Articles | Volume 12, issue 11
https://doi.org/10.5194/bg-12-3253-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-3253-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali)
C. Delon
CORRESPONDING AUTHOR
Laboratoire d'Aérologie, Université de Toulouse and CNRS, Toulouse, France
E. Mougin
Geosciences Environnement Toulouse, Université de Toulouse, CNRS and IRD, Toulouse, France
Laboratoire d'Aérologie, Université de Toulouse and CNRS, Toulouse, France
M. Grippa
Geosciences Environnement Toulouse, Université de Toulouse, CNRS and IRD, Toulouse, France
P. Hiernaux
Geosciences Environnement Toulouse, Université de Toulouse, CNRS and IRD, Toulouse, France
M. Diawara
Geosciences Environnement Toulouse, Université de Toulouse, CNRS and IRD, Toulouse, France
C. Galy-Lacaux
Laboratoire d'Aérologie, Université de Toulouse and CNRS, Toulouse, France
L. Kergoat
Geosciences Environnement Toulouse, Université de Toulouse, CNRS and IRD, Toulouse, France
Related authors
No articles found.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Claire Delon, Corinne Galy-Lacaux, Dominique Serça, Erwan Personne, Eric Mougin, Marcellin Adon, Valérie Le Dantec, Benjamin Loubet, Rasmus Fensholt, and Torbern Tagesson
Biogeosciences, 16, 2049–2077, https://doi.org/10.5194/bg-16-2049-2019, https://doi.org/10.5194/bg-16-2049-2019, 2019
Short summary
Short summary
In the Sahel region during the wet season, CO2 and NO are released to the atmosphere, and NH3 is deposited on the soil. During the dry season, processes are strongly reduced. This paper shows the temporal variation in these soil–atmosphere exchanges of trace gases for 2 years, their sharp increase when the first rains fall onto dry soils, and how microbial processes are involved. We use a modelling approach, which is necessary when continuous measurements are not possible in remote regions.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Laetitia Gal, Manuela Grippa, Pierre Hiernaux, Léa Pons, and Laurent Kergoat
Hydrol. Earth Syst. Sci., 21, 4591–4613, https://doi.org/10.5194/hess-21-4591-2017, https://doi.org/10.5194/hess-21-4591-2017, 2017
Short summary
Short summary
The intense, prolonged Sahel drought has caused a widespread increase in surface runoff and surface waters like lakes or rivers, against all expectations. Using long-term observations and the Kineros2 hydrological model, we show that the runoff coefficient of the Agoufou watershed increased from ~ 0 to 5.5 % in 1950–2011. We attribute this phenomenon to a change in vegetation and soil surface properties, in response to the drought, rather than land–use change or rainfall regime intensification.
Torbern Tagesson, Jonas Ardö, Bernard Cappelaere, Laurent Kergoat, Abdulhakim Abdi, Stéphanie Horion, and Rasmus Fensholt
Biogeosciences, 14, 1333–1348, https://doi.org/10.5194/bg-14-1333-2017, https://doi.org/10.5194/bg-14-1333-2017, 2017
Short summary
Short summary
Vegetation growth in semi-arid regions is an important sink for human-induced fossil fuel emissions of CO2 and this study addresses the strong need for improved understanding and spatially explicit estimates of CO2 uptake by semi-arid ecosystems. We show that a model incorporating photosynthetic parameters upscaled using satellite-based earth observation simulates CO2 uptake well for the Sahel, one of the largest semi-arid regions in the world.
Frédéric Guérin, Chandrashekhar Deshmukh, David Labat, Sylvie Pighini, Axay Vongkhamsao, Pierre Guédant, Wanidaporn Rode, Arnaud Godon, Vincent Chanudet, Stéphane Descloux, and Dominique Serça
Biogeosciences, 13, 3647–3663, https://doi.org/10.5194/bg-13-3647-2016, https://doi.org/10.5194/bg-13-3647-2016, 2016
Short summary
Short summary
Methane (CH4) emissions from hydroelectric reservoirs could represent a significant fraction of global CH4 emissions from inland waters. The monitoring of methane emissions every 2 weeks at nine stations in a subtropical hydroelectric reservoir revealed that emissions could occasionally be 1 to 2 orders of magnitude higher than expected for these man-made ecosystems. Upstream of the water intake, emissions are enhanced by the water column mixing that upwells CH4-rich water to the surface.
