Articles | Volume 7, issue 9
https://doi.org/10.5194/bg-7-2851-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-7-2851-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Deep, diverse and definitely different: unique attributes of the world's largest ecosystem
E. Ramirez-Llodra
Institut de Ciències del Mar, CSIC. Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
A. Brandt
Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
R. Danovaro
Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
B. De Mol
GRC Geociències Marines, Parc Científic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain
E. Escobar
Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, A.P. 70-305 Ciudad Universitaria, 04510 Mèxico, México
C. R. German
Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA
L. A. Levin
Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
P. Martinez Arbizu
Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, 26382 Wilhelmshaven, Germany
L. Menot
Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France
P. Buhl-Mortensen
Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
B. E. Narayanaswamy
Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK
C. R. Smith
Department of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 97822, USA
D. P. Tittensor
Department of Biology, Dalhousie University, Halifax, NS, Canada
P. A. Tyler
National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
A. Vanreusel
University Ghent, Marine Biology, Krijgslaan 281, 9000 Ghent, Belgium
M. Vecchione
National Museum of Natural History, NMFS National Systematics Laboratory, Washington, DC, 20013-7012, USA
Related subject area
Biodiversity and Ecosystem Function: Marine
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Composite calcite and opal test in Foraminifera (Rhizaria)
Influence of oxygen minimum zone on macrobenthic community structure in the northern Benguela Upwelling System: a macro-nematode perspective
Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community towards heterotrophy
Contrasting carbon cycling in the benthic food webs between a river-fed, high-energy canyon and an upper continental slope
A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment
Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows
Planktic foraminifera assemblage composition and flux dynamics inferred from an annual sediment trap record in the Central Mediterranean Sea
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Viability of coastal fish larvae under ocean alkalinity enhancement: from organisms to communities
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Said Mohamed Hashim, Beth Wangui Waweru, and Agnes Muthumbi
Biogeosciences, 21, 2995–3006, https://doi.org/10.5194/bg-21-2995-2024, https://doi.org/10.5194/bg-21-2995-2024, 2024
Short summary
Short summary
The study investigates the impact of decreasing oxygen in the ocean on macrofaunal communities using the BUS as an example. It identifies distinct shifts in community composition and feeding guilds across oxygen zones, with nematodes dominating dysoxic areas. These findings underscore the complex responses of benthic organisms to oxygen gradients, crucial for understanding ecosystem dynamics in hypoxic environments and their implications for marine biodiversity and sustainability.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José A. Flores, Anna Sanchez Vidal, Irene Llamas Cano, and Francisco J. Sierro
EGUsphere, https://doi.org/10.5194/egusphere-2023-3101, https://doi.org/10.5194/egusphere-2023-3101, 2024
Short summary
Short summary
The Mediterranean Sea is considered a climate change hotspot. Documenting planktic foraminifera population is crucial. In the Sicily Strait, fluxes are higher during winter and positively linked with chlorophyll-a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
EGUsphere, https://doi.org/10.5194/egusphere-2024-286, https://doi.org/10.5194/egusphere-2024-286, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as carbon dioxide removal technology for climate change mitigation. With experiments on single species and species communities, we show that fish larvae can be resilient to the resulting perturbation of seawater. Larvae may hence recruit successfully and continue to support fisheries production in regions of OAE. Our findings for fish and marine food webs help to establish an environmentally safe operating space for this ocean-based solution.
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024, https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Short summary
In the deep sea, the interaction between benthic fauna (tracemakers) and substrate can be preserved as traces (i.e. lebensspuren), which are common features of seafloor landscapes, rendering them promising proxies for inferring biodiversity from marine images. No general correlation was observed between traces and benthic fauna. However, a local correlation was observed between specific stations depending on unknown tracemakers, tracemaker behaviour, and lebensspuren morphotypes.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cited articles
Albaina, A. and Irigoien, X.: Zooplankton communities and oceanographic structures in a high-resolution grid in the south-eastern corner of the Bay of Biscay, Estuar. Coast. Shelf Sci., 75, 433–446, 2007.
Allen, J. A. and Sanders, H. L.: The zoogeography and diversity of the deep-sea protobranch bivalves of the Atlantic: the epilogue, Prog. Oceanogr., 38, 95–153, 1996.
Amano, K., Little, C. T. S., and Inoue, K.: A new Miocene whale-fall community from Japan, Palaeogeogr. Palaeoecol., 247, 236–242, 2007.
Álverez-Pérez, G., Busquets, P., De Mol, B., Sandoval, N. G., Canals, M., and Casamor, J. L.: Deep-water coral occurrences in the Strait of Gibraltar, in: Cold-water Corals and Ecosystems, edited by: Freiwald, A. and Roberts, M., Springer-Verlag, Berlin, Heidelberg, 207–221, 2005.
AMAP Assessment Report: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, 859 pp., 1998.
Angel, M. V.: The pelagic environment of the open ocean, in: Ecosystems of the World, Vol. 28 Ecosystems of the Deep Ocean, edited by: Tyler, P. A., Elsevier, Amsterdam, 39–80, 2003.
Arístegui, J., Gasol, J. M., Duarte, C. M., and Herndl, G. J.: Microbial oceanography of the dark ocean's pelagic realm, Limnol. Oceanogr., 54, 1501–1529, 2009.
Arrigo, K. R., van Dijken, G. L., Ainley, D. G., Fahnestock, M. A., and Markus, T.: Ecological impact of a large Antarctic iceberg, Geophys. Res. Lett., 29, 1104, https://doi.org/10.1029/2001GL014160 , 2002.
Asper, V. L., Deuser, W. G., Knauer, G. A., and Lohrenz, E.: Rapid coupling of sinking particle fluxes between surface and deep ocean waters, Nature, 357, 670–672, 1992.
Baba, K., Macpherson, E., Poore, G. C. B., Ahyong, S. T., Bermudez, A., Cabezas, P., Lin, C.-W., Nizinski, M., Rodrigues, C., and Schnabel, K. E.: Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura – families Chirostylidae, Galatheidae and Kiwaidae), Zootaxa, 1905, 1–220, 2008.
Bachraty, C., Legendre, P., and Desbruyères, D.: Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale, Deep-Sea Res. Pt. I, 56, 1371–1378, 2009.
Baguley, J. G., Montagna, P. A., Lee, W., Hyde, L. J., and Rowe, G. T.: Spatial and bathymetric trends in Harpacticoida (Copepoda) community structure in the northern Gulf of Mexico deep-sea, J. Exp. Mar. Biol. Ecol., 330, 327–341, 2006.
Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F., and Priede, I. G.: Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries?, P. Roy. Soc. B., 276, 1965–1969, 2009.
Baker, E. T. and German, C. R.: On the global distribution of mid-ocean ridge hydrothermal vent-fields, in: The Thermal Structure of the Oceanic Crust and the Dynamics of Seafloor Hydrothermal Circulation, Geoph. Monog. Series, 148, 245–266, 2004.
Baker, M. C. and German, C. R.: Going for gold! Who will win in the race to exploit ores from the deep sea?, Ocean Challenge, 16, 10–17, 2009.
Baker, M. C., Ramirez-Llodra, E., Tyler, P. A., German, C. R., Boetius, A., Cordes, E., Dubilier, N., Fisher, C., Levin, L. A., Metaxas, A., Rowden, A., Santos, R. S., Shank, T. M., Van Dover, C. L., Young, C. M., and Warén, A.: Biogeography, Ecology and Vulnerability of Chemosynthetic Ecosystems in the Deep Sea, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A., Chapter 9, Wiley Blackwell, Oxford, 161–183, 2010a.
Baker, M. C., Ramirez-Llodra, E., and Perry, D.: ChEssBase: an online information system on species distribution from deep-sea chemosynthetic ecosystems, Version 3, World Wide Web electronic publications, www.noc.soton.ac.uk/chess/db_home.php, last access: 8 June 2010, 2010b.
Ballard, R.: The History of Woods Hole's Deep Submergence Program, 50 Years of Ocean Discovery, 67–84, 2000.
Beaulieu, S. E. and Smith, K. L. J.: Phytodetritus entering the benthic boundary layer ad aggregated on the sea floor in the abyssal NE Pacific: macro- and microscopic composition, Deep-Sea Res. Pt. II, 45, 781–815, 1998.
Beebe, W.: Half Mile Dow, edited by: Lane, J., The Bodley Head, London, 344 pp., 1939.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 753–755, 2006.
Belyaev, G. M.: Deep-Sea Ocean Trenches and Their Fauna, Nauka Publishing House, Moscow, 385, Translated to English by Scripps Institution of Oceanography, USA, 1989 pp., 2004.
Bergquist, D. C., Williams, F. M., and Fisher, C. R.: Longevity record for deep sea invertebrate, Nature, 403, 499, 2000.
Bergstad, O. A., Falkenhaug, T., Astthorsson, O., Byrkjedal, I., Gebruk, A. V., Piatkowski, U., Priede, I. G., Santos, R. S., Vecchione, M., Lorance, P., and Gordon, J. D. M.: Towards improved understanding of the diversity and abundance patterns of the mid-ocean ridge macro- and megafauna, Deep-Sea Res. Pt. II, 55, 1–5, 2008.
Bett, B. J.: UK Atlantic Margin Environmental Survey: Introduction and overview of bathyal ecology, Cont. Shelf Res., 21, 917–956, 2001.
Billett, D. S., Lampitt, R. S., Rice, A. L., and Mantoura, R. F. C.: Seasonal sedimentation of phytoplankton to the deep-sea benthos, Nature, 302, 520–522, 1983.
Billett, D. S. M., Bett, B. J., Rice, A. L., Thurston, M. H., Galéron, J., Sibuet, M., and Wolff, G. A.: Long-terms change in the megabenthos of the Porcupine Abyssal Plain, Prog. Oceanogr., 50, 325–348, 2001.
Blankenship, L. E. and Levin, L. A.: Extreme food webs: Foraging strategies and diets of scavenging amphipods from the ocean's deepest 5 kilometers, Limnol. Oceanogr., 52, 1685–1697, 2007.
Blankenship-Williams Lesley, E. and Levin, L. A.: Living Deep: a synopsis of hadal trench ecology, Mar. Technol. Soc. J., 43, 137–143, 2009.
Blankenship, L., Yayanos, A., Cadien, D., and Levin, L.: Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec trenches, Deep-Sea Res., 53, 48–61, 2006.
Boucher, G. and Lambshead, P. J. D.: Marine nematode ecological biodiversity in samples from temperate, tropical and deep-sea regions, Conserv. Biol., 9, 1594–1604, 1995.
Bouchet, P.: The magnitude of marine biodiversity, in: The exploration of Marine Biodiversity – Scientific and Technological Challenges, edited by: Duarte, C. M., Fundación BBVA, Bilbao, 31–64, 2006.
Brandt, A. and Ebbe, B.: ANDEEP III ANtarctic benthic DEEP-sea biodiversity: colonisation history and recent community patterns, Deep-Sea Res. Pt. II, 54, 1645–1904, 2007.
Brandt, A., De Broyer, C., Gooday, A. J., Hilbig, B., and Thomson, M. R. A.: Introduction to ANDEEP (Antarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) – a tribute to Howard L. Sanders, Deep-Sea Res. Pt. II, 51, 1457–1465, 2004a.
Brandt, A., Brökeland, W., Brix, S., and Malyutina, M.: Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca) – a comparison with shelf data, Deep-Sea Res. Pt. II, 51, 1753–1768, 2004b.
Brandt, A., Brix, S., Brökeland, W., Choudhury, M., Kaiser, S., and Malyutina, M.: Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean – Results from the ANDEEP I–III expeditions, Deep-Sea Res. Pt. II, 54, 1760–1775, 2007a.
Brandt, A., De Broyer, C., De Mesel, I., Ellingsen, K. E., Gooday, A., Hilbig, B., Linse, K., Thomson, M., and Tyler, P.: The deep benthos, London, Philos. T. Roy. Soc. B, 362, 39–66, 2007b.
Brandt, A., Gooday, A. J., Brandao, S. N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., Diaz, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M., and Vanreusel, A.: First insights into the biodiversity and biogeography of the Southern Ocean deep sea, Nature, 447, 307–311, 2007c.
Brenke, N.: An epibenthic sledge for operations on marine soft bottom and bedrock, Mar. Technol. Soc. J., 39, 10–19, 2005.
Broch, H.: Riffkorallen im Nordmeer einst und jetzt, Naturwissenschaften, 37, 1–3, 1922.
Bothner, M. H., Takada, H., Knight, I. T., Hill, R. T., Butman, B., Farrington, J. W., Colwell, R. R., and Grassle, J. F.: Sewage contamination in sediments beneath a deep-ocean dump site off New York, Mar. Environ. Res., 38, 43–59, 1994.
