Articles | Volume 11, issue 24
https://doi.org/10.5194/bg-11-7369-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-7369-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Components of near-surface energy balance derived from satellite soundings – Part 2: Noontime latent heat flux
K. Mallick
CORRESPONDING AUTHOR
Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L4422, Belvaux, Luxembourg
A. Jarvis
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
G. Wohlfahrt
Institute of Ecology, University of Innsbruck, 6020 Innsbruck, Austria
European Academy of Bolzano, 39100, Bolzano, Italy
G. Kiely
Hydrology Micrometeorology and Climate Investigation Centre, Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland
T. Hirano
Division of Environmental Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
A. Miyata
National Institute for Agro-Environmental Sciences, Tsukuba, Japan
S. Yamamoto
Graduate School of Environmental Science, Okayama University Tsushimanaka 3-1-1, Okayama 700-8530, Japan
L. Hoffmann
Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), L4422, Belvaux, Luxembourg
Related authors
K. Mallick, A. Jarvis, G. Wohlfahrt, G. Kiely, T. Hirano, A. Miyata, S. Yamamoto, and L. Hoffmann
Biogeosciences, 12, 433–451, https://doi.org/10.5194/bg-12-433-2015, https://doi.org/10.5194/bg-12-433-2015, 2015
Short summary
Short summary
This paper demonstrates a novel analytical method for recovering global fields noontime near-surface net available energy (the sum of the sensible and latent heat flux) and ground heat flux using day-night land surface temperature and net radiation combining AIRS and MODIS optical, thermal and atmospheric data. This method could potentially overcome the stumbling blocks associated with the empirical parameterisations for determining the ground heat flux in global evapotranspiration modelling.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Joseph Kiem, Albin Hammerle, Leonardo Montagnani, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-881, https://doi.org/10.5194/egusphere-2024-881, 2024
Preprint archived
Short summary
Short summary
Albedo is the fraction of solar radiation that is reflected by some surface. The presence of a seasonal snow cover dramatically increases albedo. We made use of a novel snow depth dataset for Austria to investigate likely future changes in albedo up to 2100. In 5 out of the 6 investigated future scenarios a significant decline of albedo could be observed. The associated warming is equivalent to between 0.25 to 5 times the current annual CO2-equivalent emissions of Austria.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Felix M. Spielmann, Albin Hammerle, Florian Kitz, Katharina Gerdel, and Georg Wohlfahrt
Biogeosciences, 17, 4281–4295, https://doi.org/10.5194/bg-17-4281-2020, https://doi.org/10.5194/bg-17-4281-2020, 2020
Short summary
Short summary
Carbonyl sulfide (COS) can be used as a proxy for plant photosynthesis on an ecosystem scale. However, the relationships between COS and CO2 fluxes and their dependence on daily to seasonal changes in environmental drivers are still poorly understood. We examined COS and CO2 ecosystem fluxes above an agriculturally used mountain grassland for 6 months. Harvesting of the grassland disturbed the otherwise stable COS-to-CO2 uptake ratio. We even found the canopy to release COS during those times.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Federico Carotenuto, Teodoro Georgiadis, Beniamino Gioli, Christel Leyronas, Cindy E. Morris, Marianna Nardino, Georg Wohlfahrt, and Franco Miglietta
Atmos. Chem. Phys., 17, 14919–14936, https://doi.org/10.5194/acp-17-14919-2017, https://doi.org/10.5194/acp-17-14919-2017, 2017
Short summary
Short summary
A new model was developed to simulate cultivable bioaerosol emissions. The model is able to reproduce the average daily behavior of a Mediterranean grassland and may help in studying the abundance of such aerosols in the atmosphere and their potential impact on clouds and cloud processes. The model has been developed thanks to a newfound application of an old micrometeorological technique to measurements of cultivable microorganisms.