Chandrashekhar Deshmukh, Frédéric Guérin, David Labat, Sylvie Pighini, Axay Vongkhamsao, Pierre Guédant, Wanidaporn Rode, Arnaud Godon, Vincent Chanudet, Stéphane Descloux, and Dominique Serça
Biogeosciences, 13, 1919–1932, https://doi.org/10.5194/bg-13-1919-2016, https://doi.org/10.5194/bg-13-1919-2016, 2016
Short summary
Short summary
Methane (CH4) emissions from hydroelectric reservoirs could represent a significant fraction of global CH4 emissions from inland waters and wetlands. The first quantification of emissions downstream of a subtropical reservoir shows that they contribute only 10 to 30 % of total CH4 emissions from the reservoir. This surprisingly low contribution is due to the seasonal reservoir overturn and the effect of the turbine on re-aerating the reservoir water column.
C. Leauthaud, J. Demarty, B. Cappelaere, M. Grippa, L. Kergoat, C. Velluet, F. Guichard, E. Mougin, S. Chelbi, and B. Sultan
Proc. IAHS, 371, 195–201, https://doi.org/10.5194/piahs-371-195-2015, https://doi.org/10.5194/piahs-371-195-2015, 2015
M. Van Damme, L. Clarisse, E. Dammers, X. Liu, J. B. Nowak, C. Clerbaux, C. R. Flechard, C. Galy-Lacaux, W. Xu, J. A. Neuman, Y. S. Tang, M. A. Sutton, J. W. Erisman, and P. F. Coheur
Atmos. Meas. Tech., 8, 1575–1591, https://doi.org/10.5194/amt-8-1575-2015, https://doi.org/10.5194/amt-8-1575-2015, 2015
Short summary
Short summary
In this study, comprehensive ground-based data sets (Europe, China, Africa and United States) are used to evaluate NH3 measurements from IASI. Global yearly and regional monthly comparisons show fair agreement, while hourly measurements are used to investigate the limitations of direct comparisons. In addition, dense airborne measurements are explored and show the highest correlation coefficients in this study. Finally, the urgent need for independent NH3 column measurements is discussed.
C. Deshmukh, D. Serça, C. Delon, R. Tardif, M. Demarty, C. Jarnot, Y. Meyerfeld, V. Chanudet, P. Guédant, W. Rode, S. Descloux, and F. Guérin
Biogeosciences, 11, 4251–4269, https://doi.org/10.5194/bg-11-4251-2014, https://doi.org/10.5194/bg-11-4251-2014, 2014
C. Delon, E. Mougin, D. Serça, M. Grippa, P. Hiernaux, M. Diawara, C. Galy-Lacaux, and L. Kergoat
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11785-2014, https://doi.org/10.5194/bgd-11-11785-2014, 2014
Revised manuscript not accepted
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
R. Baghi, P. Durand, C. Jambert, C. Jarnot, C. Delon, D. Serça, N. Striebig, M. Ferlicoq, and P. Keravec
Atmos. Meas. Tech., 5, 3119–3132, https://doi.org/10.5194/amt-5-3119-2012, https://doi.org/10.5194/amt-5-3119-2012, 2012
Related subject area
Biogeochemistry: Air - Land Exchange
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
Similar freezing spectra of particles on plant canopies as in air at a high-altitude site
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Anticorrelation of Net Uptake of Atmospheric CO2 by the World Ocean and Terrestrial Biosphere in Current Carbon Cycle Models
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil-pore water in environmental soil samples
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Annika Einbock and Franz Conen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2067, https://doi.org/10.5194/egusphere-2024-2067, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures ≥ -10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice nucleating particles in air above the Alps potentially affecting mixed-phase cloud development.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Stephen E. Schwartz
EGUsphere, https://doi.org/10.5194/egusphere-2024-748, https://doi.org/10.5194/egusphere-2024-748, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emissions reductions.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
EGUsphere, https://doi.org/10.5194/egusphere-2024-752, https://doi.org/10.5194/egusphere-2024-752, 2024
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Matthew Gordon Davis, Kevin Yan, and Jennifer Grace Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-126, https://doi.org/10.5194/egusphere-2024-126, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere, this can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may over-estimate the quantity available for exchange by a factor of 5 – 12, suggesting that ammonia emissions from soil may be overestimated.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Cited articles
Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J. P., Castera, P., Gardrat, E., Pienaar, J., Al Ourabi, H., Laouali, D., Diop, B., Sigha-Nkamdjou, L., Akpo, A., Tathy, J. P., Lavenu, F., and Mougin, E.: Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos. Chem. Phys., 10, 7467–7487, https://doi.org/10.5194/acp-10-7467-2010, 2010.