Brüning, M., Sahling, H., MacDonald, I. R., Ding, F., and Bohrmann, G.: Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico, Mar. Petrol. Geol., 27, 1093–1106, 2010.
Bucklin, A., Nishida, S., Schnack-Schiel, S., Wiebe, P. H., Lindsay, D., Machida, R. J., and Copley, N. J.: A Census of Zooplankton of the Global Ocean, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A., Chapter 13, Wiley Blackwell, Oxford, 247–265, 2010.
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop, J. K. B., Casciotti, K. L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Siegel, D. A., Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., and Wilson, S.: Revisiting Carbon Flux Through the Ocean's Twilight Zone, Science, 316, 567–570, 2007.
Buhl-Mortensen, L. and Mortensen, P. B.: Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada, in: Cold-water Corals and Ecosystems, edited by: Freiwald, A. and Roberts, J. M., Springer-Verlag, Berlin, Heidelberg, 849–879, 2005.
Buhl-Mortensen, P., Buhl-Mortensen, L., Dolan, M., Dannheim, J., and Kröger, K.: Megafaunal diversity associated with marine landscapes of northern Norway: a preliminary assessment, Norw. J. Geol., 89, 163–171, 2009.
Burdon-Jones, C. and Tambs-Lyche, H.: Observations on the fauna of the North Brattholmen stone-coral reef near Bergen, Årbok for Universitetet i Bergen, Matematisk-naturvitenskaplig Serie, 4, 1–24, 1960.
Challenger Report: Narrative of the cruise of H.M.S. Challenger, with a general account of the scientific results of the expedition, edited by: Tizard, T. H., Moseley, H. N., Buchanan, J. Y., and Murray, J., Partly Illustrated by WILD, J. J., Her Majesty's Stationery Office, 1110 pp., 1885.
Cairns, S. D.: The deep-water Scleractinia of the Caribbean Sea and adjacent waters, Studies on the Fauna of Curaçao and other Caribbean Islands, 56, 1–341, 1979.
Canals, M., Puig, P., Durieu de Madron, X., Heussner, S., Palanques, A., and Fabres, J.: Flushing submarine canyons, Nature, 444, 354–357, 2006.
Carney, R. S.: Consideration of the oasis analogy for chemosynthetic communities at the Gulf of Mexico hydrocarbon vents, Geo-Mar. Lett., 149–159, 1994.
Cary, S. C. and Giovannoni, S. J.: Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps, P. Natl. Acad. Sci., 90, 5695–5699, 1993.
Cavanaugh, C. M., McKiness, Z. P., Newton, I. L. G., and Stewart, F. J.: Marine chemosynthetic symbioses, in: The Prokaryotes, edited by: Dworkin, M., Falkow, S. I., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Springer, New York, 475–507, 2006.
Chhibber, H. L.: The Geology of Burma, Ch. VI Mud Volcanoes, Macmillan, New York, 79–85 pp., 1934.
Clark, M. R., Tittensor, D., Rogers, A. D., Brewin, P., Shclacher, T., Rowden, A., Stocks, K., and Consalvey, M.: Seamounts, deep-sea corals and fisheries: vulnerability of deep-sea corals to fishing on seamounts beyond areas of national jurisdiction, UNEP-WCMC, Cambridge, UK, 2006.
Clarke, A.: The polar deep seas, in: Ecosystems of the World (Vol. 28) – Ecosystems of the Deep Ocean, edited by: Tyler, P. A., Elsevier, Amsterdam, 239–260, 2003.
Clarke, A. and Johnston, N. M.: Antarctic marine benthic diversity, An Annual Review, Oceanogr. Mar. Biol., 41, 47–114, 2003.
Clough, L. M., Ambrose, J. W. G., Kirk Cochran, J., Barnes, C., Renaud, P. E., and Aller, R. C.: Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean, Deep-Sea Res. Pt. II, 44, 1683–1704, 1997.
Coleman, F. C. and Williams, S. L.: Overexploiting marine ecosystem engineers: potential consequences for biodiversity, Trends Ecol. Evol., 17, 40–44, 2002.
Colman, J. G., Gordon, D. M., Lane, A. P., Forde, M. J., and Fitzpatrick, J. J.: Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities, in: Cold-water Corals and Ecosystems, edited by: Freiwald, A. and Roberts, M., Berlin, Heidelberg, Springer-Verlag, 417–441, 2005.
Company, J. B., Puig, P., Sardà, F., Palanques, A., Latasa, M., and Scharek, R.: Climate influence on deep sea populations, PLOS ONE, e1431, 1–8, 2008.
Consalvey, M., Clark, M. C., Rowden, A. A., and Stocks, K. I.: Life on seamounts, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A., Chapter 7, Wiley Blackwell, Oxford, 123–139, 2010.
Cordes, E. E., Ribeiro da Cunha, M., Galéron, J., Mora, C., Olu-Le Roy, K., Sibuet, M., Van Gaever, S., Vanreusel, A., and Levin, L. A.: The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity, Mar. Ecol., 31, 51–61, https://doi.org/10.1111/j.1439-0485.2009.00334.x, 2009.
Cordes, E. E., Bergquist, D. C., Shea, K., and Fisher, C. R.: Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps, Ecol. Lett., 6, 212–219, 2003.
Cordes, E. E., Bergquist, D. C., Redding, M. L., and Fisher, C. R.: Patterns of growth in cold-seep vestimenferans including Seepiophila jonesi: a second species of long-lived tubeworm, Mar. Ecol., 28, 160–168, 2007.
Cordes, E. E., McGinley, M. P., Podowski, E. L., Becker, E. L., Lessard-Pilon, S., Viada, S. T., and Fisher, C. R.: Coral communities of the deep Gulf of Mexico, Deep-Sea Res. Pt. I, 55, 777–787, 2008.
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H.: Submarine thermal springs on the Galapagos Rift, Science, 203, 1073–1083, 1979.
Cosson, N., Sibuet, M., and Galéron, J.: Community structure and spatial heterogeneity of the deep-sea macrofauna at three constrating stations in the tropical northeast Atlantic, Deep-Sea Res. Pt. I, 44, 247–269, 1997.
Cosson-Sarradin, N., Sibuet, M., Paterson, G. L. J., and Vangriesheim, A.: Polychaete diversity at tropical deep-sea sites: Environmental effects, Mar. Ecol.-Prog. Ser., 165, 173–185, 1998.
Coull, B. C.: Species diversity and faunal affinities of meiobenthic copepoda in the deep sea, Mar. Biol., 14, 48–51, 1979.
Culver, S. J. and Buzas, M. A.: Global latitudinal species diversity gradient in deep-sea benthic foraminifera, Deep-Sea Res. Pt. I, 47, 259–275, 2000.
Dana, J. D.: Manual of Geology, Philadelphia, 798 pp., 1863.
Danovaro, R., Dell'Anno, A., Fabiano, M., Pusceddu, A., and Tselepides, A.: Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study, Trends Ecol. Evol., 16, 505–510, 2001.
Danovaro, R., Gambi, C., and Della Croce, N.: Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean, Deep-Sea Res. Pt. I, 49, 843–857, 2002.
Danovaro, R., Della Croce, N., Dell'Anno, A., and Pusceddu, A.: Depocenter of organic matter at 7800m depth in the SE Pacific Ocean, Deep-Sea Res. Pt. I, 50, 1411–1420, 2003.
Danovaro, R., Pusceddu, A., and Dell'Anno, A.: Biodiversity response to climate change in a warm deep sea, Ecol. Lett., 7, 821–828, 2004.
Danovaro, R., Gambi, C., Dell'Anno, A., Corinaldesi, C., Fraschetti, S., Vanreusel, A., Vincx, M., and Gooday, A. J.: Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss, Curr. Biol., 18, 1–8, 2008a.
Danovaro, R., Gambi, C., Lampadariou, N., and Tselepides, A.: Deep-sea biodiversity in the Mediterranean Basin: Testing for longitudinal, bathymetric and energetic gradients, Ecography, 31, 231–244, 2008b.
Danovaro, R., Canals, M., Gambi, C., Heussner, S., Lampadariou, N., and Vanreusel, A.: Exploring Benthic Biodiversity Patterns and Hot Spots on European Margin Slopes, Oceanography, 22, 22–31, 2009.
Danovaro, R., Company, J. B., Corinaldesi, C., D'Onghia, G., Galil, B., Gambi, C., Gooday, A. J., Lampadariou, N., Luna, G. M., Morigi, C., Olu, K., Polymenakou, P., Ramirez-Llodra, E., Sabbatini, A., Sardà, F., Sibuet, M., and Tselepides, A.: Deep-Sea biodiversity in the Mediterranean Sea: the known, the unknown and the unknowable, PLOS ONE, 5, e11832, 2010.
Davies, A. J., Wisshak, M., Orr, J. C., and Roberts, J. M.: Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia), Deep-Sea Res. Pt. I, 55, 1048–1062, 2008.
Davies, A. J., Duineveld, G. C. A., van Weering, T. C. E., Mienis, F., Quattrini, A. M., Seim, H. E., Bane, J. M., and Ross, S. W.: Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico, Deep-Sea Res. Pt. I, 57, 199–212, 2010.
De Mesel, I., Lee, H. J., Vanhove, S., Vincx, M., and Vanreusel, A.: Species diversity and distribution within the dee-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica, Polar Biol., 29, 860–871, 2006.
De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooij, D., McDonnell, A., Huvenne, V., Ivanov, M., Swennen, R., and Henriet, J. P.: Large deep-water coral banks in the Porcupine Basin, southwest of Ireland, Mar. Geol., 188, 193–231, 2002.
De Mol, B., Kozachenko, M., Wheeler, A., Alvares, H., Henriet, J.-P., and Olu-Le Roy, K.: Thérèse Mound: a case study of coral bank development in the Belgica Mound Province, Porcupine Seabight, Int. J. Earth Sci., 96, 103–120, 2007.
De Santo, E. and Jones, P. J. S.: Offshore marine conservation policies in the North East Atlantic: emerging tensions and opportunities, Mar. Policy, 31, 336–347, 2007.
Desbruyerès, D., Segonzac, M., and Bright, M.: Handbook of deep-sea hydrothermal vent fauna, Second completely revised edition, Linz, Denisia, 18, 544 pp., 2006.
Desbruyères, D., Hashimoto, J., and Fabri, M.-C.: Composition and Biogeography of Hydrothermal Vent Communities in Western Pacific Back-Arc Basins, Geoph. Monog. Series, 166, 215–234, 2007.
Devine, J. A., Baker, K. D., and Haedrich, R. L.: Deep-sea fishes qualify as endangered, Nature, 439, 336–347, 2006.
Dinet, A. and Vivier, M.-H.: Le meiobenthos abyssal du Golfe de Gascogne I.I. Les peuplements de nématodes et leur diversité spécifique, Cah. Boil. Mar., 20, 109–123, 1979.
Ding, F., Spiess, V., Bru\"{ }ning, M., Fekete, N., Keil, H., and Bohrmann, G.: A conceptual model for hydrocarbon accumulation and seepage processes around Chapopote asphalt site, southern Gulf of Mexico: from high resolution seismic point of view, J. Geophys. Res., 113, B08404, https://doi.org/10.1029/2007JB005484, 2008.
Dorschel, B., Wheeler, A. J., Huvenne, V. A. I., and de Haas, H.: Cold-water coral mounds in an erosive environmental setting: TOBI side-scan sonar data and ROV video footage from the northwest Porcupine Bank, NE Atlantic, Mar. Geol., 264, 218–229, 2009.
D'Onghia, G., Maiorano, P., Sion, L., Giove, A., Capezzuto, F., Carlucci, R., and Tursi, A.: Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea, Deep Sea Res. Pt. II, 57, 397–411, 2010.
Dons, C.: Norges korallrev, Det Kongelige Norske Videnskabers Selskabs Forhandlinger, 16, 37–82, 1944.
Dower, J. F. and Brodeur, R. D.: The role of biophysical coupling in concentrating marine organisms around shallow topographies, J. Mar. Syst., 50, 1–2, 2004.
Dubilier, N., Bergin, C., and Lott, C.: Symbiotic diversity in marine animals: the art of harnessing chemosynthesis, Nat. Rev. Microbiol., 6, 725–740, 2008.
Duineveld, G. C. A., Lavaleye, M. S. S., and Berghuis, E. M.: Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain), Mar. Ecol.-Prog. Ser., 277, 13–23, 2004.
DWL, Douglas Westwood Ltd.: Marine industries global market analyses, Marine Foresight Series 1, Marine Institute, Ireland, 2005.
Durrieu de Madron, X., Nyffeler, F., Monaco, A., and Casamor, J. L.: Circulation and dynamics of suspended particulate matter, in: EUROMARGE-NB Final Report, edited by: Canals, M., Casamor, J. L., Cacho, I., Calafat, A. M., and Monaco, A., MAST II Programme, EC, 13–39, 1996.