Katharina Gerdel, Felix Maximilian Spielmann, Albin Hammerle, and Georg Wohlfahrt
Atmos. Meas. Tech., 10, 3525–3537, https://doi.org/10.5194/amt-10-3525-2017, https://doi.org/10.5194/amt-10-3525-2017, 2017
Zhiyuan Zhang, Renduo Zhang, Yang Zhou, Alessandro Cescatti, Georg Wohlfahrt, Minmin Sun, Juan Zhu, Vincenzo Magliulo, Feng Tao, and Guanhong Chen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-345, https://doi.org/10.5194/bg-2017-345, 2017
Manuscript not accepted for further review
Short summary
Short summary
This study highlight the key role of temperature as main controlling factor of the maximum respiration rates in most terrestrial ecosystems, while other driving forces reduce the maximum respiration rates and temperature sensitivity of the respiratory process. These findings are particularly relevant under the current scenario of rapid global warming, given that the potential climate-induced changes in ecosystem respiration may lead to substantial anomalies in terrestrial carbon budget.
Ines Bamberger, Nadine K. Ruehr, Michael Schmitt, Andreas Gast, Georg Wohlfahrt, and Almut Arneth
Biogeosciences, 14, 3649–3667, https://doi.org/10.5194/bg-14-3649-2017, https://doi.org/10.5194/bg-14-3649-2017, 2017
Short summary
Short summary
We studied the effects of summer heatwaves and drought on photosynthesis and isoprene emissions in black locust trees. While photosynthesis decreased, isoprene emission increased sharply during the heatwaves. Comparing isoprene emissions of stressed and unstressed trees at the same temperature, however, demonstrated that stressed trees emitted less isoprene than expected. This reveals that in order to predict isoprene emissions during heat waves, model parameters need to be re-evaluated.
Loise Wandera, Kaniska Mallick, Gerard Kiely, Olivier Roupsard, Matthias Peichl, and Vincenzo Magliulo
Hydrol. Earth Syst. Sci., 21, 197–215, https://doi.org/10.5194/hess-21-197-2017, https://doi.org/10.5194/hess-21-197-2017, 2017
Short summary
Short summary
Upscaling instantaneous to daily evapotranspiration (ETi–ETd) is one of the central challenges in regional vegetation water-use mapping using polar orbiting satellites. Here we developed a robust ETi upscaling for global studies using the ratio between daily and instantaneous global radiation (RSd/RSi). Using data from 126 FLUXNET tower sites, this study demonstrated the RSd/RSi ratio to be the most robust factor explaining ETd/ETi variability across variable sky conditions and multiple biomes.
Gianluca Tramontana, Martin Jung, Christopher R. Schwalm, Kazuhito Ichii, Gustau Camps-Valls, Botond Ráduly, Markus Reichstein, M. Altaf Arain, Alessandro Cescatti, Gerard Kiely, Lutz Merbold, Penelope Serrano-Ortiz, Sven Sickert, Sebastian Wolf, and Dario Papale
Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, https://doi.org/10.5194/bg-13-4291-2016, 2016
Short summary
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
W. Jud, L. Fischer, E. Canaval, G. Wohlfahrt, A. Tissier, and A. Hansel
Atmos. Chem. Phys., 16, 277–292, https://doi.org/10.5194/acp-16-277-2016, https://doi.org/10.5194/acp-16-277-2016, 2016
Short summary
Short summary
“Breathing” ozone can have harmful effects on sensitive vegetation when sufficient ozone enters the plant leaves through the stomatal pores. Here we show that cis-abienol, a semi-volatile organic compound secreted by the leaf hairs (trichomes) of various tobacco varieties, protects the leaves from breathing ozone. Ozone is efficiently removed by chemical reactions with cis-abienol at the plant surface, forming oxygenated VOC (formaldehyde and methyl vinyl ketone) that are released into the air.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
M. Balzarolo, L. Vescovo, A. Hammerle, D. Gianelle, D. Papale, E. Tomelleri, and G. Wohlfahrt
Biogeosciences, 12, 3089–3108, https://doi.org/10.5194/bg-12-3089-2015, https://doi.org/10.5194/bg-12-3089-2015, 2015
K. Mallick, A. Jarvis, G. Wohlfahrt, G. Kiely, T. Hirano, A. Miyata, S. Yamamoto, and L. Hoffmann
Biogeosciences, 12, 433–451, https://doi.org/10.5194/bg-12-433-2015, https://doi.org/10.5194/bg-12-433-2015, 2015
Short summary
Short summary
This paper demonstrates a novel analytical method for recovering global fields noontime near-surface net available energy (the sum of the sensible and latent heat flux) and ground heat flux using day-night land surface temperature and net radiation combining AIRS and MODIS optical, thermal and atmospheric data. This method could potentially overcome the stumbling blocks associated with the empirical parameterisations for determining the ground heat flux in global evapotranspiration modelling.