Adon, M., Galy-Lacaux, C., Delon, C., Yoboue, V., Solmon, F., and Kaptue Tchuente, A. T.: Dry deposition of nitrogen compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method, Atmos. Chem. Phys., 13, 11351–11374, https://doi.org/10.5194/acp-13-11351-2013, 2013.
Blagodatsky S., Grote, R., Kiese, R., Werner, C., and Butterbach-Bahl, K.: Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission, Plant Soil, 346, 297–330, 2011.
Butterbach-Bahl, K., Kesik, M., Miehle, P., Papen, H., and Li, C.: Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models, Plant Soil, 260, 311–329, 2004a.
Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen H., and Kiese, R.: Temporal variations of fluxes of \chemNO, NO2, N2O, CO2 and CH4 in a tropical rain forest ecosystem, Global Biogeochem. Cy., 18, GB3012, https://doi.org/10.1029/2004GB002243, 2004b.
Butterbach-Bahl, K., Kahl M., Mykhayliv L., Werner C., Kiese R., and Li C.: A European-wide inventory of soil NO emissions using the biogeochemical model DNDC/Forest-DNDC, Atmos. Environ., 43, 1392–1402, 2009.
Cardenas, L., Rondon, A., Johansson, C., and Sanhueza, E.: Effects of soil moisture, temperature and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils, J. Geophys. Res., 98, 14783–14790, 1994.
Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, \chemCO, CH4, OCS, N2O, and \chemNO), Microbiol. Rev., 60, 609–640, 1996.
Conrad, R.: Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere, Biogeochemistry, 27, 155–170, 1994.
Davidson, E. A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, edited by: Rogers, J. E. and Whitman, W. B., American Society for Microbiology, Washington, 219–235, 1991.
Davidson, E. A. and Kingerlee, W.: A global inventory of nitric oxide emissions from soils, Nutr. Cycl. Agroecosys., 48, 37–50, 1997.
Davidson E. A., Keller, M., Erickson, H. E., Verchot, L. V., and Veldkamp, E.: Testing a conceptual model of soil emissions of nitrous and nitric oxides, Biosciences, 50, 667–680, 2000.
De Bruin, B., Penning de Vries, F. W. T., Van Broekhoven, L. W., Vertrgt, N., and Van de Geijn, S. C.: Net mineralization, nitrification and CO2 production in alternating moisture conditions in an unfertilized low humus sandy soil from the Sahel, Plant Soil, 113, 69–78, 1989.
Delmas, R., Peuch, V.-H., Megie, G., and Brasseur, G. P.: Emissions anthropiques et naturelles et dépôts, in Physique et chimie de l'atmosphere, Eds Belin,, Chap. 5, ISBN: 2-7011-3700-4, 1995 (in French).