Ebbe, B., Billett, D. S. M., Brandt, A., Ellingsen, K., Glover, A., Keller, S., Malyutina, M., Martínez Arbizu, P., Molodtsowa, T., Rex, M., Smith, C., and Tselepides, A.: Diversity of Abyssal Marine Life, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A., Chapter 8, Wiley Blackwell, Oxford, 139–160, 2010.
Ellingsen, K. E. and Gray, J. S.: Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf?, J. Anim. Ecol., 71, 373–389, 2002.
Etnoyer, P. and Morgan, L.: Habitat-forming deep-sea corals in the Northeast Pacific Ocean, in: Cold-Water Corals and Ecosystems: Erlangen Earth Conference Series, edited by: Freiwald, A. and Roberts, J. M., Springer, Berlin, Heidelberg, 331–343, 2005.
Etter, R. J. and Rex, M. A.: Population differentiation decreases with depth in deep-sea gastropods, Deep-Sea Res. Pt. I, 37, 1251–1261, 1990.
Etter, R. J. and Grassle, J. F.: Patterns of species diversity in the deep-sea as a function of sediment particle size diversity, Nature, 360, 576–578, 1992.
Etter, R. J. and Mullineaux, L. S.: Deep-Sea Communities, in: Marine Community Ecology, edited by: Bertness, M. D., Gaines, S. D., and Hay, M. E., Sinauer Associates, Inc., Sunderlands, Massachusetts, 367–393, 2001.
Flach, E. and de Bruin, W.: Diversity patterns in macrobenthos across a continental slope in the NE Atlantic, J. Sea Res., 42, 303–323, 1999.
Flexas, M. M., Boyer, D. L., Espino, M., Puigdefàbregas, J., Rubio, A., and Company, J. B.: Circulation over a submarine canyon in the NW Mediterranean, J. Geophys. Res., 113, C12002, https://doi.org/10.1029/2006JC003998, 2008.
Fock, H. O., Matthiessen, B., Zidowitz, H., and Von Westernhagen, H.: Diel and habitat-dependent resource utilisation by deep-sea fishes at the Great Meteor seamount: niche overlap and support for the sound scattering layer interception hypothesis, Mar. Ecol.-Prog. Ser., 244, 219–233, 2002.
Fonseca, G. F. C. and Soltwedel, T.: Deep-sea meiobenthic communities underneath the mariginal ice zone off Eastern Greenland, Polar Biol., 30, 607–618, 2007.
Forbes, E.: Report on the Mollusca and Radiata of the Aegean Sea, and on their distribution, considered as bearing on geology, Report of the British Association for the Advancement of Science for 1843, 129–193, 1844.
Forest, J. and de Saint Laurent, M.: Présence dans la faune actuelle d'un représentant du groupe mésozoïque des Glyphéides: Neoglyphea inopinata gen. nov., sp. nov. (Crustacea decapoda Glypheidae), CR. Heb. Acad. Sci., Paris, 281, 1975.
Forest, J.: The Recent glypheids and their relationship with their fossil relatives (Decapoda, Reptantia), Crustaceana, 79, 795–820, 2006.
Fosså, J. H., Lindberg, B., Christensen, O., Lundälv, T., Svellingen, I., Mortensen, P. B., and Alvsvåg, J.: Mapping of Lopehlia reefs in norway: experiences and survey methods, in: Cold-water Corals and Ecosystems, edited by: Freiwald, A. and Roberts, J. M., Berlin, Heidelberg, Springer, 359–391, 2005.
Fossing, H., Gallardo, V. A., Jorgensen, B. B., Huttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Kuver, J., Ramsing, N. B., Teske, A., Thamdrup, B., and Ulloa, O.: Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374, 713–715, 1995.
Foubert, A., Beck, T., Wheeler, A. J., Opderbecke, J., Grehan, A., Klages, M., Thiede, J., and Henriet, J.-P. : New view of the Belgica Mounds, Porcupine Seabight, NE Atlantic: preliminary results from the Polarstern ARK-XIX/3a ROV cruise, in: Cold-Water Corals and Ecosystems: Erlangen Earth Conference Series, edited by: Freiwald, A. and Roberts, J. M., Springer, Berlin, Heidelberg, 403–415, 2005.
Frederiksen, R., Jensen, A., and Westerberg, H.: The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal mixing, Sarsia, 77, 157–171, 1992.
Freiwald, A., Fosså, J. H., Grehan, A., Koslow, T., and Roberts, J. M.: Cold-water Coral Reefs: Cambridge, UK, UNEP-WCMC, 84 p., 2004.
Freiwald, A.: Reef-forming cold-water corals, in: Ocean margin systems, edited by: Wefer, G., Billett, D. S. M., Hebbeln, D., Jørgensen, B. B., Schlüter, M., and Van Weering, T., Springer, Berlin, 365–385, 2002.
Freytag, J. K., Girguis, P. R., Bergquist, D. C., Andreas, J. P., Childress, J. J., and Fisher, C. R.: A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy, P. Natl. Acad. Sci. USA, 98, 13408–13413, 2001.
Froelich, A. S.: Functional aspects of nutrient cycling on coral reefs. The ecology of deep shallow coral reefs, NOAA Symp Ser Undersea Res., edited by: Rosenstiel School of Marine and Atmospheric Science University of Miami, Rockville, MD, NOAA Undersea Research Program, 1, 133–139, 1983.
Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S. S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A., and Okutani, T.: Three-year investigations into sperm whale-fall ecosystems in Japan, Mar. Ecol., 28, 219–232, 2007.
Gage, J. D.: High benthic species diversity in deep-sea sediments: The importance of hydrodynamics, in: Marine Biodiversity: Patterns and Processes, edited by: Ormond, R. P. G., Gage, J. D., and Angel, M. V., Cambridge University Press, Cambridge, 149–177, 1997.
Gage, J.: Food inputs, utilisation, carbon flow and energetics, in: Ecosystems of the World. Ecosystems of the Deep Ocean, edited by: Tyler, P. A., Elsevier, Amsterdam, 313–426, 2003.
Gage, J. D. and Tyler, P. A.: Deep-Sea Biology: a Natural History of Organisms at the Deep-Sea Floor, Cambridge University Press, Cambridge, UK, 504 pp., 1991.
Gage, J. D., Lamont, P. A., and Tyler, P. A.: Deep-sea macrobenthic communities at contrasting sites off Portugal, preliminary results: II Spatial dispersion, Int. Rev. Ges. Hydrobio., 80, 251–265, 1995.
Gage, J. D., Lamont, P. A., Kroeger, K., Paterson, G. L. J., and Gonzales Vecino, J. L.: Patterns in deep-sea macrobenthos at the continental margin: standing crop, diversity and faunal change on the continental slope off Scotland, Hydrobiologia, 440, 261–271, 2000.
Galéron, J., Sibuet, M., Vanreusel, A., Mackenzie, K., Gooday, A. J., Dinet, A., and Wolff, G. A.: Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site, Prog. Oceanogr., 50, 303–324, 2001.
Gallardo, V. A.: Notas sobre la densidad de la fauna bentónica en el sublittoral del norte de Chile, Rev. Gayana, 10, 3–15, 1963.
Gallardo, V. A.: Large benthic microbial communities in sulfide biota under Peru-Chile subsurface countercurrent, Nature, 268, 331–332, 1977.
Gallardo, V. A. and Espinoza, C.: New communities of large filamentous sulfur bacteria in the eastern South Pacific, Int. Microbiol., 10, 97–102, 2007.
Gambi, C., Vanreusel, A., and Danovaro, R.: Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean), Deep-Sea Res. Pt. I, 50, 103–117, 2003.
Genin, A.: Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies, J. Mar. Syst., 50, 3–20, 2004.
German, C. R., Yoerger, D. R., Jakuba, M., Shank, T. M., Langmuir, C. H., and Nakamura, K.: Hydrothermal exploration with the Autonomous Benthic Explorer, Deep-Sea Res. Pt. I, 55, 203–219, 2008.
Gili, J. M., Bouillon, J., Pagès, F., Palanques, A., and Puig, P.: Submarine canyons as habitats of prolific plankton populations: three new deep-sea Hydrodomedusae in the Western Mediterranean, Zool. J. Linn. Soc-Lond., 125, 313–329, 1999.
Glover, A. G., Smith, C. R., Paterson, G. L. J., Wilson, G. D. F., Hawkins, L., and Sheader, M.: Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity, Mar. Ecol.-Prog. Ser., 240, 157–170, 2002.
Gooday, A., Todo, Y., Uematsu, K., and Kitazato, H.: New organic-walled Foraminifera (Protista) from the ocean's deepest point, the Challenger Deep (western Pacific Ocean), J. Linn. Soc., 153, 399–423, 2008.
Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B. J., Cowie, G. L., Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A., Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C.: Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna, Deep-Sea Res. Pt. II, 56, 488–502, 2009.
GOODS: Gloabal Opean Oceans and Deep Seabed (GOODS) biogeographic classification, edited by: Vierros, M., Cresswell, I., Escobar-Briones, E., Rice, J., and Ardron, J., UNEP, 95 pp., 2009.
Grasshoff, M.: Die Gorgonaria, Pennatularia und Antipatharia des Tiefwassers der Biskaya (Cnidaria, Anthozoa), Ergebnisse der französischen Expeditionen Biogas, Polygas, Géomanche, Incal, Nordatlante und Fahrten der Thalassa II. Taxonomischer Teil, Bull. Mus. Natn. Hist. Nat. Ser. 4, 3, A4, 941–978, 1982.
Grassle, J. F.: Slow recolonisation of deep-sea sediment, Nature, 26, 618–619, 1977.
Grassle, J. F. and Sanders, H. L.: Life histories and the role of disturbance, Deep-Sea Res., 20, 643–659, 1973.
Grassle, J. F., Brown-Leger, L. S., Morse-Porteous, L., Petrecca, R., and Williams, I.: Deep-sea fauna of sediments in the vicinity of hydrothermal vents, Bull. Biol. Soc. Washington, 6, 443–452, 1985.
Grassle, J. F.: Species diversity in deep-sea communities, Trends Ecol. Evol., 4, 12–15, 1989.
Grassle, J. F. and Maciolek, N. J.: Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples, Am. Nat., 139, 313–341, 1992.
Gray, J. S.: Is deep-sea species diversity really so high? Species diversity of the Norwegian continental shelf, Mar. Ecol.-Prog. Ser., 112, 205–209, 1994.
Gray, J. S., Poore, G. C. B., Ugland, K. I., Wilson, R. S., Olsgard, F., and Johannesen, O.: Coastal and deep-sea benthic diversities compared, Mar. Ecol.-Prog. Ser., 159, 97–103, 1997.
Gray, J. S.: Marine diversity: the paradigms in patterns of species richness examined, Sci. Mar., 65, 41–56, 2001.
Gray, J. S.: Species richness of marine soft sediments, Mar. Ecol.-Prog. Ser., 244, 285–297, 2002.
Grime, J. P.: Control of species density in herbaceous vegetation, J. Environ. Manage., 1, 151–167, 1973.
Guerra-García, J. M., Sorbe, J. C., and Frutos, I.: A new species of Liropus (Crustacea, Amphipoda, Caprellidae) from Le Danois bank (southern Bay of Biscay), Organisms Div. Evol., 7, 253, e1-253.e12, 2008.
Guinotte, J. M., Orr, J., Cairns, S., Friewald, A., Morgan, L., and George, R.: Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?, Front. Ecol. Environ., 4, 141–146, 2006.
Hall-Spencer, J. M., Rogers, A., Davies, J., and Foggo, A.: Historical deep-sea coral distribution on seamount, oceanic island and continental shelf-slope habitats in the NE Atlantic, in: Conservation and adaptive management of seamount and deep-sea coral ecosystems, edited by: George, R. Y. and Cairns, S. D., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, 324 p., 2007.
Hall-Spencer, J. M., Allain, V., and Fossa, J. H.: Trawling damage to Northeast Atlantic ancient coral reefs, P. Roy. Soc. Lond. B, 269, 507–511, 2002.
Hashimoto, J., Miura, T., Fujikura, K., and Ossaka, J.: Discovery of vestimentiferan tube worms in the euphotic zone, Zool. Sci., 10, 1063–1067, 1993.
Heap, A. D., Anderson, T., Falkner, I., Przeslawski, R., Whiteway, T., and Harris, P. T.: Seascapes for the Australian margin and adjacent seabed, Geoscience Australia, Record, Canberra, 99 pp., 2009.
Helly, J. and Levin, L. A.: Global distribution of naturally occurring marine hypoxia on continental margins, Deep-Sea Res., 51, 1159–1168, 2004.