L. Hörtnagl and G. Wohlfahrt
Biogeosciences, 11, 7219–7236, https://doi.org/10.5194/bg-11-7219-2014, https://doi.org/10.5194/bg-11-7219-2014, 2014
Short summary
Short summary
The methane (CH4) and nitrous oxide (N2O) exchange of a temperate mountain grassland near Neustift, Austria, was measured during 2010–2012 over a time period of 22 months using the eddy covariance method. The meadow acted as a sink for both compounds during certain time periods, but was a clear source of CH4 and N2O on an annual timescale. Both gases contributed to an increase of the global warming potential (GWP), effectively reducing the sink strength in terms of CO2 equivalents.
S. Kuppel, P. Peylin, F. Maignan, F. Chevallier, G. Kiely, L. Montagnani, and A. Cescatti
Geosci. Model Dev., 7, 2581–2597, https://doi.org/10.5194/gmd-7-2581-2014, https://doi.org/10.5194/gmd-7-2581-2014, 2014
Short summary
Short summary
A consistent calibration of an advanced land surface model was performed by grouping in situ information on land-atmosphere exchanges of carbon and water using broad ecosystem and climate classes. Signatures of improved carbon cycle simulations were found across spatial and temporal scales, along with insights into current model limitations. These results hold promising perspectives within the ongoing efforts towards building robust model-data fusion frameworks for earth system models.
R. Hirata, K. Takagi, A. Ito, T. Hirano, and N. Saigusa
Biogeosciences, 11, 5139–5154, https://doi.org/10.5194/bg-11-5139-2014, https://doi.org/10.5194/bg-11-5139-2014, 2014
L. Hörtnagl, I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Walser, A. Unterberger, A. Hansel, and G. Wohlfahrt
Atmos. Chem. Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, https://doi.org/10.5194/acp-14-5369-2014, 2014
I. Bamberger, L. Hörtnagl, M. Walser, A. Hansel, and G. Wohlfahrt
Biogeosciences, 11, 2429–2442, https://doi.org/10.5194/bg-11-2429-2014, https://doi.org/10.5194/bg-11-2429-2014, 2014
M. Verma, M. A. Friedl, A. D. Richardson, G. Kiely, A. Cescatti, B. E. Law, G. Wohlfahrt, B. Gielen, O. Roupsard, E. J. Moors, P. Toscano, F. P. Vaccari, D. Gianelle, G. Bohrer, A. Varlagin, N. Buchmann, E. van Gorsel, L. Montagnani, and P. Propastin
Biogeosciences, 11, 2185–2200, https://doi.org/10.5194/bg-11-2185-2014, https://doi.org/10.5194/bg-11-2185-2014, 2014
M. Mezbahuddin, R. F. Grant, and T. Hirano
Biogeosciences, 11, 577–599, https://doi.org/10.5194/bg-11-577-2014, https://doi.org/10.5194/bg-11-577-2014, 2014
G. Lasslop, M. Migliavacca, G. Bohrer, M. Reichstein, M. Bahn, A. Ibrom, C. Jacobs, P. Kolari, D. Papale, T. Vesala, G. Wohlfahrt, and A. Cescatti
Biogeosciences, 9, 5243–5259, https://doi.org/10.5194/bg-9-5243-2012, https://doi.org/10.5194/bg-9-5243-2012, 2012
Related subject area
Biogeochemistry: Air - Land Exchange
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Impact of meteorological conditions on BVOC emission rate from Eastern Mediterranean vegetation under drought
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part I: Measuring temporal dynamics
Ideas and perspectives: Emerging contours of a dynamic exogenous kerogen cycle
Versatile soil gas concentration and isotope monitoring: optimization and integration of novel soil gas probes with online trace gas detection
On the impact of canopy model complexity on simulated carbon, water, and solar-induced chlorophyll fluorescence fluxes
