluorescence and light scatter, Mar. Ecol.-Prog. Ser., 102, 79–87, 1993.
Licandro, P. and Icardi, P.: Basin scale distribution of zooplankton in the Ligurian Sea (north-western Mediterranean) in late autumn, Hydrobiologia, 617, 17–40, 2009.
Lipiatou, E., Heussner, S., Mosetti, R., Tintor{é}, J., and Tselepides, A.: Progress in Oceanography of the Mediterranean Sea, Progress in Oceanography, Pergamon, Oxford, vol. 44, 1999.
Lohrenz, S., Wiesenburg, D., Depalma, I., Johnson, K., and Gustafson, D.: Interrelationships among primary production, chlorophyll, and environmental conditions in frontal regions of the western Mediterranean Sea, Deep-Sea Res., 35, 793–810, 1988.
Longhurst, A. R.: Ecological Geography of the Sea, 2nd edn., Elsevier Science Publishers, New York, 2006.
Longhurst, A. R. and Harrison, W.: The biological pump: Profiles of plankton production and consumption in the upper ocean, Prog. Oceanogr., 22, 47–123, 1989.
L{ó}pez, S., Tur{ó}n, X., Montero, E., Palac{\'i}n, C., Duarte, C. M., and Tarjuelo, I.: Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling, Mar. Ecol.-Prog. Ser., 172, 239–251, 1998.
Luči{ć}, D., Benovi{ć}, A., Batisti{ć}, M., Njire, J., and Onofri, V.: Calycophorae (Siphonophora) in the open waters of the central and southern Adriatic Sea during spring 2002, J. Mar. Biol. Assoc., UK, 85, 495–501, 2005.
Ludwig, W., Probst, J.-L., and Kempe, S.: Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cy., 10, 23–41, 1996.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?, Progr. Oceanogr., 80, 199–217, 2009.
Lynn, D. and Small, E.: Phylum Ciliophora, in: An Illustrated Guide to the Protozoa. Society of Protozoologists, 371–656, Allen Press Inc., Kansas, USA, 2000.
Mac{\'i}as, D., Navarro, G., Bartual, A., Echevarr{\'i}a, F., and Huertas, I. E.: Primary production in the Strait of Gibraltar: Carbon fixation rates in relation to hydrodynamic and phytoplankton dynamics, Estuarine, Coast. Shelf Sci., 83, 197–210, 2009.
Magagnini, M., Corinaldesi, C., Monticelli, L. S., De Domenico, E., and Danovaro, R.: Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea, Deep-Sea Res. Pt. I, 54, 1209–1220, 2007.
Magazz{ù}, G. and Decembrini, F.: Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review, Aquat. Microb. Ecol., 9, 97–104, 1995.
Malanotte-Rizzoli, P., Manca, B., Ribera d'Alcal{á}, M., Theocharis, A., Bergamasco, A., Bregant, D., Budillon, G., Civitarese, G., Georgopoulos, D., Korres, G., Lascaratos, A., Michelato, A., Sansone, E., Scarazzato, P., and Souvermezoglou, E.: A synthesis of the Ionian Sea hydrography, Circulation and water mass pathways during POEM phase I, Prog. Oceanogr., 39, 153–204, 1997.
Malej, A., Mozetic, P., Malacic, V., Terzic, S., and Ahel, M.: Phytoplankton responses to freshwater inputs in a small semi-enclosed gulf (Gulf of Trieste, Adriatic Sea), Mar. Ecol.-Prog. Ser., 120, 111–121, 1995.
Malinverno, E., Ziveri, P., and Corselli, C.: Coccolithophorid distribution in the Ionian Sea and its relationship to eastern Mediterranean circulation during late fall to early winter 1997, J. Geophys. Res.-Oceans, 108, 8115, https://doi.org/10.1029/2002JC001346, 2003.
Mann, K. H. and Lazier, J. R.: Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 3rd edn., Wiley-Blackwell, Inc., 2006.
Mara, P., Mihalopoulos, N., Gogou, A., Daehnke, K., Schlarbaum, T., Emeis, K. C., and Krom, M.: Isotopic composition of nitrate in wet and dry atmospheric deposition on Crete in the eastern Mediterranean Sea, Global Biogeochem. Cy., 23, GB4002, https://doi.org/10.1029/2008GB003395, 2008.
Margalef, R.: R{ô}le des cili{é}s dans le cycle de la vie p{é}lagique en M{é}diterran{é}e, Rapports et Proc{è}s-Verbaux des R{é}unions – Commission Internationale pour l'Exploration Scientifique de la Mer M{é}diterran{é}e, 17, 511–512, 1963.
Margalef, R.: Composici{ó}n espec{\'i}fica del fitoplancton de la costa catalano-levantina (Mediterr{á}neo occidental) en 1962–1967, Investigacion Pesquera, 33, 345–380, 1969.
Margalef, R.: Western Mediterranean, Key Environments, Pergamon Press, Oxford, 363 pp., 1985.
Margalef, R.: Ecologia, Ediciones Omega, Barcelona, 951 pp., 1986.
Margalef, R.: Tenim idea de com funciona la Mediterr{à}nia?, Arxius de les seccions de ciències Institut d'Estudis Catalans, 100, 127–136, 1995.
Margalef, R. and Castellv{\'i}, J.: Fitoplancton y produccion primaria de la costa catalana, de julio de 1966 a julio de 1967, Investigacion Pesquera, 31, 491–502, 1967.
Marie, D., Zhu, F., Balague, V., and Vaulot, D.: Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR), FEMS Microb. Ecol., 55, 403–415, 2006.
Marino, D.: Biogeografia del fitoplancton mediterraneo, Oebalia, XVI, 61–71, 1990.
Markaki, Z., Lo{ÿ}e-Pilot, M.-D., Violaki, K., Benyahya, L., and Mihalopoulos, N.: Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio, Mar. Chem., in press, https://doi.org/10.1016/j.marchem.2008.10.005, 2008.
Markaki, Z., Oikonomou, K., Kocak, M., Kouvarakis, G., Chaniotaki, A., Kubilay, N., and Mihalopoulos, N.: Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: Spatial and temporal variability and its role in seawater productivity, Limnol. Oceanogr., 48, 1557–1568, 2003.