Delon, C., Serça, D., Boissard, C., Dupont, R., Dutot, A., Laville, de Rosnay, P., and Delmas, R.: Soil NO emissions modelling using artificial neural network, Tellus, 59B, 502–513, 2007.
Delon, C., Reeves, C. E., Stewart, D. J., Serça, D., Dupont, R., Mari, C., Chaboureau, J.-P., and Tulet, P.: Biogenic nitrogen oxide emissions from soils – impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment): modelling study, Atmos. Chem. Phys., 8, 2351–2363, https://doi.org/10.5194/acp-8-2351-2008, 2008.
Delon, C., Galy-Lacaux, C., Boone, A., Liousse, C., Serça, D., Adon, M., Diop, B., Akpo, A., Lavenu, F., Mougin, E., and Timouk, F.: Atmospheric nitrogen budget in Sahelian dry savannas, Atmos. Chem. Phys., 10, 2691–2708, https://doi.org/10.5194/acp-10-2691-2010, 2010.
Delon, C., Galy-Lacaux, C., Adon, M., Liousse, C., Serça, D., Diop, B., and Akpo, A.: Nitrogen compounds emission and deposition in West African ecosystems: comparison between wet and dry savanna, Biogeosciences, 9, 385–402, https://doi.org/10.5194/bg-9-385-2012, 2012.
De Rosnay, P., Gruhier, C., Timouk, F., Baup, F., Mougin, E., Hiernaux, P., Kergoat, L., and LeDantec, V: Multiscale soil moisture measurements at the Gourma meso-scale site in Mali, J. Hydrol., 375, 241–252, 2009.
Diallo, A. and Gjessing, J.: Natural resources management: Morpho-pedology in Gourma region, SSE Research program Mali-Norway, CNRST-IER-Oslo University (Norway), 1–19, 1999 (in French).
Feig, G. T., Mamtimin, B., and Meixner, F. X.: Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa, Biogeosciences, 5, 1723–1738, https://doi.org/10.5194/bg-5-1723-2008, 2008.
Firestone, M. K. and Davidson, E. A.: Microbial basis of \chemNO and N2O production and consumption in soil, in: Andreae MO, edited by: Schimel D. S., Exchange of Trace Gases between Terres trial Ecosystems and the Atmosphere, New York, John Wiley and Sons, 7–21, 1989.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksenm, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horva, L., Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowdap, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193–5267, 2009.
Frison, P. L., Mougin, E., and Hiernaux, P.: Observations and interpretation of ERS wind-scatterometer data over northern Sahel (Mali), Remote Sens. Environ., 63, 233–242, 1998.
Frison, P.-L., Mougin, E., Jarlan, L., Karam, M. A., and Hiernaux, P.: Comparison of ERS Wind-Scatterometer and SSM/IData for Sahelian Vegetation Monitoring, IEEE T. Geosci. Remote, 38, 1794–1803, 2000.
Galbally, I. E. and Johansson, C.: A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils, J. Geophys. Res., 94, 6473–6480, 1989.
Galy-Lacaux, C., Laouali, D., Descroix, L., Gobron, N., and Liousse, C.: Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger), Atmos. Chem. Phys., 9, 1579–1595, https://doi.org/10.5194/acp-9-1579-2009, 2009.
Hartley, A. E. and Schlesinger, W. H.: Environmental controls on nitric oxide emission from northern Chihuahuan desert soils, Biogeochemistry, 50, 279–300, 2000.
Hiernaux, P. and Le Houérou, H. N.: Les parcours du Sahel, Sècheresse, 17, 51–71, 2006.
Hiernaux H., Mougin, E., Diarra, L., Soumaguel, N., Lavenu, F., Tracol, Y., and Diawara, M.: Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali, J. Hydrol., 375, 114–127, 2009.
Hudman, R. C., Russell, A. R., Valin, L. C., and Cohen, R. C.: Interannual variability in soil nitric oxide emissions over the United States as viewed from space, Atmos. Chem. Phys., 10, 9943–9952, https://doi.org/10.5194/acp-10-9943-2010, 2010.