Hentschel, E.: Allgemeine Biologie des Südatlantischen Ozeans, Deutsche Atlantische Expedition auf dem Forschungsschiff "Meteor" 1925–1927, edited by: Defant, A., Berlin und Leipzig, Walter de Gruyter und Co., 11, 343, 1936.
Henry, L.-A. and Roberts, J. M.: Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic, Deep Sea Res. Pt. I, 54, 654–672, 2007.
Henry, L.-A., Davies, A., and Roberts, M. J.: Beta diversity of cold-water coral reef communities off western Scotland, Coral Reefs, 29, 427–436, 2010.
Herring, P.: Species abundance, sexual encounter and bioluminescent signalling in the deep sea, Philos. T. Roy. Soc. Lond. B, 355, 1273–1276, 2000.
Herring, P.: The biology of the deep ocean, Oxford University Press, Oxford, 314 pp., 2002.
Hessler, R. R. and Sanders, M. L.: Faunal diversity in the deep-sea, Deep-Sea Res., 14, 65–78, 1967.
Heussner, S., Calafat, A., and Palanques, A.: Quantitative and qualitative features of particle fluxes in the North-Balearic Basin, in: EUROMARGE-NB Final Report, edited by: Canals, M., Casamor, J. L., Cacho, I., Calafat, A. M., and Monaco, A., MAST II Programme, EC, Vol. II, 41–66, 1996.
Holland, N. D., Clague, D. A., Gordon, D. P., Gebruk, A., Pawson, D. L., and Vecchione, M.: Lophenteropneust' hypothesis refuted by collection and photos of new deep-sea hemichordates, Nature, 434, 374–376, 2005.
Hollister, C. D. and MacCave, I. N.: Sedimentation under deep-sea storms, Nature, 309, 220–225, 1984.
Hoste, E., Vanhove, S., Schewe, I., Soltwedel, T., and Vanreusel, V.: Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean, Deep-Sea Res. Pt. I, 54, 109–129, 2007.
Houston, K. A. and Haedrich, R. L.: Abundance and biomass of macrobenthos in the vicinity of Carson Submarine Canyon, northwest Atlantic Ocean, Mar. Biol., 82, 301–305, 1984.
Hovland, M. and Mortensen, P. B.: Norske korallrev og prosesser i havbunnen, John Grieg forlag, Bergen, 155 pp., 1999.
Hovland, M.: Deep-water Coral Reefs Unique Biodiversity Hot-Spots, Praxis Publishing, UK XXVI, 278 p., 2008.
Huston, M.: A general hypothesis of species diversity: a critique and alternative parameters, Am. Nat., 113, 81–101, 1979.
IMMS (International Marine Minerals Society): Code for Environmental management of marine mining, Revised draft version from the International Marine Minerals Society adopoted code (2001), http://www.immsoc.org/IMMS_downloads/PAV_Code_082109_KM_082509.pdf, last access: 22 January 2010, 2009.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: Mitigation. Contribution of Working Group III to the Foruth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007.
ISA (International Seabed Authority): Polymetallic sulphides and cobalt rich ferromanganese crust deposits: establishment of environmental baselines and an associated monitoring programme during exploration, Proceedings of the International Seabed Authority's workshop, Kingston, Jamaica, 6–10 September, 2004.
Jacobs, D. K. and Lindberg, D. R.: Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas, P. Natl. Acad. Sci. USA, 95, 9396–9401, 1998.
Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M., and Priede, I. G.: Hadal trenches: the ecology of the deepest places on Earth, Trends Ecol. Evol., 25, 190–197, 2010.
Jannasch, H. W.: Microbial interactions with hdyrothermal fluids, in: Seafloor hydrothermal systems: Physical, chemical, biological, and geolgical interactions, edited by: Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E., Geol. Monog. Series, 91, American Geophysical Union, Washington, DC, 273–296, 1995.
Jannasch, H. W. and Wirsen, C. O.: Morphological survey of microbial mats near deep-sea thermal vents, Appl. Environ. Microbiol., 41, 528–538, 1981.
Jannasch, H. W. and Mottl, M. J.: Geomicrobiology of deep-sea hydrothermal vents, Science, 229, 717–725, 1985.
Jensen, P.: Nematode assemblages in the deep-sea benthos of the Norwegian Sea, Deep-Sea Res., 35, 1173–1184, 1988.
Jensen, A. and Frederiksen, R.: The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf, Sarsia, 77, 53–69, 1992.
Johnson, N. A., Campbell, J. W., Moore, T. S., Rex, M. A., Etter, R. J., McClain, C. R., and Dowell, M. D.: The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic, Deep-Sea Res. Pt. I, 54, 1350–1360, 2007.
Jonsson, L. G., Nilsson, P. G., Floruta, F., and Lundälv, T.: Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast, Mar. Ecol.-Prog. Ser., 284, 163–171, 2004.
Jongsma, D., Fortuin, A. R., Huson, W., Troelstra, S. R., Klaver, G. T., Peters, J. M., van Harten, D., de Lange, G. J., and ten Haven, L.: Discovery of an anoxic basin within the Strabo Trench, eastern Mediterranean, Nature, 305, 795–797, 1983.
Jorgensen, B. B. and Boetius, A.: Feast and famine – microbial life in the deep-sea bed, Nat. Rev. Microbiol., 5, 770–781, 2007.
Jumars, P. A.: Methods for measurement of community structure in deep-sea macrobenthos, Mar. Biol., 30, 245–252, 1975.
Jumars, P. A.: Deep-sea species diversity: does it have a characteristic scale?, J. Mar. Res., 34, 217–246, 1976.
Kaiser, S. and Barnes, D. K. A.: Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change, Climate Res., 37, 165–179, 2008.
Kano, A., Ferdelman, T. G., Williams, T., Henriet, J.-P., Ishikawa, T., Kawagoe, N., Talkashima, C., Kakizaki, Y., Abe, K., Sakai, S., Browning, E. L., and Li, X. H.: Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307, Geology, 35, 1051–1054, 2007.
Karig, D. E.: Origin and development of marginal basins in the Western Pacific, J. Geophys. Res., 71, 2542–2561, 1971.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in a Warming World, Ann. Rev. Mar. Sci., 2, 199–229, 2010.
Keller, N. B.: The deep-sea madreporarian corals of the genus Fungiacyathus from the Kuril-Kamchatka and Aleutian Trenches and from some other areas of the World Oceans, Deep-sea bottom fauna of the Pacific Ocean, Glubokovodnaya donnaya fauna Tikhogo, Okeana, 99, Tr. Inst. Okeanol., 1976.
Kiel, S., and Little, C. T. S.: Cold-Seep Mollusks Are Older Than the General Marine Mollusk Fauna, Science, 313, 1429–1431, https://doi.org/10.1126/science.1126286, 2006.
Kiel, S. and Dando, P. R.: Chaetopterid tubes from vent and seep sites: Implications for fossil record and evolutionary history of vent and seep annelids, Acta Palaeontol. Pol., 54, 443–448, 2009.
King, N. J., Bagley, P. M., and Priede, I. G.: Depth zonation and latitudinal distribution of deep sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42°–53° N, Mar. Ecol.-Prog. Ser., 319, 263–274, 2006.
Kitchingman, A. and Lai, S.: Inferences of potential seamount locations from mid-resolution bathymetric data., in: Seamounts: Biodiversity and Fisheries, edited by: Morato, T. and Pauly, D., Fisheries Centre, University of British Columbia, Vancouver, 7–12, 2004.
Kvenvolden, K. A.: Methane hydrate and global climate, Global Biogeochem. Cy., 2, 221–229, 1988.
Koslow, J. A., Gowlett-Holmes, K., Lowry, J. K., O'Hara, T., Poore, G. C. B., and Williams, A.: Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling, Mar. Ecol.-Prog. Ser., 213, 111–125, 2001.
Krogh, A.: Conditions of life at great depths in the ocean, Ecol. Monogr., 4, 430–439, 1934.
Kröncke, I., Vanreusel, A., Vincx, M., Wollenburg, J., Mackensen, V., Liebezeit, G., and Behrends, B.: The different benthic size compartments and their relation with sediment chemistry in the deep Eurasian Arctic Ocean, Mar. Ecol.-Prog. Ser., 199, 31–41, 2000.
Kurihara, H.: Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates, Mar. Ecol.-Prog. Ser., 373, 275–284, 2008.
Kussakin, O. G.: Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin, Mar. Biol., 23, 19–34, 1973.
Kunze, E., Dower, J. F., Beveridge, I., Dewey, R., and Bartlett, K. P.: Observations of Biologically generated turbulence in a coastal inlet, Science, 313, 1768–1770, 2006.
Lambshead, P. J. D.: Recent developments in marine benthic biodiversity research, Oceanus, 19, 5–24, 1993.
Lambshead, P. J. D., Tietjen, J., Ferrero, T. J., and Jensen, P.: Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes, Mar. Ecol.-Prog. Ser., 194, 159–167, 2000.
Lambshead, P. J. D., Tietjen, J., Moncrieff, C. B., and Ferrero, T. J.: North Atlantic latitudinal diversity patterns in deep-sea marine nematode data: a reply to Rex et al., Mar. Ecol.-Prog. Ser., 210, 299–301, 2001.
Lambshead, P. J. D., Brown, C. J., Ferrero, T. J., Mitchell, N. J., Smith, C. R., Hawkins, L. E., and Tietjen, J.: Latitudinal diversity patterns for deep sea marine nematodes and organic fluxes: a test from the central equatorial Pacific, Mar. Ecol.-Prog. Ser., 236, 129–135, 2002.
Lambshead, P. J. D. and Boucher, G.: Marine nematode deep-sea biodiversity – hyperdiverse or hype?, J. Biogeogr., 30, 475–485, 2003.
Lambshead, P. J. D., Brown, C. J., Ferrero, T. J., Hawkins, L. E., Smith, C. R., and Mitchell, N. J.: Biodiveresity of nematode assemblages from the region of the mining Clarion-Clipperton Fracture Zone, an area of commercial mining interest, BMC Ecol., 3, 1–12, 2003.
Lampadariou, N. and Tselepides, A.: Spatial variability of meiofaunal communities at areas of contrasting depth and productivity in the Aegean Sea (NE Mediterranean), Prog. Oceanogr., 69, 19–36, 2006.
Lampadariou, N., Tselepides, A., and Hatziyanni, E.: Deep-sea meiofaunal and foraminiferal communities along a gradient of primary productivity in the eastern Mediterranean Sea, Sci. Mar., 73, 337–345, 2009.
Lampitt, R. S.: Evidence for seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res., 32, 885–897, 1985.
Lampitt, R. S. and Antia, A. N.: Particle flux in deep seas: regional characteristics and temporal variability, Deep-Sea Res. Pt. I, 44, 1377–1403, 1997.
Le Guilloux, E., Olu, K., Bourillet, J. F., Savoye, B., Iglésias, S. P., and Sibuet, M.: First observations of deep-sea coral reefs along the Angola margin: Deep Sea Res. Pt. II, 56, 2394–2403, 2009.
Lemche, H.: A new living deep-sea mollusc of the Cambro-Devonian class Monoplacophora, Nature, 179, 413–416, 1957.
Levin, L. A.: Oxygen minimum zone benthos: Adaptation and community response to hypoxia, Oceanogr. Mar. Biol., 41, 1–45, 2003.
Levin, L. A.: Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes, Oceanogr. Mar. Biol., 43, 1–46, 2005.
Levin, L. A. and Dayton, P. K.: Ecological theory and continental margins: where shallow meets deep, Trends Ecol. Evol., 24, 606–617, 2009.
Levin, L. A. and Gage, J. D.: Relationships between oxygen, organic matter and the diversity of bathyal macrofauna, Deep-Sea Res. Pt. II, 45, 129–163, 1998.
Levin, L. A., Plaia, G. R., and Huggett, C. L.: The influence of natural organic enchancement on life histories and community structure of bathyal polychaetes, in: Reproduction, larval biology, and recruitment of the deep-sea benthos, edited by: Young, C. M. and Eckelbarger, K. J., Columbia Universtity Press, New York, 336 pp., 1994.
Levin, L. A., Etter, R. J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., Stuart, C. T., Hessler, R. R., and Pawson, D.: Environmental influences on regional deep-sea species diversity, Ann. Rev. Ecol. Syst., 32, 51–93, 2001.
Levin, L. A., Ziebis, W., Mendoza, G. F., Growney-Cannon, V., and Walther, S.: Recruitment response of methane-seep macrofauna to sulfide-rich sediments: An in situ experiment, J. Exp. Mar. Biol. Ecol., 330, 132–150, 2006.
Levin, L. A., Whitcraft, C., Mendoza, G. F., Gonzalez, J., and Cowie, G.: Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan Margin oxygen minimum zone (700–1100 m), Deep-Sea Res. Pt. II., 56, 449–471, 2009.