Marty, J. C., Goutx, M., Guigue, C., Leblond, N., and Raimbault, P.: Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea, Biogeosciences, 6, 887–899, 2009.
Marty, J. C. and Chiaverini, J.: Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 49, 2017–2030, 2002.
Marty, J. C., Chiaverini, J., Pizay, M., and Avril, B.: Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999), Deep-Sea Res. Pt. II, 49, 1965–1985, 2002.
Massana, R., Balagu{é}, V., Guillou, L., and Pedr{ó}s-Ali{ó}, C.: Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches, FEMS Microb. Ecol., 50, 231–243, 2004.
Mazzocchi, M.G., and Paffenh{ö}fer, G.–A.: First observations on the biology of Clausocalanus furcatus (Copepoda: Calanoida), J. Plankton Res., 20, 331–342, 1998.
Mazzocchi, M. G. and Paffenh{ö}fer, G.-A.: Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus, J. Plankton Res., 21, 1501–1518, 1999.
Mazzocchi, M. G. and Ribera d'Alcal{á}, M.: Recurrent patterns in zooplankton structure and succession in a variable coastal environment, ICES J. Mar. Sci., 52, 679–691, 1995.
Mazzocchi, M. G., Christou, E., Di Capua, I., Fernandez de Puelles, M., Fonda Umani, S., Molinero, J., Nival, P., and Siokou-Frangou, I.: Temporal variability of Centropages typicus in the Mediterranean Sea over seasonal-to-decadal scales, Prog. Oceanogr., 72, 214–232, 2007.
Mazzocchi, M. G., Christou, E. D., Fragopoulu, N., and Siokou-Frangou, I.: Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): I. General aspects, Oceanol. Acta, 20, 521–535, 1997.
Mazzocchi, M. G., Nervegna, D., D'Elia, G., Di Capua, I., Aguzzi, L., and Boldrin, A.: Spring mesozooplankton communities in the epipelagic Ionian Sea in relation to the Eastern Mediterranean Transient, J. Geophys. Res., 108, 8114, https://doi.org/10.1029/2002JC001640, 2003.
Mc Gehee, D., Demer, D., and Warren, J.: Zooplankton in the Ligurian Sea: Part I. Characterization of their dispersion, relative abundance and environment during summer 1999, J. Plankton Res., 26, 1409–1418, 2004.
McDonald, S. M., Sarno, D., Scanlan, D., and Zingone, A.: Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle, Aquat. Microb. Ecol., 50, 75–89, 2007.
M{é}nard, F., Dallot, S., Thomas, G., and Braconnot, J.: Temporal fluctuations of two mediterranean salp populations from 1967 to 1990, Analysis of the influence of environmental variables using a Markov chain model, Mar. Ecol.-Prog. Ser., 104, 139–152, 1994.
Mercado, J. M., Ram{\'i}rez, T., Cort{é}s, T., Sebasti{á}n, T., and Vargas-Y{á}{\ e}z, M.: Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Albor{á}n Sea (SW Mediterranean Sea), Sci. Mar., 69, 451–465, https://doi.org/10.3989/scimar.2005.69n4451, 2005.
Mével, G., Vernet, M., Goutx, M., and Ghiglione, J. F.: Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m), Biogeosciences, 5, 1573–1586, 2008.
Meybeck, M., D{ü}rr, H., Roussennac, S., and Ludwig, W.: Regional seas and their interception of riverine fluxes to oceans, Mar. Chem., 106, 301–325, 2007. \bibitem[{Migon et al.(1989)Migon, Copin-Mont{é}gut, El{é}gant, and Morelli, J.}] MigonetalOA1989 Migon, C., Copin-Mont{é}gut, G., El{é}gant, L., and Morelli, J.: Etude de l'apport atmosph{é}rique en sels nutritifs au milieu c{ô}tier m{é}diterran{é}en et implications biog{é}ochimiques, Oceanol. Acta, 12, 187–191, 1989.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20, 423–442, 1999.
Minas, H. J., Minas, M., Coste, B., Nival, P., and Bonin, M. C.: New vs. regenerated production in the Northwestern Mediterranean Sea, edited by: Minas, H. J. and Nival, P., Oc{é}anographie p{é}lagique m{é}diterran{é}enne, Oceanol. Acta., SP 9, 155–162, 1988.
Minas, H. J. and Nival, P.: Oc{é}anographie p{é}lagique m{é}diterran{é}enne, Oceanologica Acta, SP 9, 1988.
Minutoli, R. and Guglielmo, L.: Zooplankton respiratory Electron Transport System (ETS) activity in the Mediterranean Sea: spatial and diel variability, Mar. Ecol.-Prog. Ser., 381, 199–211, https://doi.org/10.3354/meps07862, 2009.
Miquel, J., Fowler, S., Rosa, J. L., and Buat-Menard, P.: Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea, Deep-Sea Res., 41, 243–261, 1994.
Misic, C. and Fabiano, M.: Ectoenzymatic activity and its relationship to chlorophyll a and bacteria in the Gulf of Genoa (Ligurian Sea, NW Mediterranean), J. Mar. Syst., 60, 193–206, 2006.
Moesender, M., Winter, C., and Herndl, G.: Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints, Limnol. Oceanogr., 46, 95–107, 2001.
Molinero, J. C., Ibanez, F., Souissi, S., Bosc, E., and Nival, P.: Surface patterns of zooplankton spatial variability detected by high frequency sampling in the NW Mediterranean, Role of density fronts, J. Mar. Syst., 69, 271–282, 2008.
Monaco, A.: The Mediterranean Targeted Project MATER – a multiscale approach of the variability of a marine system, in: Journal of Marine Systems, vol. 33–34, Elsevier Science Publishers, New York, 2002.
Moore, L., Rocap, G., and Chisholm, S.: Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes, Nature, 393, 464–467, 1998.
Moraitou-Apostolopoulou, M. and Kiortsis, V.: Mediterranean Marine Ecosystems, in: NATO conference Series. I, Ecology, vol. 8, Plenum Press, New York, 1985.
Moran, M. A. and Miller, W. L.: Resourceful heterotrophs make the most of light in the coastal ocean, Nature Rev. Microbiol., 5, 792–780, 2007.