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
Jaeglé, L., Martin, R. V., Chance, K., Steinberger, L., Kurosu, T. P., Jacob, D. J., Modi, A. I., Yoboué, V., Sigha-Nkamdjou, L., and Galy-Lacaux, C.: Satellite mapping of rain-induced nitric oxide emissions from soils, J. Geophys. Res., 109, D21310, https://doi.org/10.1029/2003JD004406, 2004.
Jambert C., Serça, D., and Delmas, R.: Quantification of N-losses as $NH3$, $\chemNO$, and $N2O$ and $N2$ from fertilized maize fields in southwestern France, Nutr. Cycl. Agroecosys., 48, 91–104, 1997.
Jarlan, L., Mougin, E., Frison, P. L., Mazzega, P., and Hiernaux, P.: Analysis of ERS wind scatterometer time series over Sahel (Mali), Remote Sens. Environ., 81, 404–415, 2002.
Jarlan, L., Mazzega, P., Mougin, E., Lavenu, F., Marty, G., Frison, P. L., and Hiernaux, P.: Mapping of Sahelian vegetation parameters from ERS scatterometer data with an evolution strategies algorithm, Remote Sens. Environ., 87, 72–84, 2003.
Jarlan, L., Mangiarotti, S., Mougin, E., Mazzega, P., Hiernaux, P., and Le Dantec, V.: Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model, Remote Sens. Environ., 112, 1381–1394, 2008.
Kesik, M., Ambus, P., Baritz, R., Brüggemann, N., Butterbach-Bahl, K., Damm, M., Duyzer, J., Horváth, L., Kiese, R., Kitzler, B., Leip, A., Li, C., Pihlatie, M., Pilegaard, K., Seufert, S., Simpson, D., Skiba, U., Smiatek, G., Vesala, T., and Zechmeister-Boltenstern, S.: Inventories of N2O and NO emissions from European forest soils, Biogeosciences, 2, 353–375, https://doi.org/10.5194/bg-2-353-2005, 2005.
Kim, D.-G., Vargas, R., Bond-Lamberty, B., and Turetsky, M. R.: Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research, Biogeosciences, 9, 2459–2483, https://doi.org/10.5194/bg-9-2459-2012, 2012.
Krul, J. M., Penning de Vries, F. W. T., and Traore, K.: Les processus du bilan d'azote, in: La productivite des paturages saheliens, edited by: Penning de Vries, P. W. T. and Djiteye, M. A., Agr. Res. Rep. 916., Pudoc, Wageningen, The Netherlands, 226–246, 1982.
Laouali D., Galy-Lacaux, C., Diop, B., Delon, C., Orange, D., Lacaux, J. P., Akpo, A., Lavenu, F., Gardrat, E., and Castera, P.: Long term monitoring of the chemical composition of precipitation and wet deposition fluxes over three Sahelian savannas, Atmos. Enivorn., 50, 314–327, 2012.
Laville P., Lehuger, S., Loubet, B., Chaumartin, F., and Cellier, P.: Effect of management, climate and soil conditions on N2O and \chemNO emissions from an arable crop rotation using high temporal resolution measurements, Agric. Forest Meteorol., 151, 228–240, 2011.
Le Roux, X., Abbadie, L., Lensi, R., and Serça, D.: Emission of nitrogen monoxide from African tropical ecosystems: Control of emission by soil characteristics in humid and dry savannas of West Africa, J. Geophys. Res., 100, 23133–23142, 1995.
Lo Seen, D., Mougin, E., Rambal, S., Gaston, A., and Hiernaux, P.: A regional sahelian grassland model to be coupled with multispectral satellite data. II. Towards the control of its simulations by remotely sensed indices, Remote Sens. Environ., 52, 194–206, 1995.