Levin, L. A., Sibuet, M., Gooday, A. J., Smith, C. R., and Vanreusel, A.: The roles of habitat heterogeneity in generating and maintaining biodiversity on continental margins, Mar. Ecol., 31, 1–5, 2010a.
Levin, L. A., Mendoza, G. F., Gonzalez, J. P., Thurber, A. R., and Cordes, E. E.: Diversity of bathyal macrofauna on the northeastern Pacifici margin: the influence of methane sepes and oxygen mínimum zones, Mar. Ecol., 31, 94–111, 2010b.
Linse, K., Griffiths, H. J., Barnes, D. K. A., and Clarke, A.: Biodiversity and biogeography of Antarctic and Sub-Antarctic Mollusca, Deep-Sea Res. Pt. II, 53, 985–1008, 2006.
Little, C. T. S., Campbell, K. A., and Herrington, R. J.: Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today?, Int. J. Earth Sci., 91, 149–153, 2002.
Little, C. T. S. and Vrijenhoek, R. C.: Are hydrothermal vent animals living fossils?, Trends Ecol. Evol., 18, 582–588, 2003.
Lonsdale, P.: Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers, Deep-Sea Res., 24, 857–863, 1977.
Lorion, J., Duperron, S. B., Gros, O., Cruaud, C., and Samadi, S.: Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls, P. Roy. Soc. B., 276, 177–185, https://doi.org/10.1098/rspb.2008.1101, 2009.
Lutz, R. A., Fritz, L. W., and Cerrato, R. M.: A comparison of bivalve (Calyptogena magnifica) growth at two deep-sea hydrothermal vents in the eastern Pacific, Deep-Sea Res., 35, 1793–1810, 1988.
Lutz, R. A., Shank, T. M., Fornari, D. J., Hyamon, R. M., Lilley, M. D., Von Damm, K. L., and Desbruyères, D.: Rapid growth at deep-sea vents, Nature, 371, 663–664, 1994.
MacDonald, I. R., Bohrmann, G., Escobar, E., Abegg, F., Blanchon, P., Blinova, V., Bruckmann, W., Drews, M., Eisenhauer, A., Han, X., Heeschen, K., Meier, F., Mortera, C., Naehr, T., Orcutt, B., Bernard, B., Brooks, J., and de Farago, M.: Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico, Science, 304, 999–1002, 2004.
Maciolek, N., Grassle, J. F., Hecker, B., Brown, B., Blake, J. A., Boehm, P. D., Petrecca, R., Duffy, S., Baptiste, E., and Ruff, R. E.: Study of biological processes on the U.S. North Atlantic slope and rise, Final Report prepared for U.S. Department of the Interior, Minerals Management Service, under Contract No. 14-12-0001-30064, 310 pp. + Appendices A–M., 1987.
Macpherson, E., Jones, W., and Segonzac, M.: A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge, Zoosystema, 27, 709–723, 2005.
Madsen, F. J.: Octocorallia (Stolonifera – Telestacea – Xeniidea – Alcyonacea – Gorgonacea), The Danish Ingolf-Expedition, V, 13, 65 pp., with 1 plate and 53 figures in the text, 1944.
Maier, C., Hegeman, J., Weinbauer, M. G., and Gattuso, J.-P.: Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH, Biogeosciences, 6, 1671–1680, https://doi.org/10.5194/bg-6-1671-2009, 2009.
Malahoff, A.: Geology of the summit of Loihi submarine volcano, in: Volcanism in Hawaii, edited by: Decker, R. W., Wright, T. L., and Stauffer, P. H., US Geological Survey Professional Paper, 1350, 133–144, 1987.
Mastrototaro, F., D'Onghia, G., Corriero, G., Matarrese, A., Maiorano, P., Panetta, P., Gherardi, M., Longo, C., Rosso, A., Sciuto, F., Sanfilippo, R., Gravili, C., Boero, F., Taviani, M., and Tursi, A.: Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An update, Deep Sea Res. Pt. II, 57, 412–430, 2010.
Margulis, L., Corliss, J. O., Melkonian, M., and Chapman, D. J.: Handbook of the Protoctista, Jones and Bartlett, Boston, 1989.
Marshall, N. B.: DeepSea Biology: Developments and Perspectives, Garland, STMP Press, 566 pp., 1979.
Maurer, D., Diener, D. E., Robertson, G., and Gerlinger, T.: Comparison of community structure of soft-bottom macrobenthos of the Newport Submarine Canyon, California and adjoining self, Int. Rev. Ges. Hydrobio., 79, 519–603, 1994.
May, R. M.: How many species are there on Earth?, Science, 241, 1442–1449, 1988.
May, R. M.: Biological diversity: differences between land and sea, Philos. T. Rot. Soc. Lond. B., 343, 105–111, 1994.
Menzies, R. J., George, R. Y., and Rowe, G. T.: Abyssal Environment and Ecology of the World Oceans, John Wiley and Sons, New York, 323–327, 1973.
McClain, C. R., Rex, M. A., and Jabbour, R.: Deconstructing bathymetric body size patterns in deep-sea gastropods, Mar. Ecol.-Prog. Ser., 297, 181–187, https://doi.org/10.3354/meps297181, 2005.
McClain, C. R., Boyer, A. G., and Rosenberg, G.: The island rule and the evolution of body size in the deep sea, J. Biogeogr., 33, 1578–1584, 2006.
Menot, L., Sibuet, M., Carney, R. S., Levin, L. A., Rowe, G. T., Billett, D. S. M., Poore, G., Kitazato, H., Vanreusel, A., Galéron, J., Lavrado, H. P., Sellanes, J., Ingole, B., and Krylova, E. M.: New perceptions of continental margin biodiversity, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A. D., Chapter 5, Wiley-Blackwell, 79–103, 2010.
Messing, C. G., Reed, J. K., Brooke, S. D., and Ross, S. W.: Deep-Water Coral Reefs of the United States, in: Coral Reefs of the USA, Volume 1: Coral Reefs of the World, edited by: Riegl, B. M. and Dodge, R. E., Springer, The Netherlands, 767–791, 2008
Messing, C. G., Neumann, C. A., and Lang, J. C.: Biozonation of Deep-Water Lithoherms and Associated Hardgrounds in the Northeastern Straits of Florida, Palaios, 5, 15–33, 1990.
Mienis, F., de Stigter, H. C., White, M., Dulneveldc, G., de Haas, H., and van Weering, T. C. E.: Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE rockall trough margin, NE Atlantic ocean, Deep-Sea Res. Pt. I, 54, 1655–1674, 2007.
Miljutina, M. A., Miljutin, D. M., Mahatma, R., and Galéron, J.: Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific), Mar. Biodivers., 40, 1–15, 2010.
Milkov, A. V.: Worldwide distribution of submarine mud volcanoes and associated gas hydrates, Mar. Geol., 167, 29–42, 2000.
Mokievsky, V. and Azovsky, A.: Re-evaluation of species diversity patterns of free-living marine nematodes, Mar. Ecol.-Prog. Ser., 238, 101–108, 2002.
Monniot, F.: Faunal affinities among abyssal Atlantic basins, Sarsia, 64, 93–95, 1979.
Mora, C., Tittensor, D. P., and Myers, R. A.: The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes, P. Roy. Soc. B., 275, 149–155, 2008.
Mortensen, P. B. and Buhl-Mortensen, L.: Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada), Mar. Biol., 144, 1223–1238, 2004.
Mortensen, P. B. and Fosså, J. H.: Species diversity and spatial distribution of invertebrates on Lophelia reefs in Norway, Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 1849–1868, 2006.
Mortensen, P. B., Hovland, M., Brattegard, T., and Farestveit, R.: Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and associated megafauna, Sarsia, 80, 145–158, 1995.
Mortensen, P. B., Buhl-Mortensen, L., and Gordon Jr., D. C.: Distribution of deep-water corals in Atlantic Canada, Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 1832–1848, 2006.
Mortensen, P. B., Buhl-Mortensen, L., Gebruk, A. V., and Krylova, E. M.: Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data, Deep-Sea Res. Pt. II, 55, 142–152, 2008.
Moseley, H. N.: Deep-sea dredging and life in the deep sea, Nature, 21, 591–593, 1880.
Murray, J. and Hjort, J.: The depths of the ocean, Macmillan London, 821 pp., 1912.
Muthumbi, A. W., Vanreusel, A., Duineveld, G., Soetaert, K., and Vincx, M.: Nematode community structure along the continental slope off the Kenyan coast, Western Indian Ocean, Int. Rev. Hydrobiol., 89, 188–205, 2004.
Myers, A. A. and Hall-Spencer, J. M.: A new species of amphipod crustacean, Pleusymtes comitari sp. nov., associated with Acanthogorgia sp. gorgonians on deep-water coral reefs off Ireland, J. Mar. Biol. Assoc. UK, 84, 1029–1032, 2004.
Narayanaswamy, B. E., Bett, B. J., and Gage, J. D.: Ecology of bathyal polychaete fauna at an Arctic-Atlantic boundary (Faroe-Shetland Channel, North-east Atlantic), Mar. Biol. Res., 1, 20–32, 2005.
Narayanaswamy, B. E., Howell, K. L., Hughes, D. J., Davies, J. S., Roberts, J. M., and Black, K. D.: Strategic Environmental Assessment Area 7 Photographic Analysis, 103 pp.; appendix 199 pp. – Report for the Department of Trade and Industry, 2006.
Narayanaswamy, B. E., Bett, B. J., and Hughes, D. J.: Deep-water macrofaunal diversity in the Faroe-Shetland region 1 (NE Atlantic): a margin subject to an unusual thermal regime, Mar. Ecol., 31, 237–247, 2010.
Netto, S. A., Galluci, F., and Fonseca, G. F. C.: Meiofauna communities of continental slope and deep-sea sites off SE Brazil, Deep-Sea Res. Pt. I, 52, 845–859, 2005.
Neumann, A. C., Kofoed, J. W., and Keller, G. H.: Lithoherms in the strait of Florida, Geology, 5, 4–10, 1977.
O'Hara, T. D. and Tittensor, D. P.: Environmental drivers of ophiuroid species richness on seamounts, Mar. Ecol., 31, 1–13, 2010.
Oliveira, A., Santos, A. I., Rodrigues, A., and Vitorino, J.: Sedimentary particle distribution and dynamics on the Nazare canyon system and adjacent shelf (Portugal), Mar. Geol., 246, 105–122, 2007.
OU (Open University): The Ocean basins: their structure and evolution, The Open University Oceanography, Butterworth-Heinemann, Oxford, 192 pp., 1998.
Paterson, G. L. J. and Lambshead, P. J. D.: Bathymetric patterns of polychaete diversity in the Rockall Trough, Northeast Atlantic. Deep-Sea Res., 42, 1199–1214, 1995.
Parin, N. V., Mironov, A. N., and Nesis, K. N.: Biology of the Nazca and Sala y Gomez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: Composition and distribution of the fauna, its communities and history, Adv. Mar. Biol., 32, 145–242, 1997.
Paterson, G. L. J. and Lambshead, P. J. D.: Bathymetric patterns of polychaete diversity in the Rockall Trough, northeast Atlantic, Deep-Sea Res. Pt. II, 42, 1199–1214, 1995.
Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neuman, C., Corso, W. P., Golubic, S., Hook, J. E., Sikes, J. E., and Curray, J.: Biological communities at the Florida Escarpment resemble hydrothermal vent taxa, Science, 226, 965–967, 1984.
Paull, C. K., Neumann, A. C., Ende, B. A., Ussler III, W., and Rodriguez, N. M.: Lithoherms on the Florida-Hatteras slope, Mar. Geol., 166, 83–101, 2000.
Pauly, D., Alder, J., Bennett, E., Christensen, V., Tyedmers, P., and Watson, R.: The future for fisheries, Science, 302, 1359–1361, 2003.
Pauly, D., Watson, R., and Alder, J.: Global trends in world fisheries: impacts on marine ecosystems and food security, Philos. T. Roy. Soc. B., 360, 5–12, 2005.
Peters, R. H.: The ecological implications of body size, Cambridge University Press, Cambridge, 329 pp., 1983.
Pfannkuche, O. and Thiel, H.: Meiobenthic Stocks and Benthic Activity on the NE-Svalbard Shelf and in the Nansen Basin, Polar Biol., 7, 253–266, 1987.
Pineda, J. and Caswell, H.: Bathymetric species-diversity patterns and boundary constraints on vertical range distributions, Deep-Sea Res. Pt. II, 45, 83–101, 1998.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive waters are expanding, Geophys. Res. Lett., 35, L03618, https://doi.org/10.1029/2007GL031745, 2008.