Moran, X. A. G. and Estrada, M.: Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean), Mar. Ecol.-Prog. Ser., 212, 53–67, 2001.
Moran, X. A. G., Estrada, M., Gasol, J. M., and Pedr{ó}s-Ali{ó}, C.: Dissolved primary production and the strength of phytoplankton–bacterioplankton coupling in contrasting marine regions, Microb. Ecol., 44, 217–223, 2002.
Moran, X. A. G. and Estrada, M.: Winter pelagic photosynthesis in the NW Mediterranean, Deep-Sea Res. Pt. I, 52, 1806–1822, 2005.
Moran, X. A. G., Taupier-Letage, I., V{á}zquez-Dom{\'i}nguez, E., Ruiz, S., Arin, L., Raimbault, P., and Estrada, M.: Physical-biological coupling in the Algerian Basin (SW Mediterranean): influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton, Deep-Sea Res. Pt. I, 48, 405–437, 2001.
Morel, A. and André, J.: Pigment distribution and primary production in the western Mediterranean as derived and modeled from Coastal Zone Color Scanner observations, J. Geophys. Res., 96, 12685–12698, 1991.
Morel, A., Antoine, D., Babin, M., and Dandonneau, Y.: Measured and modeled primary production in the Northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill, Deep-Sea Res. Pt. I, 43, 1273–1304, 1996.
Morote, E., Olivar, M. P., Villate, F., and Uriarte, I.: A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny, ICES J. Mar. Sci., 67, in press, 2010.
Moutin, T., Raimbault, P., Golterman, H. L., and Coste, B.: The input of nutrients by the Rh{ô}ne river into the Mediterranean Sea: recent observations and comparison with earlier data, Hydrobiologia, 373, 237–246, 1998.
Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrient availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J. Mar. Syst., 33, 273–288, 2002.
Navarro, N., Agust\'{i}, S., and Duarte, C. M.: Plankton metabolism and dissolved organic carbon use in the Bay of Palma, N. W. Mediterranean Sea, Limnol. Oceanogr., 37, 47–54, 2004.
Nincevic, Z., Marasovic, I., and Kuspilic, G.: Deep chlorophylla maximum at one station in the middle Adriatic Sea, J. Mar. Biol. Assoc., UK, 82, 9–19, 2002.
Nival, P., Nival, S., and Thiriot, A.: Influence des conditions hivernales sur les productions phyto-et zooplanctoniques en M{é}diterran{é}e Nord-Occidentale. V., Biomasse et production zooplanctonique–relations phyto-zooplancton, Mar. Biol., 31, 249–270, 1975.
Ohtsuka, S., Kubo, N., Okada, M., and Gushima, K.: Attachment and feeding of pelagic copepods on larvacean houses, J. Oceanogr., 49, 115–120, 1993.
Paffenh{ö}fer, G.-A.: On the relation of structure, perception and activity in marine planktonic copepods, J. Mar. Syst., 15, 457–473, 1998.
Paffenh{ö}fer, G.-A., and Mazzocchi, M. G.: On some aspects of the behaviour of Oithona plumifera (Copepoda: Cyclopoida), J. Plankton Res., 24, 129–135, 2002.
Paffenh{ö}fer, G.-A., and Mazzocchi, M. G.: Vertical distribution of subtropical epiplanktonic copepods, J. Plankton Res., 25, 1139–1156, 2003.
Paffenh{ö}fer, G.-A., Sherr, B. F., and Sherr, E. B.: From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean, Mar. Ecol., 28, 243–253, 2007.
Palomera, I., Olivar, M. P., Salat, J., Sabat{é}s, A., Coll, M., Garc{\'i}a, A., and Morales-Nin, B.: Small pelagic fish in the NW Mediterranean Sea: An ecological review, Progr. Oceanogr., 74, 377–396, 2007.
Pancucci-Papadopoulou, M.-A., Siokou-Frangou, I., Theocharis, A., and Georgopoulos, D.: Zooplankton vertical distribution in relation to hydrology in the NW Levantine and the SE Aegean seas (spring 1986), Oceanol. Acta, 15, 365–381, 1992.
Partensky, F., Hess, W., and Vaulot, D.: Prochlorococcus: a marine photosynthetic prokaryote of global significance, Microbiol. Molec. Biol. Rev., 63, 106–127, 1999.
Pasternak, A., Wassman, P., and Riser, C. W.: Does mesozooplankton respond to episodic P inputs in the Eastern Mediteranean? Deep-Sea Res. Pt. II, 52, 2975–2989, 2005.
Pedr{ó}s-Ali{ó}, C., Calderon-Paz, J., Guixa-Boixereu, N., Estrada, M., and Gasol, J.: Bacterioplankton and phytoplankton biomass and production during summer stratification in the northwestern Mediterranean Sea, Deep-Sea Res. Pt. I, 46, 985–1019, 1999.
Peralba, A.: Niche separation of Clausocalanus species in the Mediterranean Sea and in the Atlantic Ocean, PhD thesis, Open University, 2008.
Peralba, A. and Mazzocchi, M. G.: Vertical and seasonal distribution of eight Clausocalanus species (Copepoda: Calanoida) in oligotrophic waters, ICES J. Mar. Sci., 61, 645–653, 2004.
Peralba, A., Mazzocchi, M. G., and Harris, R. H.: Niche separation of Clausocalanus spp. in the Mediterranean Sea and the Atlantic Ocean, ICES Cooperative Research Report, 300, 51–55, 2010.
Per{é}z, M., Dolan, J., and Fukai, E.: Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods, Mar. Ecol.-Prog. Ser., 155, 89–101, 1997.
Pinardi, N., and Masetti, E.: Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review, Palaeogeogr., Palaeoclimatol., Palaeoecol., 158, 153–173, 2000.
Pinardi, N., Arneri, E., Crise, A., Ravaioli, M., and Zavatarelli, M.: The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea, in: Robinson, A.R., and Brink, K., The Sea, The Global Coastal Ocean, vol. 14B., 1245–1331, 2004.
