Articles | Volume 12, issue 8
Biogeosciences, 12, 2471–2487, 2015
https://doi.org/10.5194/bg-12-2471-2015
Biogeosciences, 12, 2471–2487, 2015
https://doi.org/10.5194/bg-12-2471-2015

Research article 29 Apr 2015

Research article | 29 Apr 2015

Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

S. J Hall et al.

Related authors

Capturing temporal heterogeneity in soil nitrous oxide fluxes with a robust and low-cost automated chamber apparatus
Nathaniel C. Lawrence and Steven J. Hall
Atmos. Meas. Tech., 13, 4065–4078, https://doi.org/10.5194/amt-13-4065-2020,https://doi.org/10.5194/amt-13-4065-2020, 2020
Short summary
Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration
D. R. Bowling, J. E. Egan, S. J. Hall, and D. A. Risk
Biogeosciences, 12, 5143–5160, https://doi.org/10.5194/bg-12-5143-2015,https://doi.org/10.5194/bg-12-5143-2015, 2015
Short summary

Related subject area

Biogeochemistry: Soils
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021,https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021,https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021,https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021,https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021,https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary

Cited articles

Baisden, W. T. and Canessa, S.: Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times, Nucl. Instrum. Meth. B, 294, 588–592, 2013.
Baisden, W. T. and Keller, E. D.: Synthetic constraint of soil C dynamics using 50 years of 14C and net primary production (NPP) in a New Zealand grassland site, Radiocarbon, 55, 1071–1076, 2013.
Baisden, W. T., Amundson, R., Cook, A. C., and Brenner, D. L.: Turnover and storage of C and N in five density fractions from California annual grassland surface soils, Global Biogeochem. Cy., 16, 1117, https://doi.org/10.1029/2001GB001822, 2002.
Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.: Evaluating 50 years of time-series soil radiocarbon data: towards routine calculation of robust C residence times, Biogeochemistry, 112, 129–137, 2013.
Baldock, J. A. and Skjemstad, J. O.: Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Org. Geochem., 31, 697–710, 2000.
Download
Short summary
We used measurements of radiocarbon to model the decomposition of organic matter associated with minerals in tropical rainforest soils, using contemporary and archived samples. Most organic matter decomposed over 11 to 26 years, while a smaller portion decomposed over centuries. Rates were similar among soils with strongly differing physical and chemical properties, but declined with a proxy for oxygen limitation. Previous models based on one time point may underestimate decomposition rates.
Altmetrics
Final-revised paper
Preprint