Poore, G. C. B. and Wilson, G. D. F.: Marine species richness, Nature, 361, 597–598, 1993.
Post, A. L., Hemer, M. A., O'Brien, P. E., Roberts, D., and Craven, M.: History of benthic colonization beneath the Amery ice shelf, East Antarctica, Mar. Ecol.-Prog. Ser., 344, 29–37, 2007.
Puig, P., Ogsto, A. S., Mullenbach, B. L., Nittrouer, C. A., and Sternberg, R. W.: Shelf-to-canyon sediment transport processes on the Eel Continental Margin (Northern California), Mar. Geol., 193, 129–149, 2003.
Raes, M., Armin, R., and Vanreusel, A.: Response of nematode communities after large-scale ice-shelf collapse events in the Antarctic Larsen area, Global Change Biol., 16, 1618–1631, 2010.
Ramirez-Llodra, E.: Fecundity and Life-history Strategies in Marine Invertebrates, Adv. Mar. Biol., 43, 88–170, 2002.
Ramirez-Llodra, E., Ballesteros, M., Company, J. B., Dantart, L., and Sardà, F.: Spatio-temporal variations in the diversity, biomass and abundance of bathyal invertebrates in the Catalan Sea (Western Mediterranean), Mar. Biol., 153, 297–309, 2008.
Ramirez-Llodra, E., Company, J. B., Sardà, F., and Rotllant, G.: Megabenthic diversity patterns and community structure of the Blanes submarine canyon and adjacent slope in the Northwestern Mediterranean: a human overprint?, Mar. Ecol., 31, 167–183, 2010.
Ramirez-Llodra, E., Tyler, P. A., Rowden, A. A., Levin, L., Smith, C., Clark, M. R., Escobar, E., Aksel Bergstad, O., Baker M. C., Rogers, A., Van Dover, C. L., and Menot, L.: Man and the last great wilderness: human impact on the deep sea, PLOS ONE, in preparation, 2010.
Rea, A. D. K., Lyle, M. W., Liberty, L. M., Hovan, S. A., Bolyn, M. P., Gleason, J. D., Hendy, I. L., Ltimer, J. C., Murphy, B. M., Owen, R. M., Paul, C. F., Rea, T. H., Stancin, A. M., and Thomas, A. D. J.: Broad region of no sediment in the southwest Pacific Basin, Geology, 34, 873–876, 2006.
Reaka-Kudla, M. L.: The global diversity of coral reefs: a comparison with rain forests, in: Biodiversity II: understanding and protecting our natural resources, Joseph Henry Press, 1997.
Reed, J. K.: Submersible studies of deep-water Oculina and Lophelia coral banks off southeastern U.S.A., in: Diving for Science, edited by: Cahoon, L. B., Wilmington, University of North Carolina, 143–151, 1992.
Reichart, G. L., Lourens, L. J., and Zachariasse, W. J.: Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years, Paleoceanography, 13, 607–621, 1998.
Relexans, J. C., Deming, J., Dinet, A., Gaillard, J. F., and Sibuet, M.: Sedimentary organic matter and micro-meiobenthos with relation to trophic conditions in the tropical northeast Atlantic, Deep-Sea Res. Pt. I, 43, 1343–1368, 1996.
Renaud, P. E., Ambrose, W. G., Vanreusel, A., and Clough, L. M.: Nematode and macrofaunal diversity in central Arctic Ocean benthos, J. Exp. Mar. Biol. Ecol., 330, 297–306, 2006.
Reveillaud, J., Freiwald, A., Van Rooij, D., Le Guilloux, E., Altuna, A., Foubert, A., Vanreusel, A., Olu-Le Roy, K., and Henriet, J. P.: The distribution of scleractinian corals in the Bay of Biscay, NE Atlantic, Facies, 54, 317–331, 2008.
Rex, M. A.: Community structure in the deep-sea benthos, Ann. Rev. Ecol. Evol., 12, 331–353, 1981.
Rex, M. A.: Geographic patterns of species diversity in the deep-dea benthos, in: The Sea, edited by: Rowe, G. T., J. Wiley & sons, New York, 453–472, 1983.
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F.: Global-scale latitudinal patterns of species diversity in the deep-sea benthos, Nature, 365, 636–639, 1993.
Rex, M. A., Etter, R. J., and Stuart, C. T.: Large-scale patterns of species diversity in the deep-sea benthos, in: Marine Biodiversity: Patterns and Processes, edited by: Ormond, R. P. G., Gage, J. D., and Angel, M. V., Cambridge University Press, Cambridge, 95–121, 1997.
Rex, M. A. and Etter, R. J.: Bathymetric patterns of body size: implications for deep-sea biodiversity, Deep-Sea Res. Pt. II, 45, 103–127, 1998.
Rex, M. A., Stuart, C. T., and Coyne, G.: Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic, Proceedings of the National Academy of Sciences of the United States of America, 97, 4082–4085, 2000.
Rex, M. A., Stuart, C. T., and Etter, R. J.: A comment on whether deep-sea nematodes show a positive latitudinal gradient of species diversity, The potential role of depth, Mar. Ecol.-Prog. Ser., 210, 297–298, 2001.
Rex, M. A., Crame, J. A., Stuart, C. T., and Clarke, A.: Large-scale biogeographic patterns in marine mollusks: A confluence of history and productivity?, Ecology, 86, 2288–2297, 2005a.
Rex, M. A., McClain, C. R., Johnson, N. A., Etter, R. J., Allen, J. A., Bouchet, P., and Warén, A.: A source-sink hypothesis for abyssal biodiversity, Am. Nat., 165, 163–178, 2005b.
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies, R., and Avery, R.: Global bathymetric patterns of standing stock and body size in the deep-sea benthos, Mar. Ecol.-Prog. Ser., 317, 1–8, 2006.
Rice, A. L., Aldred, R. G., Billett, D. M. S., and Thurston, M. H.: The combined use of an epibenthic sledge and deep-sea camera to give quantitative relevance to macro-benthic samples, Ambio Special Report, 6, 59–72, 1979.
Richter, T. O., de Stigter, H. C., Boer, W., Jesús, C. C., and van Weering, T. C. E.: Dispersal of natural and anthropogenic lead through submarine canyons at the Portuguese margin, Deep-Sea Res. Pt. I, 56, 267–282, 2009.
Riddle, M. J., Craven, M., Goldsworthy, P. M., and Carsey, F.: A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica, Paleoceanography, 22, PA1204, https://doi.org/10.1029/2006PA001327, 2007.
Roberts, J. M., Wheeler, A. J., Freiwald, A., and Cairns, A. F.: The biology and geology of deep-sea coral habitats, Cambridge University Press, Camridge, UK, 334 pp., 2009.
Roberts, J. M., Wheeler, A. J., and Freiwald, A.: Reefs of the deep: the biology and geology of cold-water coral ecosystems, Science, 312, 543–547, 2006.
Roberts, J. M., Henry, L.-A., Long, D., and Hartley, J. P.: Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic, Facies, 54, 297–316, 2008.
Robison, B. H.: Deep pelagic biology, J. Exp. Mar. Biol. Ecol., 300, 253–272, 2004.
Robison, B. H.: Conservation of deep pelagic biodiversity, Conserv. Biol., 23, 847–858, 2009.
Robinson, C., Steinberg, D. K., Anderson, T. R., Aristegui, J., Carlson, C. A., Frost, J. R., Ghiglione, J.-F., Hernandez-Leon, S., Jackson, G. A., Koppelmann, R., Queguiner, B., Ragueneau, O., Rassoulzadegan, F., Robison, B. H., Tambourini, C., Tanaka, T., Wishner, K. F., and Zhang, J.: Mesopelagic zone ecology and biogeochemistry – a synthesis, Deep-Sea Res. Pt. II, 57, 1504–1518, 2010.
Robison, B. H., Sherlock, R. E., and Reisenbichler, K. R.: The bathypelagic community of Monterrey Canyon, Deep-Sea Res. Pt. II, 57, 1551–1556, 2010.
Roether, W. B., Manc, B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Kocacevic, V., and Luchetta, A.: Recent changes in eastern Mediterranean deep waters, Science, 271, 333–335, 1996.
Rogers, A. D.: The biology of seamounts, Adv. Mar. Biol., 30, 305–350, 1994.
Rogers, A. D.: The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities, Int. Rev. Hydrobiol., 84, 315–406, 1999.
Rogers, A. D.: The role of oceanic oxygen minima in generating biodiversity in the deep sea, Deep-Sea Res. Pt. II, 47, 119–148, 2000.
Rona, P. A., Klinkhammer, G., Nelsen, T. A., Tefry, J. H., and Elderfield, H.: Black smokers, massive suphides and vent biota at the Mid-Atlantic Ridge, Nature, 321, 33–37, 1986.
Rona, P. A.: Resources of the seafloor, Science, 299, 673–674, 2003.
Rose, A., Seifried, S., Willen, E., George, K. H., Veit-Köhler, G., Bröhldick, K., Drewes, J., Moura, G., Martínez Arbizu, P., and Schminke, H. K.: A method for comparing within-core alpha diversity values from repeated multicorer samplings, shown for abyssal Harpacticoida (Crustacea: Copepoda) from the Angola Basin, Org. Divers. Evol., 5, 3–17, 2005.
Rosenzweig, M. L.: Species diversity in space and time, Cambridge University Press, Cambridge, 1995.
Rotllant, G., Abad Holgado, E., Sardà, F., Ábalos, M., Company, J. B., and Rivera, J.: Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea, Deep-Sea Res. Pt. I, 53, 1895–1906, 2006.
Roux, M., Rio, M., Schein, E., Lutz, E., Frltz, L. W., and Ragone, L. M.: Mesures in situ de la croissance des bivalves et des vestimentiferes et de la corrosion des coquilles au site hydrothermal de 13° N (dorsale du Pacifique oriental), C. R. Acad. Sci., 308, 121–127, 1989.
Rowe, G. T., Polloni, P. T., and Haedrich, R. L.: The deep-sea macrobenthos on the continental margin of the northwest Atlantic Ocean, Deep-Sea Res., 29, 257–278, 1982.
Rowe, G. T.: Biomass and production of the deep-sea macrobenthos, in: Deep-sea Biology, edited by: Rowe, G. T., Wiley, New York, 97–121, 1983.
Rowe, G. T., Wei, C., Nunnally, C., Haedrich, R., Montagna, P., Baguley, J. G., Bernhard, J. M., Wicksten, M., Ammons, A., Briones, E. E., Soliman, Y., and Deming, J. W.: Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico, Deep-Sea Res. Pt. II, 55, 2699–2711, 2008.
Sakshaug, E. and Skjoldal, H. R.: Life at the ice edge, Ambio, 18, 60–67, 1989.
Sakshaug, E.: Biomass and productivity distributions and their variability in the Barents Sea, International Council for the Exploration of the Sea, J. Mar. Sci., 54, 341–350, 1997.
Samedi, S., Quéméré, E., Lorion, J., Tillier, A., von Cosel, R., Lopez, P., Cruaud, C., Couloux, A., and Boisselier-Dubayle, M.-C.: Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis, C. R. Biol., 330, 446–456, 2007.
Sanders, H. L.: Marine benthic diversity: a comparative study, Am. Nat., 102, 243–282, 1968.
Sanders, H. L.: Benthic marine diversity and the stability-time hypothesis, Diversity and Stability in Ecological Systems, Brookhaven Symposia in Biology, 71–80, 1969.
Sanders, H. L.: Evolutionary ecology and life-history patterns in the deep sea, Sarsia, 64, 1–7, 1979.
Sardà, F., Cartes, J., and Company, J. B.: Spatio-temporal variations in megabenthos abundance in three different habitats on the Catalan deep-sea (Western Mediterranean), Mar. Biol., 120, 211–219, 1994a.
Sardà, F., Cartes, J., and Norbis, W.: Spatio-temporal structure of the deep-water shrimp Aristeus antennatus (Decapoda: Aristeidae) population in the western Mediterranean, Fish. B-NOAA, 92, 599–607, 1994b.
Sardà, F., Maynou, F., and Tallo, L.: Seasonal and spatial mobility patterns of rose shrimp Aristeus antennatus in the Western Mediterranean: results of a long-term study, Mar. Ecol.-Prog. Ser., 159, 133–141, 1997.
Sardà, F., Company, J. B., Bahamon, N., Rotllant, G., Flexas, M. A., Sánchez, J., Zúñiga, D., Coenjaerts, J., Orellana, D., Jordá, G., Puigdefàbregas, J., Sanchez-Vidal, A., Calafat, A., Martin, D., and Espino, M.: Relationship between environment and occurence of the deep-water rose shrimp Aristeus antennatus (Risso, 1816) in the Blanes submarine canyon (NW Mediterranean), Prog. Oceanogr., 82, 227–238, 2009.