Pinca, S. and Dallot, S.: Meso- and macrozooplankton composition patterns related to hydrodynamic structures in the Ligurian Sea (Trophos-2 experiment, April–June 1986), Mar. Ecol.-Prog. Ser., 126, 49–65, 1995.
Pitta, P., and Giannakourou, A.: Planktonic ciliates in the oligotrophic Eastern Mediterranean: vertical, spatial distribution and mixotrophy, Mar. Ecol.-Prog. Ser., 194, 269–282, https://doi.org/10.3354/meps194269, 2000.
Pitta, P., Giannakourou, A., and Christaki, U.: Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents, Aquat. Microb. Ecol., 24, 297–311, 2001.
Pitta, P., Stambler, N., Tanaka, T., Zohary, T., Tselepides, A., and Rassoulzadegan, F.: Biological response to P addition in the Eastern Mediterranean Sea: the microbial race against time, Deep-Sea Res. Pt. II, 52, 2961–2974, https://doi.org/10.1016/j.dsr2.2005.08.012, 2005.
Plounevez, S. and Champalbert, G.: Diet, feeding behaviour and trophic activity of the anchovy (Engraulis encrasicolus L.) in the Gulf of Lions (Mediterranean Sea), Oceanol. Acta, 23, 175–192, 2000.
Porumb, F. and Onciu, T.: Recherces sur la biodiversit{é} du zooplancton des eaux m{é}diterran{é}ennes des c{ô}tes de la Libye, Cercetari Mar., 36, 213–236, 2006.
Psarra, S., Tselepides, A., and Ignatiades, L.: Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability, Prog. Oceanogr., 46, 187–204, 2000.
Psarra, S., Zohary, T., Krom, M. D., Mantoura, R. F. C., Polychronaki, T., Stambler, N., Tanaka, T., Tselepides, A., and Thingstad, F. T.: Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean), Deep-Sea Res. Pt. II, 52, 2944–2960, 2005.
Puillat, I., Taupier-Letage, I. and Millot, C.: Algerian Eddies lifetime can near 3 years, J. Mar. Syst., 31, 245–259, 2002.
Pukall, R., Butefuß, D., Fr{ü}ling, A., Rohde, M., Kroppenstedt, R., Burghardt, J., Lebaron, P., Bernard, L., and Stackebrandt, E.: Sulfitobacter mediterraneus sp., Bacteriol., 49, 513–51, 1999.
Rabitti, S., Bianchi, F., Boldrin, A., Da Ros, L., Socal, G., and Totti, C.: Particulate matter and phytoplankton in the Ionian Sea, Oceanol. Acta, 17, 297–307, 1994.
Raimbault, P., Coste, B., Boulhadid, M., and Boudjellal, B.: Origin of high phytoplankton concentration in deep chlorophyll maximum (DCM) in a frontal region of the southwestern Mediterranean Sea (Algerian Current), Deep-Sea Res. Pt. I, 40, 791–804, 1993.
Raimbault, P., Rodier M., and Taupier-Letage, I.: Size fraction of phytoplankton in the Ligurial Sea and the Algerian Basin (Mediterranean Sea): size distribution versus total concentration, Mar. Microb. Food Webs, 3, 1–7, 1988.
Ramfos, A., Isari, S., Somarakis, S., Georgopoulos, D., Koutsikopoulos, C., and Fragopoulu, N.: Mesozooplankton community structure in offshore and coastal waters of the Ionian Sea (eastern Mediterranean) during mixed and stratified conditions, Mar. Biol., 150, 29–44, 2006.
Rasoanarivo, R., Folack, J., Champalbert, G., and Becker, B.: Relations entre les communaut{é}s phytoplanctoniques et l'alimentation des larves de Sardina pilchardus Ealb. dans le golfe de Fos (M{é}diterran{é}e occidentale): influence de la lumi{è}re sur l'activit{é} alimentaire des larves, J. Exp. Mar. Biol. Ecol., 151, 83–92, 1991.
Rassoulzadegan, F.: Evolution annuelle des cili{é}s p{é}lagiques en M{é}diterran{é}e nord-occidentale. Cili{é}s oligotriches "non tintinnides" (Oligotrichina), Ann. Inst. Oceanogr. Paris, 53, 125–134, 1977.
Rassoulzadegan, F.: Dimensions et taux d'ingestion des particules consomm{é}es par un Tintinnide: Favella ehrenbergii (Clap. et Lachm.) J{ö}rg., Cili{é} p{é}lagique, Ann. Inst. Oceanogr. Paris, 54, 17–24, 1978.
Rassoulzadegan, F.: Evolution annuelle des cili{é}s p{é}lagiques en M{é}literran{é}e nord-occidentale, Investigaci{ó}n Pesquera, 43, 417–448, 1979.
Rassoulzadegan, F., and Etienne, M.: Grazing rate of the tintinnid Stenosemella ventricosa (Clap. and Lachm.) J{ö}rg. on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area, Limnol. Oceanogr., 26, 258–270, 1981.
Razouls, C., and Thiriot, A.: Donn{é}es quantitatives du mesoplancton en M{é}diterran{é}e Occidentale (saisons hivernales 1966–1970), Vie Milieu, 23, 209–241, 1973.
Raybaud, V., Nival, P., Mousseau, L., Gubanova, A., Altukhov, D., Khvorov, S., Ibañez, F., and Andersen, V.: Short term changes in zooplankton community during the summer-autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity, Biogeosciences, 5, 1765–1782, 2008.
Revelante, N. and Gilmartin, M.: Temporal succession of phytoplankton in the northern Adriatic, Netherland J. Sea Res., 10, 377–396, 1976.
Riandey, V., Champalbert, G., Carlotti, F., Taupier-Letage, I., and Thibault-Bothac, D.: Zooplankton distribution related to the hydrodynamic features in the Algerian Basin (western Mediterranean Sea) in summer 1997, Deep-Sea Res. Pt. I, 52, 2029–2048, 2005.
Ribera d'Alcal{á}, M. and Mazzocchi, M. G.: Ecological physiognomy of the Eastern Mediterranean, in: The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, edited by: Malanotte-Rizzoli, P. and Eremeev, V., NATO Science Series, Environmental Security, vol. 51, 49–64, Kluwer Academic Publisher, Dordrecht, 1999.