Li C., Aber, J., Stange, F., Butterbach-Bahl, K., and Papen, H.: A process-oriented model of N2O and \chemNO emissions from forest soils: 1. Model development, J. Goephys. Res., 105, 4369–4384, 2000.
Ludwig, J., Meixner, F. X., and Vogel, B.: Forstner J, Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modelling studies, Biogeochemistry, 52, 225–257, 2001.
Martin, R. E., Scholes, M. C., Mosier, A. R., Ojima, D. S., Holland, E. A., and Parton, W. J.: Controls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe, Global Biogeochem. Cy., 12, 81–91, 1998.
McCalley, C. K. and Sparks, J. P.: Controls over nitric oxide and ammonia emissions from Mojave Desert soils, Oecologia, 156, 871–881, 2008.
Medinets S., Skiba, U.,. Rennenberg, H., and Butterbach-Bahl, K.: A review of soil NO transformation: Associated processes and possible physiological significance on organisms, Soil Biol. Biochem., 80, 92–117, 2015.
Meixner F. X., Fickinger, T., Marufu, L., Serça, D., Nathaus, F. J., Makina, E., Mukurumbira, L., and Andreae, M. O.: Preliminary results on nitric oxide emission from a southern African savanna ecosystem, Nutr. Cycling Agroecosyst., 48, 123–138, 1997.
Meixner, F. X. and Yang, W. X.: Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land, Dryland Ecohydrology, edited by: DÓdoroco, P. and Porporato, A., by Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, 233–255, 2006.
Moorhead, D. L. and Reynolds, J. F.: A general model of litter decomposition in the northern Chihuahuan desert, Ecol. Modell., 56, 197–219, 1991.
Moorhead, D. L. and Reynolds, J. F.: Effects of climate change on decomposition in arctic tussock tundra: a modelling synthesis, Arct. Alpine Res., 25, 403–412, 1993.
Moorhead, D. L., Sinsabaughb, R. L., Linkins, A. E., and Reynolds, J. F.: Decomposition processes: modelling approaches and applications, Sci. Total Environ., 183, 137–149, 1996.
Mougin, E., Lo Seen, D., Rambal, S., Gaston, A., and Hiernaux, P.: A Regional Sahelian Grassland Model To Be Coupled with Multispectral Satellite Data. I: Model Description and Validation, Remote Sens. Environ., 52, 181–193, 1995.
Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., De Rosnay, P., Timouk, F., Le Dantec, V., Demarez, V., Arjounin, M., Lavenu, F., Soumaguel, N., Ceschia, E., Mougenot, B., Baup, F., Frappart, F., Frison, P. L., Gardelle, J., Gruhier, C., Jarlan, L., Mangiarotti, S., Sanou, B., Tracol, Y., Guichard, F., Trichon, V., Diarra, L., Soumaré, A., Koité, M., Dembélé, F., Lloyd, C., Hanan, N. P., Damesin, C., Delon, C., Serça, D., Galy-Lacaux, C., Seghiéri, J., Becerra, S., Dia, H., Gangneron, F., and Mazzega, P.: The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources, J. Hydrol., AMMA-CATCH Special issue, 375, 14–33, 2009.
Mougin, E., Demarez, V., Hiernaux, P., Diawara, M., and Berg, A.: Estimation of LAI, fCover and fAPAR of Sahel rangelands (Gourma, Mali), Agric. Forest Meteorol., 198–199, 155–167, 2014.
Otter, L. B., Yang, W. X., Scholes, M. C., and Meixner, F. X.: Nitric oxode emissions from a southern african savanna, J. Geophys. Res, 104, 18471–18485, 1999.
Pape, L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., Hens, K., and Meixner, F. X.: An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems, Biogeosciences, 6, 405–429, https://doi.org/10.5194/bg-6-405-2009, 2009.
Parton, W. J.: Predicting soil temperatures in a shortgrass steppe, Soil Sci., 138, 93–101, 1984.
Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., Ojima, D. S., and Schimel, D. S.: Generalized model for \chemNOx and N2O emissions from soils, J. Geophys. Res., 106, 17403–17419, 2001.