Sars, M., Beretningom, E. N., and Sommeren, I.: Foretagen Zoologisk Reise I Lofoten og Finmarken, Cristiana, 1849.
Schewe, I. and Soltwedel, T.: Deep-sea meiobenthos of the central Arctic Ocean: Distribution patterns and size-structure under extreme oligotrophic conditions, Vie et milieu, 49, 79–92, 1999.
Schewe, I.: Small-sized organisms of the Alpha Ridge, Central Arctic Ocean, Int. Rev. Hydrobiol., 86, 317–335, 2001.
Schlacher, T. A., Williams, A., Althaus, F., and Schlacher-Hoenlinger, M. A.: High-resolution seabed imagery as a tool for biodiversity conservation planning on contienental margins, Mar. Ecol., 31, 200–222, 2010.
Schlacher, T. A., Rowden, A. A., Dower, J. F., and Consalvey, M.: Seamount science scales undersea mountains: new research and outlook, Mar. Ecol., 31 (Supl. 1), 1–13, 2010.
Schwabe, E.: A summary of reports of abyssal and hadal Monoplacophora and Polyplacophora (Mollusca), Zootaxa, 1866, 205–222, 2008.
Scoffin, T. P. and Bowes, G. E.:The Facies Distribution of Carbonate Sediments on Porcupine Bank, Northeast Atlantic, Sediment. Geol., 60, 125–134, 1988.
Scoffin, T. P., Alexandersson, T. E., Bowes, G. E. J., Farrow, G. E., and Milliman, J. D.: Recent, temperate, sub-photic, carbonate sedimentation: Rockall Bank, northeast Atlantic, J. Sediment. Petrol., 50, 331–356, 1980.
Sebens, K. P.: The limits to indeterminate growth: an optimal size model applied to passive suspension feeders, Ecology, 63, 209–222, 1982.
Sebens, K. P.: The ecology of indeterminate growth in animals, Ann. Rev. Ecol., 18, 371–407, 1987.
Seifried, S.: The Importance of a Phylogenetic System for the Study of Deep-Sea Harpacticoid Diversity, Zool. Stud., 43, 435–445, 2004.
Sepkoski Jr., J. J.: A Model of Onshore-Offshore Change in Faunal Diversity, Paleobiology, 17, 58–77, 1991.
Shank, T. M.: The Evolutionary Puzzle of Seafloor Life, Oceanus, 42, 19–22, 2004.
Sibuet, M. and Olu, K.: Biogeography, biodiversity and fluid dependence of deep sea cold seeps communities at active and passive margins, Deep-Sea Res. Pt. II, 45, 517–567, 1998.
Sibuet, M., Calmet, D. O., and Auffret, G. A.: Reconnaissance photographique de conteneurs en place dans la zone d'immersion des déchets faiblement radioactifs de l'Atlantique Nord-Est, C. R. Acad. Sci. Paris Ser. C, 301, 497–502, 1985.
Siezen, R. J., and Wilson, G.: Genomics of deep-sea and sub-seafloor microbes, Microbial Biotech., 2, 157–163, 2009.
Smith, W. O. and Sakshaug, E.: Polar phytoplankton, in: Polar Oceanography, Part B, edited by: Smith, W. O., Academic Press, London, 477–525, 1990.
Smith, C. R.: Bigger is better: The role of whales as detritus in marine ecosystems, in: Whales, Whaling and Ocean Ecosystems, edited by: Estes, P. D., De Master, D. P., Brownell Jr., R. L., Doak, D. F., William, T. M., and Berkeley, D., University of California Press, 286–301, 2006.
Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A., and Deming, J. W.: Vent fauna on whale remains, Nature, 341, 27–28, 1989.
Smith, C. R., Hoorer, D. J., Doan, S. E., Pope, R. H., DeMaster, D. J., Dobbs, F. C., and Altabet, M. A.: Phytodetritus of the abyssal seafloor across 10° of latitude in the central equatorial Pacific, Deep-Sea Res. Pt. II, 43, 1309–1338, 1996.
Smith, C. R. and Baco, A. R.: Ecology of whale falls at the deep-sea floor, Oceanogr. Mar. Biol., 41, 311–354, 2003.
Smith, A. B. and Stockley, B.: The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation, P. Roy. Soc. B., 272, 865–869, https://doi.org/10.1098/rspb.2004.2996, 2005.
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., and Martinez Arbizu, P.: Abyssal food limitation, ecosystem structure and climate change, Trends Ecol. Evol., 23, 518–528, 2008.
Snelgrove, P. V. R. and Smith, C. R.: A riot of species in an environmental calm; The paradox of the species-rich deep sea, Oceanogr, Mar. Biol. Ann. Rev., 40, 311–342, 2002.
Snelgrove, P. V. R.: Discoveries of the Census of Marine Life: Making Ocean Life Count, Cambridge University Press, Cambridge, 304 pp., 2010.
Soetaert, K. and Heip, C.: Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and the Mediterranean Sea, Mar. Ecol.-Prog. Ser., 125, 171–183, 1995.
Soetaert, K., Vincx, M., and Heip, C.: Nematode community structure along a Mediterranean shelf-slope gradient, Mar. Ecol., 16, 189–206, 1995.
Solow, A. R. and Smith, W. K.: On estimating the number of species from the discovery record, P. Roy. Soc. B., 272, 285–287, 2005.
Soltwedel, T.: Metazoan meiobenthos along continental margins: a review, Prog. Oceanogr., 46, 59–84, 2000.
Soltwedel, T., Mokievsky, V., and Schewe, I.: Benthic activity and biomass on the Yermak Plateau and in adjacent deep-sea regions northwest of Svålbard, Deep-Sea Res. Pt. I, 47, 1761–1785, 2000.
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdana, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., and Robertson, J.: Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas, Bioscience, 57, 573–582, 2007.
Spiess, F.: The Meteor expedition, Vertag von Dietrich Reimer, Berlin, 1928.
Squires, D. F.: Deep-water coral structure on the Campbell Plateau, New Zealand, Deep-Sea Res., 12, 785–788, 1965.
Stefanescu, C., Morales-Nin, B., and Massutí, E.: Fish assemblages on the slope in the Catalan Sea (Western Mediterranean): influence of a submarine canyon, J. Mar. Biol. Assoc. UK, 74, 499–512, 1994.
Stone, R.: Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions, Coral Reefs, 25, 229–238, 2006.
Storey, B. C.: The role of mantle plumes in continental breakup: case histories from Gondwanaland, Nature, 337, 301–308, 1995.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, 2008.
Struck, T., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D., and Halanych, K.: Annelid phylogeny and the status of Sipuncula and Echiura, BMC Evol. Biol., 7, 57, 2007.
Stuart, C. T., Rex, M. A., and Etter, R. J.: Large-scale spatial and temporal patterns of deep-sea benthic species diversity, in: Ecosystems of the Deep Oceans, edited by: Tyler, P. A., Ecosystems of the World, Elsevier, Amsterdam, 295–313 pp., 2003.
Sweeney, J. B.: A pictorial history of oceanographic submersibles, Crown Publishers Inc., New York, 1970.
Tarasov, V. G., Gebruk, A. V., Mironov, A. N., and Moskalev, L. I.: Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?, Chem. Geol., 224, 5–39, 2005.
Taviani, M., Freiwald, A., and Zibrowius, H.: Deep coral growth in the Mediterranean Sea: an overview, in: Cold-Water Corals and Ecosystems, edited by: Freiwald, A. and Roberts, J. M., Erlangen Earth Conference Series, Springer, Berlin, Heidelberg, 137–156, 2005.
Tendal, O. S.: The North Atlantic distribution of the octocoral Paragorgia arborea (L., 1758) (Cnidaria, Anthozoa), Sarsia, 77, 213–217, 1992.
Thiel, H.: The size structure of the deep-sea benthos, Internationale Revue der gesamte Hydrobiology, Berlin, 60, 575–606, 1975.
Thiel, H.: Structural aspects of the deep-sea benthos, Ambio, 6, 25–31, 1979.
Thiel, H.: Meiobenthos and nanobenthos of the deep-sea, in: Deep-sea Biology, editec by: Rowe, G., Wiley, New York, 167–230, 1983.
Thiel, H., Pfannkuche, O., Schriever, G., Lochte, K., Gooday, A. J., Hemleben, R. E. G., Mantoura, C. M., Turley, J. W., Patching, J. W., and Riemann, F.: Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic, Biol. Oceanogr., 6, 203–239, 1990.
Thiel, H.: Anthropogenic impacts on the deep sea, in: Ecosytems of the World, Vol. 28, Ecosystems of the Deep Ocean, edited by: Tyler, P. A., Elsevier, Amsterdam, 427–472, 2003.
Thistle, D.: The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance, Deep-Sea Res., 30, 1235–1245, 1983.
Thistle, D. and Sherman, K. M.: The nematode fauna of a deep-sea site exposed to strong near-bottom currents, Deep-Sea Res., 32, 1077–1088, 1985.
Thistle, D., Yingst, J. Y., and Fauchald, K.: A deep-sea benthic community exposed to strong bottom currents on the Scotian Rise (Western Atlantic), Mar. Geol., 66, 91–112, 1985.
Thistle, D. and Wilson, G. D. F.: A hydrodynamically modified, abyssal isopod fauna, Deep-Sea Res., 34, 73–87, 1987.
Thistle, D.: A temporal difference in harpacticoid-copepod abundance at a deep-sea site: caused by benthic storms?, Deep-Sea Res. Pt. I, 32, 1015–1020, 1988.
Thistle, D. and Eckman, J. E.: The effect of a biologically produced structure on the benthic copepods of a deep-sea site, Deep-Sea Res., 37, 541–554, 1990.
Thistle, D., Ertman, S. C., and Fauchald, K.: The fauna of the HEBBLE site: patterns in standing stock and sediment-dynamic effects, Mar. Geol., 99, 413–422, 1991.
Thistle, D. and Wilson, G. D. F.: Is the HEBBLE isopod fauna hydrodynamically modified – a second test, Deep-Sea Res., 43, 545–554, 1996.
Thistle, D.: The deep-sea floor: an overview, in: Ecosystems of the World, Vol. 28, Ecosystems of the Deep Oceans, edited by: Tyler, P. A., Elsevier, Amsterdam, 5–39, 2003.
Thomas, E. and Gooday, A. J.: Cenozoic deep-sea benthic foraminifers: Tracers for changes in oceanic productivity?, Geology, 24, 355–358, 1996.
Thomas, E. and Shackleton, N. J.: The Paleocene-Eocene benthic foraminiferal exctinction and stable isotope anomalies, in: Correlation in the early paleocene in Northwestern Europe, edited by: Knox, R. W. O. B., Corfield, R. M., and Dunnay, R. E., Geol. Soc. Special Publication, 101, 401–441, 1996.
Thomas, E.: Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?, in: Large Ecosystem Perturbations: Causes and Consequances, edited by: Monechi, S., Coccioni, R., and Rampino, M. R., Geol. Soc. America Special Paper, 424, 1–23, 2007.
Thomson, C. W.: The Depths of the Sea, McMillan and Co., London, 1873.
Thomson, M. R. A.: Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation, Deep-Sea Res. Pt. II, 51, 1467–1487, 2004.
Tietjen, J. H.: Distribution and species diversity of deep-sea nematodes off North Carolina, Deep-Sea Res., 23, 755–768, 1976.
Tietjen, J. H.: Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain, Deep-Sea Res., 36, 1579–1594, 1989.
Tittensor, D. P., Baco, A. R., Brewin, P. E., Clark, M. R., Consalvey, M., Hall-Spencer, J., Rowden, A. A., Schlacher, T., Stocks, K. I., and Rogers, A. D.: Predicting global habitat suitability for corals on seamounts, J. Biogeogr., 36, 1111–1128, 2009.
Tizard, T. H., Moseley, H. N., Buchanan, J. Y., and Murray, J.: Challenger Report: Narrative of the cruise of H.M.S. Challenger, with a general account of the scientific results of the expedition, partly illustrated by: Wild, J. J., Her Majesty's Stationery Office, 1110 pp., 1885.
Todo, Y., Kitazato, H., Hashimoto, J., and Gooday, A. J.: Simple foraminifera flourish at the ocean's deepest point, Science, 307, 689, 2005.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, Pergamon, London, 422 pp., 1994.
Tselepides, A. and Lampadariou, N.: Deep-sea meiofaunal community structure in the Eastern Mediterranean: are trenches benthic hotspots?, Deep-Sea Res. Pt. I, 51, 833–847, 2004.
Tudhope, A. W. and Scoffin, T. P.: Processes of sedimentation in Gollum Channel, Porcupine Seabight: submersible observations and sedimentation analyses: Trans. Roy. Soc. Edinburgh, Earth Sci., 86, 49–55, 1995.