Ribera d'Alcal{á}, M., Civitarese, G., Conversano, F., and Lavezza, R.: Nutrient fluxes and ratios hint at overlooked processes in the Mediterranean sea, J. Geophys. Res., 108, 8106, https://doi.org/10.1029/2002JC001250, 2003.
Ribera d'Alcal{á}, M., Conversano, F., Corato, F., Licandro, P., Mangoni, O., Marino, D., Mazzocchi, M. G., Modigh, M., Montresor, M., Nardella, M., Saggiomo, V., Sarno, D., and Zingone, A.: Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends, Sci. Mar., 68(Suppl. 1), 65–83, 2004.
Rinaldi, E., Buongiorno Nardelli, B., Zambianchi, E., Santoleri, R., and Poulain, P.-M.: Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea, J. Geophys. Res., in press, 2009.
Robarts, R., Zohary, T., Waiser, M., and Yacobi, Y.: Bacterial abundance, biomass, and production in relation to phytoplankton biomass in the Levantine Basin of the southeastern Mediterranean Sea, Mar. Ecol. Prog. Ser., 137, 273–281, 1996.
Robinson, A. and Golnaraghi, M.: Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, NATO Asi Series C., vol. 419, chap, The physical and dynamical oceanography of the Eastern Mediterranean sea, 255–306, Kluwer Academic Publisher, 1994. \bibitem[{Rodr{\'i}guez-Mart{\'i}nez et al.(2009)Rodr{\'i}guez-Mart{\'i}nez, Labrenz, M. del Campo, Forn, J{ü}rgens,and Massana}] RodriguezetalEM2009 Rodr{\'i}guez-Mart{\'i}nez, R., Labrenz, M., del Campo, J., Forn, I., J{ü}rgens, K., and Massana, R.: Distribution of the uncultured protist MAST-4 in the Indian Ocean, Drake Passage and Mediterranean Sea assessed by real-time quantitative PCR, Environ. Microbiol., 11, 397–408, 2009. \bibitem[{Roether et al.(1996)Roether, Manca, Klein, Bregant, Georgopoulos, Beitzel, Kovacevic, and Luchetta}] RoetheretalSci1996 Roether, W., Manca, B.B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Kovacevic, V., and Luchetta, A.: Recent changes in Eastern Mediterranean deep waters, Science, 271, 333–335, 1996.
Roether, W., and Well, R.: Oxygen consumption in the Eastern Mediterranean, Deep-Sea Res. Pt. I, 48, 1535–1551, 2001.
Rossi, S., Sabat{é}s, A., Latasa, M., and Reyes, E.: Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean, J. Plankton Res., 28, 551–562, 2006.
Sabat{é}s, A., Gili, J., and Pag{é}s, F.: Relationship between zooplankton distribution, geographic characteristics and hydrographic patterns off the Catalan coast (Western Mediterranean), Mar. Biol., 103, 153–159, 1989.
Sabat{é}s, A., Olivar, M. P., Salat, J., Palomera, I., and Alemany, F.: Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean, Progr. Oceanogr., 74, 355–376, 2007.
Saiz, E. and Alcaraz, M.: Pigment gut contents of copepods and deep phytoplankton maximum in the Western Mediterranean, J. Plankton Res., 12, 665–672, 1990.
Saiz, E., Calbet, A., Irigoien, X., and Alcaraz, M.: Copepod egg production in the western Mediterranean: response to food availability in oligotrophic environments, Mar. Ecol.-Prog. Ser., 187, 179–189, 1999.
Saiz, E., Rodriguez, V., and Alcaraz, M.: Spatial distribution and feeding rates of Centropages typicus in relation to frontal hydrographic structures in the Catalan Sea (Western Mediterranean), Mar. Biol., 112, 49–56, 1992.
Saiz, E., Calbet, A., Atienza, D., and Alcaraz, M.: Feeding and production of zooplankton in the Catalan Sea (NW Mediterranean), Prog. Oceanogr., 74, 313–328, 2007.
Sala, M., Peters, F., Gasol, J. M., Pedr{ó}s-Ali{ó}, C., Marras{é}, C., and Vaqu{é}, D.: Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean, Aquat. Microb. Ecol., 27, 47–56, 2002.
Sandroni, V., Raimbault, P., Migon, C., Garcia, N., and Gouze, E.: Dry atmospheric deposition and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic surface waters, Deep-Sea Res. Pt. I, 54, 1859–1870, 2007.
Schauer, M., Massana, R., and Pedr{ó}s-Ali{ó}, C.: Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting, FEMS Microb. Ecol., 33, 51–59, 2000.
Schauer, M., Balagu{è}, V., Pedr{ó}s-Ali{ó}, C., and Massana, R.: Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system, Aquat. Microb. Ecol., 31, 163–174, 2003.
Schlarbaum, T., Mara, P., Mihalopoulos, N., Moebius, J., Struck, U., Emeis, K. C., and Krom, M. D.: N-Isotope ratios of nitrate, dissolved organic nitrogen and particulate nitrogen trace fundamental biogeochemical processes in the E. Mediterranean sea, in: ASLO Aquatic Sciences Meeting 2009, Nice, Abstract Book, 238, 2009.
Scotto di Carlo, B., Ianora, A., Fresi, E., and Hure, J.: Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea, J. Plankton Res., 6, 1031–1056, 1984.
Skoulikidis, N. T. and Gritzalis, K.: Greek river inputs in the Mediterranean. Their intra-annual and inter-annual variations, Fresenius Environ. Bull., 7, 90–95, 1998.
Seguin, G., Errhif, A., and Dallot, S.: Diversity and structure of pelagic copepod populations in the frontal zone of the eastern Alboran Sea, Hydrobiologia, 292–293, 369–377, 1994. \bibitem[{Semp{é}r{é} et al.(2002)Semp{é}r{é}, Panagiotopoulos, Lafont, Marroni, and Van Wambeke, F.}] SempereetalJMS2002 Semp{é}r{é}, R., Panagiotopoulos, C., Lafont, R., Marroni, B., and Van Wambeke, F.: Total organic carbon dynamics in the Aegean Sea, J. Mar. Syst., 33, 355–364, 2002.