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-529, https://doi.org/10.5194/egusphere-2024-529, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. Additionally, even a small precipitation amount triggered a significant increase in BVOC emissions. These findings highlight the intricate BVOC emission-drought relationship and are crucial for advancing our understanding of BVOCs emission under climate change.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Thomas M. Blattmann
Biogeosciences, 19, 359–373, https://doi.org/10.5194/bg-19-359-2022, https://doi.org/10.5194/bg-19-359-2022, 2022
Short summary
Short summary
This work enunciates the possibility of kerogen oxidation contributing to atmospheric CO2 increase in the wake of glacial episodes. This hypothesis is substantiated by several lines of independent evidence synthesized in this contribution. The author hypothesizes that the deglaciation of kerogen-rich lithologies in western Canada contributed to the characteristic deglacial increase in atmospheric CO2.
Juliana Gil-Loaiza, Joseph R. Roscioli, Joanne H. Shorter, Till H. M. Volkmann, Wei-Ren Ng, Jordan E. Krechmer, and Laura K. Meredith
Biogeosciences, 19, 165–185, https://doi.org/10.5194/bg-19-165-2022, https://doi.org/10.5194/bg-19-165-2022, 2022
Short summary
Short summary
We evaluated a new diffusive soil probe integrated with high-resolution gas analyzers to measure soil gases in real time at a centimeter scale. Using columns with simple silica and soil, we captured changes in carbon dioxide (CO2), volatile organic compounds (VOCs), and nitrous oxide (N2O) with its isotopes to distinguish potential nutrient sources and microbial metabolism. This approach will advance the use of soil gases as important signals to understand and monitor soil fertility and health.
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 29–45, https://doi.org/10.5194/bg-19-29-2022, https://doi.org/10.5194/bg-19-29-2022, 2022
Short summary
Short summary
Modeling vegetation canopy is important in predicting whether the land remains a carbon sink to mitigate climate change in the near future. Vegetation canopy model complexity, however, impacts the model-predicted carbon and water fluxes as well as canopy fluorescence, even if the same suite of model inputs is used. Given the biases caused by canopy model complexity, we recommend not misusing parameters inverted using different models or assumptions.
Cited articles
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. P., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. Model formulation, J. Geophys. Res., 112, D11112, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., and Agam, N.: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sens. Environ., 112, 4227–4241, 2008.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–3434, 2001.
Balogun, A. A., Adegoke, J. O., Vezhapparambu, S., Mauder, M., McFadden, J. P., and Gallo, K.: Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri, Bound.-Lay. Meteorol., 133, 299–321, 2009.
Bastiaanssen, W. G. M., Pelgrum, H., Droogers, P., de Bruin, H. A. R., and Menenti, M.: Area-average estimates of evaporation, wetness indicators and top soil moisture during two golden days in EFEDA , Agr. Forest Meteorol., 87, 119–137, 1997.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: The Surface Energy Balance Algorithm for Land (SEBAL): Part 1 formulation, J. Hydrol., 212–213, 198–212, 1998.