Tunnicliffe, V.: The Nature and Origin of the Modern Hydrothermal Vent Fauna, Palaios, 7, 338–350, 1992.
Tunnicliffe, V., Fowler, C. M. R., and McArthur, A. G.: Plate tectonic history and hot vent biogeography, in: Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-ocean ridges, edited by: MacLeod, C. J., Tyler, P. A., Young, C. M., and Walker, C. L., Geol. Soc. Lond., 225–238, 1996.
Tunnicliffe, V., Embley, R. W., Holden, J. F., Butterfield, D. A., Massoth, G. J., and Juniper, S. K.: Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge, Deep-Sea Res. Pt. I, 44, 1627–1644, 1997.
Tunnicliffe, V., McArthur, A. G., and McHugh, D.: A biogeographical perspective of the deep-sea hydrothermal vent fauna, Adv. Mar. Biol., 34, 353–442, 1998.
Tunnicliffe, V., Juniper, K. S., and Sibuet, M.: Reducing environments of the deep-sea floor, in: Ecosystems of the World, Vol. 28, Ecosystems of the deep oceans, edited by: Tyler, P. A., Elsevier, London, 81–110, 2003.
Turchetto, M., Boldrin, A., Langone, L., Miserocchi, S., Tesi, T., and Foglini, F.: Particle transport in the Bari Canyon (southern Adriatic Sea), Mar. Geol., 246, 231–247, 2007.
Tursi, A., Mastrototaro, F., Matarrese, A., Maiorano, P., and D'onghia, G.: Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean), Chem. Ecol., 20, 107–116, 2004.
Tyler, P. A.: Seasonality in the deep-sea, Oceanogr. Mar. Biol., 26, 227–258, 1988.
Tyler, P. A. and Ramírez-Llodra, E.: Larval and reproductive strategies on European continental margins, in: Ocean Margin Systems, edited y: Billett, D. S. M., Wefer, G., Hebbeln, D., Jorgensen, B. B., Schluter, M., and Van Weering, T. C. E., Springer, Berlin, 339–350, 2002.
Tyler, P. A., German, C. R., Ramirez-Llodra, E., and Van Dover, C. L.: Understanding the biogeography of chemosynthetic ecosystems, Oceanol. Acta, 25, 227–241, 2003.
Uchida, R. N. and Tagami, D. T.: Groundfish fisheries and research in the vicinity of seamounts in the north Pacific ocean, Mar. Fish. Rev., 46, 1–17, 1984.
UNEP-WCMC: Deep-sea biodiversity and ecosystems: A scoping report for their socio-economy, management and governance, 1–84, 2007.
Unger, M. A., Harvey, E., Vadas, G. G., and Vecchione, M.: Persistent pollutants in nine species of deep-sea cephalopods, Mar. Pollut. Bull., 56, 1486–1512, 2008.
Van Dover, C. L.: The Ecology of Deep-Sea Hydrothermal Vents, Princeton University Press, Princeton, 424 pp., 2000.
Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek, R. C.: Evolution and biogeography of deep-sea vent and seep invertebrates, Science, 295, 1253–1257, 2002.
Van Dover, C. L.: The biological environment of polymetallic sulphides deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines in exploration areas, in: Polymetallic Sulphides and Cobalt-Rich Ferromanganese Crusts Deposits: Establishment of Environmental Baselines and an Associated Monitoring Programme During Exploration, Proceedings of the International Seabed Authority's Workshop held in Kingston, Jamaica, 6–10 September 2004; International Seabed Authority, Kingston, Jamaica, 2007.
Vanaverbeke, J., Martinez-Arbizu, P., Dahms, H. U., and Schminke, H. K.: The metazoan meiobenthos along a depth gradient in the Arctic Laptev Sea with special attention to nematode communities, Polar Biol., 18, 391–401, 1997a.
Vanaverbeke, J., Soetaert, K., Heip, C., and Vanreusel, A.: The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic), J. Sea Res., 38, 93–107, 1997b.
Vanhove, S., Arntz, W., and Vincx, M.: Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica), Mar. Ecol.-Prog. Ser., 181, 237–256, 1999.
Vanhove, S., Vermeeren, H., and Vanreusel, A.: Meiofauna towards the South Sandwich Trench (750-6300m), focus on nematodes, Deep-Sea Res. Pt. II, 51, 1665–1687, 2004.
Vanreusel, A., Clough, L., Jacobsen, K., Ambrose, W., Jivaluk, J., Ryheul, V., Herman, R., and Vincx, M.: Meiobenthos of the central Arctic Ocean with special emphasis on nematode community structure, Deep-Sea Res. Pt. I, 47, 1855–1879, 2000.
Vanreusel, A., Fonseca, G., Danovaro, R., Da Silva, S., Esteves, A. M., Ferrero, T. G. G., Galtsova, V., Gambi, C., da Fonseca Genevois, V., Ingels, J., Ingole, B., Lampadariou, N., Merckx, B., Miljutin, D., Miljutina, M., Muthumbi, A., Netto, S., Portnova, D., Radziejewska, T., Raes, M., Tchesunov, A., Vanaverbeke, J., Van Gaever, S., Venekey, V., Bezerra, T. N., Flint, H., Copley, J., Pape, E., Zeppilli, D., Arbizu Martinez, P., and Galeron, J.: The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity, Mar. Ecol., 31, 6–20, 2010.
Vecchione, M., Bergstad, O. A., Byrkjedal, I., Falkenhaug, R., Gebruk, A. V., Godø, O. R., Gislason, A., Heino, M., Høines, Å. S., Menezes, G., Piatkowski, U., Priede, I. G., Skov, H., Søiland, H., Sutton, T., and de Lange Wenneck, T.: Biodiversity Patterns and Processes on the mid-Atlantic Ridge, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, edited by: McIntyre, A., Chapter 6, Wiley Blackwell, Oxford, 103–121, 2010.
Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J.-C., Vangriesheim, A., Etoubleau, J., Christiand, J. R., and Juniper, S. K.: Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution, Deep-Sea Res. Pt. I, 54, 1912–1935, 2007.
Vetter, E. W. and Dayton, P. K.: Organic enrichment by macrophyte detritus and abundance patterns of megafaunal populations in submarine canyons, Mar. Ecol.-Prog. Ser., 186, 137–148, 1999.
Vetter, E. W., Smith, C. R., and De Leo, F. C.: Megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii, Mar. Ecol., 31, 183–200, 2010.
Vincx, M., Bett, B. J., Dinet, A., Ferrero, T., Gooday, A. J., Lambshead, P. J. D., Pfannkuche, O., Soltwedel, T., and Vanreusel, A.: Meiobenthos of the deep Northeast Atlantic, Adv. Mar. Biol., 30, 2–88, 1994.
Vine, F. J. and Matthews, D. H.: Magnetic anomalies over oceanic ridges, Nature, 199, 947–949, 1963.
Vinogradov, G. M.: Vertical distribution of macroplankton at the Charlie-Gibbs Fracture Zone (North Atlantic), as observed from the manned submersible Mir-1, Mar. Biol., 146, 325–331, 2005.
Vinogradova, N. G.: The geographical distribution of the abyssal and hadal (ultra-abyssal fauna in relation to the vertical zonation of the ocean, Sarsia, 64, 41–49, 1979.
Vinogradova, N. G.: Zoogeography of the Abyssal and Hadal Zones, in: The biogeography of the oceans, edited by: Gebruk, A. V., Southward, E. C., and Tyler, P. A., Adv. Mar. Biol., 32, 325–387, 1997.
Vitiello, P.: Peuplements de nematodes marins des fonds envasés de Provence II. Fonds détritiques invasés et vases bathyales, Ann. Inst. Oceanogr. Paris, 52, 283–311, 1976.
Wallich, G. C.: The North Atlantic seabed – Comprising a diary of the voyage of HMS Bulldog in 1860 and observations on the presence of animal life and the formation and nature of organic deposits at great depths in the ocean, Published with the sanction of Lords Commisoners of the Admiralty, 1862.
Wareham, V. E. and Edinger, E. N.: Distribution of deep-sea corals in the Newfoundland and Labrador region, Northwest Atlantic Ocean, B. Mar. Sci., 81, 289–313, 2007.
Webb, T. J., Vanden Berghe, E., and O'Dor, R.: Biodiversity's big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean, PLOS One, 5, e10223, https://doi.org/10.1371/journal.pone.0010223, 2010.
Weishappel, J. B. F. and Svavarsson, J.: Benthic amphipods (Crustacea: Malacostraca) in Icelandic waters: diversity in relation to faunal patterns from shallow to intermediate deep Arctic and North Atlantic Oceans, Mar. Biol., 131, 133–143, 1998.
Widder, E. A.: Bioluminescence and the pelagic visual environment, Mar. Freshw. Behav. Phy., 35, 1–26, 2002.
Widder, E. A.: Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity, Science, 328, 704–708, 2010.
Wienberg, C., Beuck, L., Heidkamp, S., Hebbeln, D., Freiwald, A., Pfannkuche, O., and Monteys, X.: Franken Mound: facies and biocoenoses on a newly-discovered "carbonate mound" on the western Rockall Bank, NE Atlantic, Facies, 54, 1–24, 2008.
Wigham, B., Tyler, P. A., and Billett, D. S. M.: Reproductive biology fo the abyssal holothurian Amperima rosea: an oppotunistic response to variable flux of surface derived organic matter?, J. Mar. Biol. Assoc. UK, 83, 175–188, 2003.
Wilson, J. B.: The distribution of the coral Lophelia pertusa (L.) (L. prolifera (Pallas)) in the north-east Atlantic, J. Mar. Biol. Assoc. UK, 59, 149-164, 1979.
Wilson, G. D.: Variation in the Deep-Sea Isopod Eurycope iphthima (Asellota, Eurycopidae): Depth Related Clines in Rostral Morphology and in Population Structure, J. Crustacean Biol., 3, 127–140, 1983.
Wilson, G. and Hessler, R.: The effects of manganese nodule test mining on the benthic fauna in the North Equatorial Pacific, in: Environmental Effects of Deep-Sea Dredging, Final Report to the National Oceanic and Atmospheric Administration, edited by: Spiess, F. N., Hessler, R., Wilson, G., and Weydert, M., Scripps Institution of Oceanography, La Jolla, California, 24–86, 1987.
Wilson, S. P. and Costello, M. J.: Predicting future discoveries of European marine species by using a non-homogenous renewal process, J. Roy. Stat. Soc. C., 54, 897–918, 2005.
Wisshak, M., Neumann, C., Jakobsen, J., and Freiwald, A.: The "living-fossil community" of the cyrtocrinid Cyathidium foresti and the deep-sea oyster Neopycnodonte zibrowii (Azores Archipelago), Palaeogeogr. Palaeoecol., 271, 77–83, 2009.
Witman, J. D., Etter, R. J., and Smith, F.: The relationship between regional and local species diversity in marine benthic communities: a global perspective, P. Natl. Acad. Sci., 101, 15664–15669, 2004.
Wolff, T.: Galathea 2 Report (1957–1961) Scientific Results of The Danish Deep-Sea Expedition Round the World 1950–52, issued by the Galathea committee, 1956.
Wolff, T.: The concept of hadal or ultra abyssal fauna, Deep-Sea Res., 17, 983–1003, 1970.
Worm, B., Lotze, H. K., and Myers, R.: Predator diversity hotspots in the blue ocean, P. Natl. Acad. Sci. USA, 100, 9884–9888, 2003.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J., Vandewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S., Whitcraft, C., Jeffreys, R. M., and Schwartz, M.: Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling, Limnol. Oceanogr., 52, 1698–1709, 2007.
Wyrtki, K.: The oxygen minima in relation to ocean circulation, Deep-Sea Res., 9, 11–23, 1962.
WWF/IUCN: The Mediterranean deep-sea ecosystems: an overview of their diversity, structure, functioning and anthropogenic impacts, Málaga (IUCN) and Rome (WWF), 64 pp., 2004.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The significance of nitrification for oceanic new production, Nautre, 477, 999–1002, 2007.
Young, C. M.: Reproduction, Development and Life History Traits, in: Ecosystems of the World, Vol. 28, Ecosystems of the Deep Oceans, edited by: Tyler, P. A., Elsevier, London, 381–426, 2003.
Zezina, O. N.: Biogeography of the Bathyal Zone, in: The biogeography of the oceans, edited by: Gebruk, A. V., Southward, E. C., and Tyler, P. A., Adv. Mar. Biol., 389–426, 1997.
Zibrowius, H.: Les Scleractiniairies de la Mediterranee et de l'Atlantic nord-oriental, Mem. Inst. Oceanogr. Monaco, 11, 226 pp., 1980.
Altmetrics
Final-revised paper
Preprint