Semp{é}r{é}, R., Dafner, E., Van Wambeke, F., Lef{è}vre, D., Magen, C., All{è}re, S., Bruyant, F., Bianchi, M., and Prieur, L.: Distribution and cycling of total organic carbon across the Almeria-Oran Front in the Mediterranean Sea: Implications for carbon cycling in the western basin, J. Geophys. Res., 108, 3361, https://doi.org/10.1029/2002JC001475., 2003.
Sherr, B. F. and Sherr, E. B.: Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea, Mar. Ecol.-Prog. Ser., 352, 187–197, 2007.
Siokou-Frangou, I.: Epipelagic mesozooplankton and copepod grazing along an east-west transect in the Mediterranean Sea, Rapports de la Commission Internationale pour l'Exploration Scientifique de la Mer M{é}diterran{é}e, 37, 439, 2004.
Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E. D., Giannakourou, A., Gotsis, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., and Van Wambeke, F.: Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea), J. Mar. Syst., 33–34, 335–353, 2002.
Siokou-Frangou, I., Christou, E. D., Fragopoulu, N., and Mazzocchi, M. G.: Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): II. Copepod assemblages, Oceanol. Acta, 20, 537–548, 1997.
Siokou-Frangou, I., Gotsis-Skreta, O., Christou, E., and Pagou, K.: Plankton characteristics in the Aegean, Ionian and NW Levantine seas, in: The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, edited by: Malanotte-Rizzoli, P. and Eremeev, V., 205–223, 1999.
Siokou-Frangou, I., Shiganova, T., Christou, E., Kamburska, L., Gubanova, A., Konsulov, A., Musaeva, E., Skryabin, V., and Khoroshilov, V.: Mesozooplankton communities in the Aegean and Black seas: a comparative study, Mar. Biol., 144, 1111–1126, 2004.
Siokou-Frangou, I., Zervoudaki, S., Christou, E. D., Zervakis, V., and Georgopoulos, D.: Variability of mesozooplankton spatial distribution in the North Aegean Sea, as influenced by the Black Sea waters outflow, J. Mar. Syst., 78, 557–575, 2009.
Smalley, G. and Coats, D.: Ecology of red-tide dinoflagellate Ceratium furca: distribution, mixotrophy, and grazing impact on ciliate populations of Chesapeake Bay, J. Eukaryotic Microbiol., 49, 63–73, 2002.
Smetacek, V.: The ocean's veil, Nature, 419, 565, 2002.
Sommer, U., Stibor, H., Katechakis, A., Sommer, F., and Hansen, T.: Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production, Hydrobiologia, 484, 11–20, 2002.
Sournia, A.: La production primaire planctonique en M{é}diterran{é}e; essai de mise à jour, contribution no. 81 of \em Cybium\/, Cooperative Investigations in the Mediterranean, 1973.
Stemmann, L., Gorsky, G., Marty, J. C., Picheral, M., and Miquel, J. C.: Four-year study of large-particle vertical distribution (0–1000 m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux, Deep-Sea Res. Pt. II, 49, 2143–2162, 2002.
Stergiou, K. I., Christou, E. D., and Petrakis, G.: Modelling and forecasting monthly fisheries catches: comparison of regression, univariate and multivariate time series methods, Fish. Res., 29, 55–95, 1997.
Svensen, C., and Kiørboe, T.: Remote prey detection in Oithona similis: hydromechanical versus chemical cues, J. Plankton Res., 22, 1155–1166, 2000.
Svensen, C., and Nejstgaard, J. C.: Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems, J. Plankton Res., 25, 917–926, 2003.
Takahashi, M., and Bienfang, P. K.: Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters, Mar. Biol., 76, 203–211, 1983.
Takahashi, M., and Hori, T.: Abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters, Mar. Biol., 79, 177–186, 1984.
Tanaka, T., Zohary, T., Krom, M. D., Law, C. S., Pitta, P., Psarra, S., Rassoulzadegan, F., Thingstad, F. T., Tselepides, A., Woodward, E. M. S., Flaten, G. A. F., Skjoldal, E. F., and Zodiatis, G.: Microbial community structure and function in the Levantine Basin of the eastern Mediterranean, Deep-Sea Res. Pt. I, 54, 1721–1743, 2007. \bibitem[{Theocharis and Georgopoulos(1993)Theocharis, and Georgopoulos}] TheocharisGeorgopoulosCSR1993 Theocharis, A., and Georgopoulos, D.: Dense water formation over the Samothraki and Limnos Plateaux in the north Aegean Sea (eastern Mediterranean Sea), Cont. Shelf Res., 13, 919–939, 1993. \bibitem[{Theocharis et al.(1999)Theocharis, Balopoulos, Kioroglou, Kontoyiannis, and Iona}] TheocharisetalPO1999 Theocharis, A., Balopoulos, E., Kioroglou, S., Kontoyiannis, H., and Iona, A.: A synthesis of the circulation and hydrography of South Aegean Sea and the Straits of the Cretan Arc, Progr. Oceanogr., 44, 469–509, 1999.
Thibault, D., Gaudy, R., and Le F{è}vre, J.: Zooplankton biomass, feeding and metabolism in a geostrophic frontal area (Almeria-Oran front, western Mediterranean). Significance to pelagic food webs, J. Mar. Syst., 5, 297–311, 1994.
Thingstad, F. T.: A theoretical approach to structuring mechanisms in the pelagic food web, Hydrobiologia, 363, 59–72, 1998.
Thingstad, F. T. and Rassoulzadegan, F.: Nutrient limitations, microbial food webs, and "biological C-pumps": Suggested interactions in a P-limited Mediterranean, Mar. Ecol.-Prog. Ser., 117, 299–306, 1995.
Thingstad, F. T. and Rassoulzadegan, F.: Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea, Prog. Oceanogr., 44, 271–286, 1999.
Thingstad, F. T., Krom, M. D., Mantoura, R. F. C., Flaten, G., Groom, S., Herut, B., Kress, N., Law, C. S., Pasternak, A., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E. M. S., Wexels-Riser, C., Zodiatis, G., and Zohary, T.: Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean, Science, 309, 1068–1071, 2005.