Batra, N., Islam, S., Venturini, V., Bisht, G., and Jiang, L.: Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the southern great plains, Remote Sens. Environ., 103, 1–15, 2006.
Betts, A. K. and Ridgway, W.: Climate equilibrium of the atmospheric convective boundary layer over a tropical ocean, J. Atmos. Sci., 46, 2621–2641, 1989.
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev., 27, 779–787, 1926.
Brennan, M. J. and Lackmann, G. M.: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone, Mon. Weather Rev., 133, 1913–1937, 2005.
Campbell Scientific: Bowen Ratio instrumentation instruction manual, Campbell Scientific Inc., Logan, Utah, 1–2, 2005.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. part I: model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Choudhury, B. J. and DiGirolamo, N.: A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations, J. Hydrol., 205, 164–185, 1998.
Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285–304, 2007.
da Rocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C., Pinto, L. D. V. O., De Freitas, H. C., and Silva Figueira, A. M. E.: Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia, Ecol. Appl., 14, s22–s32, 2004.
da Rocha, H. R., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L., Saleska, S. R., Coupe, N. R., Wofsy, S. C., Borma, L. S., Artaxo, P., Vourlitis, G., Nogueira, J. S., Cardoso, F. L., Nobre, A. D., Kruijt, B., Freitas, H. C., von Randow, C., Aguiar, R. G., and Maia, J. F.: Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil, J. Geophys. Res., 114, G00B12, https://doi.org/10.1029/2007JG000640, 2009.
Desjardins, R. L., Hart, R. L, Macpherson, J. I., Schuepp, P. H., and Verma, S. B.: Aircraft-based and tower-based fluxes of carbondioxide, latent, and sensible heat, J. Geophys. Res., 97, 18477–18485, 1992.
Dyer, A. J.: A review of flux profile relationships, Bound.-Lay. Meteorol., 7, 363–372, 1974.
Feng, M., Biastoch, A., Böning, C., Caputi, N., and Meyers, G.: Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia, J. Geophys. Res., 113, C12025, https://doi.org/10.1029/2008JC004908, 2008.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts, Weather, 59, 209–216, 2004.
Fisch, G., Tota, J., Machado, L. A. T., Silva Dias, M. A. F., da F. Lyra, R. F., Nobre, C. A., Dolman, A. J., and Gash, J. H. C.: The convective boundary layer over pasture and forest in Amazonia, Theor. Appl. Climatol., 78, 47–59, 2004.
Fisher, J. B., Tu, K., and Baldocchi, D. D.: Global estimates of land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919, 2008.
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl. 18, 1351–1367, 2008.
Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the energy balance closure problem, Atmos. Chem. Phys., 6, 4395–4402, https://doi.org/10.5194/acp-6-4395-2006, 2006.
Fritschen, L. J. and Fritschen, C. L.: Bowen ration energy balance method, in: Micrometeorology in Agricultural Systems, edited by: Hatfield, J. L. and Baker, J. M., American Soc. Agronomy, Madison, Wisconsin, USA, 397–406, 2005
Fritschen, L. J. and Simpson, J. R.: Surface energy and radiation balance systems: general description and improvements, J. Appl. Meteorol., 28, 680–689, 1989.
Giambelluca, T. W., Scholz, F. G., Bucci, S., Meinzer, F. C., Goldstein, G., Hoffmann, W. A., Franco, A. C., and Buchert, M. P.: Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density, Agr. Forest Meteorol., 149, 1365–1376, 2009.
Gioli, B., Miglietta, F., Martino, B. D., Hutjes, R. W. A., Dolman, H. A. J., Lindroth, A., Schumacher, M., Sanz, M. J., Manca, G., Peressotti, A., and Dumas, E. J.: Comparison between tower and aircraft-based eddy covariance fluxes in five European regions, Agr. Forest Meteorol., 127, 1–16, 2004.