Ticina, V., Vidjak, O., and Kacic, I.: Feeding of adult sprat, Sprattus sprattus during spawning season in the Adriatic Sea, Ital. J. Zool., 67, 307–311, 2000.
Totti, C., Civitarese, G., Acri, F., Barletta, D., Candelari, G., Paschini, E., and Solazzi, A.: Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin, J. Plankton Res., 22, 1735–1756, 2000.
Totti, C., Ghetti, A., Pariante, R., and Hopkins, T.: Biological coherence in the Western Adriatic Coastal Current: phytoplankton assemblages, in: The Adriatic Sea (EUR 18834), edited by: Hopkins, T., Artegiani, A., Cauwet, G., Degobbis, D., and Malej, A., Ecosystems Research Report, vol. 32, 385–400, Portonovo (Ancona), Italy, 1999.
Travers, M.: Le microplancton du Golfe de Marseille: variations de la composition syst{é}matique et de la densit{é} des populations, Tethys, 5, 31–53, 1973.
Tselepides, A. and Polychronaki, T.: The CINCS Project, Progress in Oceanography, vol. 46, Pergamon, Oxford, 2000.
Tudela, S. and Palomera, I.: Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the Northwest Mediterranean Sea during the spawning period, Mar. Ecol.-Progr. Ser., 129, 55–61, 1995.
Tudela, S. and Palomera, I.: Trophic ecology of European anchovy Engraulis encrasicolus in the Catalan Sea (Northwest Mediterranean), Mar. Ecol.-Progr. Ser., 160, 121–134, 1997.
Tunin-Ley, A., Iba{ñ}ez, F., Labat, J.-P., Zingone, A., and Lem{é}e, R.: Phytoplankton biodiversity and NW Mediterranean Sea warming: changes in the dinoflagellate genus Ceratium in the 20th century, Mar. Ecol.-Prog. Ser., 541, 101–112, 2009.
Tunin-Ley, A., Labat, J.-P., Gasparini, S., Mousseau, L., and Lem{é}e, R.: Annual cycle and diversity of species and infraspecific taxa of Ceratium (Dinophyceae) in the Ligurian Sea, northwest Mediterranean, J. Phycol., 43, 1149–1163, https://doi.org/10.1111/j.1529-8817.2007.00417.x, 2007.
Turley, C., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt, E., Tselepides, A., and Van Wambeke, F.: Relationship between primary producers and bacteria in an oligotrophic sea-the Mediterranean and biogeochemical implications, Mar. Ecol.-Prog. Ser., 193, 11–18, 2000.
Uttieri, M., Paffenh{ö}fer, G.-A., and Mazzocchi, M. G.: Prey capture in Clausocalanus furcatus (Copepoda: Calanoida). The role of swimming behaviour, Mar. Biol., 153, 925–935, 2008.
Van Mooy, B. and Devol, A.: Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method, Limnol. Oceanogr., 53, 78–88, 2008.
Van Wambeke, F., Christaki, U., Bianchi, M., Psarra, S., and Tselepides, A.: Heterotrophic bacterial production in the Cretan Sea, Prog. Oceanogr., 46, 215–216, 2000.
Van Wambeke, F., Christaki, U., and Gaudy, R.: Carbon fluxes from the microbial food web to mesozooplankton. An approach in the surface layer of a pelagic area (NW Mediterranean Sea), Oceanol. Acta, 19, 57–66, 1996.
Van Wambeke, F., Christaki, U., Giannakourou, A., Moutin, T., and Souvemerzoglou, E.: Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea, Microb. Ecol., 43, 119–133, 2002.
Van Wambeke, F., Ghiglione, J.-F., Nedoma, J., Mével, G., and Raimbault, P.: Bottom up effects on bacterioplankton growth and composition during summer-autumn transition in the open NW Mediterranean Sea, Biogeosciences, 6, 705–720, 2009.
Van Wambeke, F., Lef{è}vre, D., Prieur, L., Semp{é}r{é}, R., Bianchi, M., Oubelkheir, K., and Bruyant, F.: Distribution of microbial biomass, production, respiration, dissolved organic carbon and factors controlling bacterial production across a geostrophic front (Almeria-Oran, SW Mediterranean Sea), Mar. Ecol.-Prog. Ser., 269, 1–15, 2004.
Vaqu{é}, D., Casamayor, E., and Gasol, J. M.: Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content, Aquat. Microb. Ecol., 25, 163–17, 2001.
Vaulot, D., Partensky, F., Neveux, J., Mantoura, R., and Llewellyn, C. A.: Winter presence of prochlorophytes in surface waters of the northwest Mediterranean Sea, Limnol. Oceanogr., 35, 1156–1164, 1990.
Venrick, E. L.: Floral patterns in the California current system off southern California: 1990–1996, J. Mar. Res., 60, 171–189, 2002.
Verity, P., and Vernet, M.: Microzoplankton grazing, pigments and composition of plankton communities during late spring in two Norwegian fjords, Sarsia, 77, 263–274, 1992.
Videau, C., Sournia, A., Prieur, L., and Fiala, M.: Phytoplankton and primary production characteristics at selected sites in the geostrophic Almeria-Oran front system (SW Mediterranean Sea). J. Mar. Syst., 5, 235–250, 1994.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J. C.: Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter, J. Geophys. Res., 106, 19939–19956, 2001.
Vidussi, F., Marty, J.-C., and Chiavérini, J.: Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea, Deep-Sea Res. Pt. I, 47, 423–445, 2000.
Vilicic, D., Vucak, Z., Skrivanic, A., and Grzetic, Z.: Phytoplankton blooms in the oligotrophic open South Adriatic waters, Mar. Chem., 28, 89–107, 1989.
Villareal, T.: Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the Southwest North Atlantic ocean, Bull. Mar. Sci., 54, 1–7, 1994.
Villareal, T., Woods, S., Moore, J., and Culver-Rymsza, K.: Vertical migration of Rhizosolenia mats and their significance to NO3 – fluxes in the central North Pacific gyre, J. Plankton Res., 18, 1103–1121, 1996.
Vives, F.: Los cop{é}podos planct{ó}nicos del mar Tirreno en septiembre y octubre de 1963, Investigacion Pesquera, 31, 539–583, 1967.