Goddard Earth Sciences Data and Information Services Centr, available at: http://mirador.gsfc.nasa.gov/.
Grimmond, C. S. B. and Oke, T. R.: Comparison of heat fluxes from summertime observations in the suburbs of four north American cities, J. Appl. Meteorol., 34, 873–889, 1995.
Hoen, J. O. Y., Hai, Y. X., Pan, J., Xia, H. M., and Liu, T. W.: Calculation of the Bowen ratio in the tropical Pacific using sea surface temperature data, J. Geophys. Res., 107, 17.1–17.16, 2002.
Hsu, S. A.: A relationship between the Bowen Ratio and sea–air temperature difference under unstable conditions at sea, J. Phys. Oceanogr., 28, 2222–2226, 1998.
Irannejad, P., Henderson-Sellers, A., and Sharmeen, S.: Importance of land-surface parameterization for latent heat simulation in global atmospheric models, Geophys. Res. Lett., 30, 1904, https://doi.org/10.1029/2003GL018044, 2003.
Jang, K., Kang, S., Kim, J., Lee, C. B., Kim, T., Kim, J., Hirata, R., and Saigusa, N.: Mapping evapotranspiration using MODIS and MM5 Four-Dimensional Data Assimilation, Remote Sens. Environ., 114, 657–673, 2010.
Jiang, L. and Islam, S.: Estimation of surface evaporation map over southern Great Plains using remote sensing data, Water Resour. Res., 37, 329–340, 2001.
Jiang, L., Islam, S., Guo, W., Jutla, A. S., Senarath, S. U. S., Ramsay, B. H., and Eltahir, E.: A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida, Global Planet. Change, 67, 62–77, 2009.
Jiminez, C., Prigent, C., and Aries, F.: Towards an estimation of global land surface heat fluxes from multisatellite observations, J. Geophys. Res., 114, D06305, https://doi.org/10.1029/2008JD011392, 2009.
Katul, G., Goltz, S., Hsieh, C.-I., Cheng, Y., Mowry, F., and Sigmon, J.: Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain, Bound.-Lay. Meteorol., 74, 237–260, https://doi.org/10.1007/BF00712120, 1995.
Kohler, M., Kalthoff, N., and Kottmeier, C.: The impact of soil moisture modifications on CBL characteristics in West Africa: A case-study from the AMMA campaign, Q. J. Roy. Meteorol. Soc., 136, 442–455, 2010.
Konda, M.: The satellite-derived air temperature and the Bowen ratio over the ocean, in: 35th COSPAR Scientific Assembly, 18–25 July 2004, Paris, France, p. 1839, 2004.
Kumagai, T., Saitoh, T. M., Sato, Y., Takahashi, H., Manfroi, O. J., Morooka, T., Kuraji, K., Suzuki, M., Yasunari, T., and Komatsu, H.: Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest, Agr. Forest Meteorol., 128, 81–92, 2005.
Kustas, W. P. and Norman, J. M.: Evaluating the effects of subpixel heterogeneity on pixel average fluxes, Remote Sens. Environ., 74, 327–342, 1999.
Kustas, W. P., Hatfield, J. L., and Prueger, J. H.: The Soil Moisture Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorological conditions and preliminary findings, J. Hydrometeorol., 6, 791–804, 2005.
Lawford, R. G., Stewart, R., Roads, J., Isemer, H.-J., Manton, M., Marengo, J., Yasunari, T., Benedict, S., Koike, T., and Williams, S.: Advancing global and continental scale hydrometeorology: Contributions of the GEWEX Hydrometeorology Panel, B. Am. Meteorol. Soc., 85, 1917–1930, 2004.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Climatic Change, 75, 273–299, 2006.
Li, F., Kustas, W. P., Anderson, M. C., Prueger, J. H., and Scott, R. L.: Effect of remote sensing spatial resolution on interpreting tower-based flux observations, Remote Sens. Environ., 112, 337–349, 2008.
Mahrt, L., Vickers, D., and Sun, J.: Spatial variations of surface moisture flux from aircraft data, Adv. Water Resour., 24, 1133–1141, 2001.
Mallick, K., Bhattacharya, B. K., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Banerjee, S., Kar, G., Rao, V. U. M., Gadgil, A. S., and Parihar J. S.: Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India, Int. J. Remote Sens., 28, 2091–2110, 2007.
Mallick, K., Bhattacharya, B. K., Rao, V. U. M., Reddy, D. R., Banerjee, S., Hoshali, V., Pandey, V., Kar, G., Mukherjee, J., Vyas, S. P., Gadgil, A. S., and Patel, N. K.: Latent heat flux estimation in clear sky days over Indian agroecosystems using noontime satellite remote sensing data, Agr. Forest Meteorol., 149, 1646–1665, 2009.
Mallick, K., Jarvis, A., Wohlfahrt, G., Kiely, G., Hirano, T., Miyata, A., Yamamoto, S., and Hoffmann, L.: Components of near-surface energy balance derived from satellite soundings – Part 1: Net available energy, Biogeosciences Discuss., 11, 11825–11861, https://doi.org/10.5194/bgd-11-11825-2014, 2014.
McCabe, M. F. and Wood, E. F.: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors, Remote Sens. Environ., 105, 271–285, 2006.
McCabe, M. F., Wood, E. F., Wójcik, R., Pan, M., Sheffield, J., Gao, H., and Su, H.: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies, Remote Sens. Environ., 112, 430–444, 2008.
Mecikalksi, J. R., Diak, G. R., Anderson, M. C., and Norman, J. M.: Estimating fluxes on continental scales using remotely-sensed data in an atmospheric-land exchange model, J. Appl. Meteorol., 35, 1352–1369, 1999.
Miglietta, F., Gioli, B., Brunet, Y., Hutjes, R. W. A., Matese, A., Sarrat, C., and Zaldei, A.: Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and evaluation, Biogeosciences, 6, 1975–1986, https://doi.org/10.5194/bg-6-1975-2009, 2009.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm, Remote Sens. Environ., 115, 1781–1800, 2011.
Nickel, D., Barthel, R., and Braun, J.: Large-scale water resources management within the framework of GLOWA-Danube – The water supply model, Phys. Chem. Earth, 30, 383–388, 2005.
Norman, J. M., Kustas, W. P., and Humes, K. S.: A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263–293, 1995.
Nykanen, D. K. and Georgiou, E. F.: Soil moisture variability and scale-dependency of nonlinear parameterizations in coupled land–atmosphere models, Adv. Water. Res., 24, 1143–1157, 2001.
Perez, P. J., Castellvi, F., Ibanez, M., and Rosell, J. I.: Assessment of reliability of Bowen ratio method for partitioning fluxes, Agr. Forest Meteorol., 97, 141–150, 1999.
Priestley, C. B. H. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Prueger, J. H., Hatfield, J. L., Kustas, W. P., Hipps, L. E., Macpherson, J. I., Neale, C. M. U., Eichinger, W. E., Cooper, D. I., and Parkin, T. B.: Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX, J. Hydrometeorol., 6, 954–960, 2005.
Rider, N. E. and Philip, J. R.: Advection and evaporation, Association International of Hydrological Science, 53, 421–427, 1960.
Russell, J. M. and Johnson, T. C.: The water balance and stable isotope hydrology of Lake Edward, Uganda-Congo, J. Great Lakes Res., 32, 77–90, 2006.
Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Reconciling the global terrestrial water budget using satellite remote sensing, Remote Sens. Environ., 115, 1850–1865, 2011.
Salby, M. L.: Fundamental of atmospheric physics, Academic Press, London, 1996.