Vives, F., Santamar{\'i}a, G., and Trepat,I.: El zooplancton de los alrededores del estrecho de Gibraltar en Junio-Julio de 1972, Res. Exp. Cient. B/O Cornide, 4, 7–100, 1975.
Volpe, G., Banzon, V. F., Evans, R. H., Santoleri, R., Mariano, A. J., and Sciarra, R.: Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?, Global Biogeochem. Cy., 23, GB3007, https://doi.org/10.1029/2008GB003216, 2009.
Wang, D. P., Vieira, M. E. C., Salat, J., Tintor{é}, J., and La Violette, P. E.: A shelf/slope frontal filament off the northeast Spanish coast, J. Mar. Res., 46, 321–332, 1988.
Wassmann, P., Ypma, J. E., and Tselepides, A.: Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea), Prog. Oceanogr., 46, 241–258, 2000.
Waterbury, J., Watson, S., Guillard, R., and Brand, L.: Wide-spread occurrence of a unicellular, marine planktonic, cyanobacterium, Nature, 277, 293–294, 1979.
Weikert, H. and Trinkaus, S.: Vertical mesozooplankton abundance and distribution in the deep Eastern Mediterranean Sea SE of Crete, J. Plankton Res., 12, 601–628, 1990.
Weikert, H., Koppelmann, R., and Wiegratz, S.: Evidence of episodic changes in deep-sea mesozooplankton abundance and composition in the Levantine Sea (Eastern Mediterranean), J. Mar. Syst., 30, 221–239, 2001.
Weinbauer, M. and Peduzzi, P.: Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes, Aquat. Microb. Ecol., 108, 11–20, 1994.
Weinbauer, M., Brettar, I., and H{ö}fle, M.: Lysogeny and virus induced mortality of bacterioplankton in surface, deep, and anoxic marine waters, Limnol. Oceanogr., 48, 1457–1465, 2003.
Weinbauer, M., Fucks, D., and Peduzzi, P.: Distribution of viruses and dissolved DNA along a coastal gradient in the Northern Adriatic Sea, Appl. Environ. Microbiol., 59, 4074–4082, 1993.
Wiadnyana, N., and Rassoulzadegan, F.: Selective feeding of Acartia clausi and Centropages typicus on microzooplankton, Mar. Ecol.-Prog. Ser., 53, 37–45, 1989.
Wiebe, P. H., Remsen, C. C., and Vaccaro, R. F.: Halosphaera viridis in the Mediterranean Sea: size range, vertical distribution, and potential energy source for deep-sea benthos, Deep-Sea Res., 21, 657–667, 1974.
Yacobi, Y., Zohary, T., Kress, N., Hecht, A., Robarts, R., Waiser, M., Wood, A., and Li, W.: Chlorophyll distribution throughout the southern Mediterranean in relation to the physical structure of the water mass, J. Mar. Syst., 6, 179–190, 1995.
Youssara, F. and Gaudy, R.: Variations of zooplankton in the frontal area of the Alboran Sea (Mediterranean sea) in winter 1997, Oceanol. Acta, 24, 361–376, 2001.
Zakaria, H. Y.: The zooplankton community in Egyptian Mediterranean Waters: A review, Acta Adriatica, 47, 195–206, 2006.
Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean Sea circulation, J. Phys. Oceanogr., 25, 1384–1414, 1995.
Zeev, E., Yogev, T., Man-Aharonovich, D., Kress, N., Herut, B., B{é}j{à}, O., and Berman-Frank, I.: Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea, ISME J., 2, 911–923, 2008.
Zervakis, V., and Georgopoulos, D.: Hydrology and Circulation in the North Aegean (eastern Mediterranean) throughout 1997–1998, Mediterr. Mar. Sci., 3, 7–21, 2002.
Zervoudaki, S., Christou, E. D., Nielsen, T., Siokou-Frangou, I., Assimakopoulou, G., Giannakourou, A., Maar, M., Pagou, K., Krasakopoulou, E., Christaki, U., and Moraitou-Apostolopoulou, M.: The importance of small-sized copepods in a frontal area of the Aegean Sea, J. Plankton Res., 29, 317–338, 2007.
Zervoudaki, S., Nielsen, T., Christou, E., and Siokou-Frangou, I.: Zooplankton distribution and diversity in a frontal area of the Aegean Sea, Mar. Biol. Res., 2, 149–168, 2006.
Ziveri, P., Rutten, A., de Lange, G., Thomson, J., and Corselli, C.: Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments, Palaeogeogr., Palaeoclimatol., Palaeoecol., 158, 175–195, 2000.
Zodiatis, G., Drakopoulos, P., Brenner, S., and Groom, S.: Variability of the Cyprus warm core Eddy during the CYCLOPS project, Deep-Sea Res. Pt. II, 52, 2897–2910, 2005.
Zohary, T. and Robarts, R.: Bacterial numbers, bacterial production, and heterotrophic nanoplankton abundance in a warm core eddy in the Eastern Mediterranean, Mar. Ecol.-Prog. Ser., 84, 133–137, 1992.
Zohary, T., Brenner, S., Krom, M., Angel, D., Li, W., Neori, A., and Zacobi, Z.: Buildup of microbial biomass during deep winter mixing in a Mediterranean warm-core eddy, Mar. Ecol.-Prog. Ser., 167, 47–57, 1998.
Zohary, T., Herut, B., Krom, M. D., Mantoura, R. F. C., Pitta, P., Psarra, S., Rassoulzadegan, F., Stambler, N., Tanaka, T. F., Thingstad, T., and Woodward, E. M. S.: P-limited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean – a microcosm experiment, Deep-Sea Res. Pt. II, 52, 3011–3023, https://doi.org/10.1016/j.dsr2.2005.08.011., 2005.
Zubkov, M. V., and Tarran, G. A.: High bacterivory by the smallest phytoplankton in the North Atlantic Ocean, Nature, 455, 224–227, 2008.
Zupo, V. and Mazzocchi, M. G.: New perspectives in the investigation of food webs in benthic and planktonic coastal ecosystems, Biol. Mar. Medit., 5, 12–26, 1998.
Altmetrics
Final-revised paper
Preprint