Salvucci, G. D. and Gentine, P.: Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation from weather data, P. Natl. Acad. Sci. USA, 110, 6287–6291, https://doi.org/10.1073/pnas.1215844110, 2013.
Shuttleworth, W. J., Gurney, R. J., Hsu, A. Y., and Ormsby, J. P.: FIFE: the variation in energy partition at surface flux sites, in: Remote Sensing and Large-Scale Processes, edited by: Rango, A., Proceedings of the IAHS third International Assembly, Baltimore, MD, May, IAHS Publication, 186, 67–74, 1989
Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., and Jensen, K. H.: Combining the triangle method with thermal inertia to estimate regional evapotranspiration applied to MSG-SEVIRI data in the Senegal river basin, Remote Sens. Environ., 112, 1242–1255, 2008.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agr. Forest Meteorol., 171–172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 1988.
Swinbank, W. C. and Dyer, A. J.: An experimental study in micrometeorology, Q. J. Roy. Meteor. Soc., 93, 494–500, 1967.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Tanner, C. B.: A simple aero-heat budget method for determining daily evapotranspiration, Trans. Int. Congr. Soil Sci., 1, 203–209, 1961.
Tasumi, M., Allen, R. G., Trezza, R., and Wright, J. L.: Satellite-based energy balance to assess within-population variance of crop coefficient curves, J. Irrig. Drain. E.-ASCE, 131, 94–109, 2005.
Thompson, O. E., and Hou, W. T.: Coupling of horizontal, vertical , and temporal resolving power of a satellite temperature sounder, J. Atmos. Ocean. Tech., 7, 454–463, 1990.
Tobin, D. C., Revercomb, H. E., Knuteson, R. O., Lesht, B. M., Strow, L. L., Hannon, S. E., Feltz, W. F., Moy, L. A., Fetzer, E. J., and Cress, T. S.: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation, J. Geophys. Res., 111, D09S14, https://doi.org/10.1029/2005JD006103, 2006.
Todd, R., Evett, S. R., and Howell, T. A.: The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment, Agr. Forest Meteorol., 103, 335–348, 2000.
Torralba, P. C., de Arellano, J. V. G., Bosveld, F., Soler, M. R., Vermeulen, A., Werner, C., and Moors, E.: Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer, J. Geophys. Res., 113, D12119, https://doi.org/10.1029/2007JD009583, 2008.
Verma, S. B., Rosenberg, N. J., and Blad, B. L.: Turbulent exchange coefficients for sensible heat and water vapor under advective conditions, J. Appl. Meteorol., 17, 330–338, 1978.
Verstraeten, W. W., Veroustraete, F., and Feyen, J.: Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products, Remote Sens. Environ., 96, 256–276, 2005.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sens. Environ., 115, 801–823, 2011.
Wilson, J. D., Flesch, T. K., and Harper, L. A.: Micro-meteorological methods for estimating surface exchange with a disturbed windflow, Agr. Forest Meteorol., 107, 207–225, 2001.
Wilson, K. B., Goldstein, A. H., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, Ch., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Law, B., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, 2002.
Wohlfahrt, G., Haslwanter, A., Hörtnagl, L., Jasoni, R. L., Fenstermaker, L. F., Arnone III, J. A., and Hammerle, A.: On the consequences of the energy imbalance for calculating surface conductance to water vapor, Agr. Forest Meteorol., 149, 1556–1559, 2009.
Short summary
We have successfully used NASA-AIRS temperature-humidity profiles and associated radiances within a Bowen ratio framework to produce the first ever global sounder latent and sensible heat fluxes (SoLH and SoSH). These SoLH and SoSH estimates do not require any land surface parameterisations of the aerodynamic and stomatal conductances and hence are ideally suited to interrogate or improve the surface paramaterisations embedded in the land components of Earth system models.
We have successfully used NASA-AIRS temperature-humidity profiles and associated radiances...
Altmetrics
Final-revised paper
Preprint