Pierre, C., Bergametti, G., Marticorena, B., Mougin, E., and Bouet, C.: Schmechtig C, Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the Sahelian belt in West Africa, J. Geophys. Res., 117, D06115, https://doi.org/10.1029/2011JD016950, 2012.
Pierre, C., Bergametti, G., Marticorena, B., Mougin, E., Lebel, T., and Ali, A.: Pluriannual comparisons of satellite-based rainfall products over the Sahelian belt for seasonal vegetation modeling, J. Geophys. Res., 116, D18201, https://doi.org/10.1029/2011JD016115, 2011.
Pihlatiea, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P., Serça, D., Vicca, S., Wolf, B., and Pumpanen, J.: Comparison of static chambers to measure CH4 emissions from soils, Agr. Forest Meteorol., 171–172, 124–136, 2013.
Pilegaard, K.: Processes regulating nitric oxide emissions from soils, Phil. Trans. R. Soc. B, 368, 20130126, 2013.
Potter, C. S., Matson, P. A., Vitousek, P. M., and Davidson, E. A.: Process modelin of controls on nitrogen trace gas emissions from soils worldwide, J. Geophys. Res., 101, 1361–1377, 1996.
Redelsperger J.-L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J., and Polcher, J.: African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign, Bull. Amer. Meteor. Soc., 87, 1739–1746, 2006.
Schindlbacher, A., Zechmeister-Boltenstern, S., and Butterbach-Bahl, K.: Effects of soil moisture and temperature on \chemNO, NO2 and N2O emissions from European forest soils, J. Geophys. Res., 109, D17302, https://doi.org/10.1029/2004JD004590, 2004.
Scholes, M. C., Martin, R., Scholes, R. J., Parsons, D., and Winstead, E.: \chemNO and N2O emissions from savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroecosys. 48- 115–122, 1997.
Schreiber, F., Wunderlin, P., Udert K. M., and Wells, G. F.: Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies, Front. Microbiol., 3, 372, https://doi.org/10.3389/fmicb.2012.00372, 2012.
Schwinning S., Sala, O. E., Loik, M. E., and Ehleringer, J. R.: Thresholds, memory, and seasonality: understanding pulse dynamics in arid.semi-arid ecosystems, Oecologia, 141, 191–193, 2004.
Serça, D., Delmas, R., Jambert C., and Labroue, L.: Emissions of nitrogen oxides from equatorial rain forest in central Africa: Origin and regulation of NO emission from soils, Tellus, 46, 143–254, 1994.
Serça D., Delmas, R., Le Roux, X., Parsons, D. A. B., Scholes, M. C., Abbadie, L., Lensi, R., Ronce, O., and Labroue, L.: Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire, Global Biogeochem. Cy., 12, 4, 637–651, 1998.
Skopp, J., Jawson, M. D., and Doran, J. W.: Steady state aerobic microbial activity as a function of soil water content, Soil Sci. Soc. Am. J., 54, 1619–1625, 1990.
Steinkamp, J. and Lawrence, M. G.: Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM, Atmos. Chem. Phys., 11, 6063–6082, https://doi.org/10.5194/acp-11-6063-2011, 2011.
Sullivan, L. J.: Environmental variables controlling nitric oxide emissions from agricultural soils in the southeast united states, Atmospheric Environ., 30, 3573–3582, 1996.
Tracol, Y., Mougin, E., Hiernaux, P., and Jarlan, L.: Testing a sahelian grassland functioning model against herbage mass measurements, Ecol. Modell. 193, 437–446, 2006.
van Dijk, S. M., Gut, A. , Kirkman, G. A., Meixner, F. X., Andreae, M. O., and Gomes, B. M.: Biogenic NO emissions from forest and pasture soils: Relating laboratory studies to field measurements, J. Geophys. Res., 107, D20, LBA 25-1–LBA 25-11, https://doi.org/10.1029/2001JD000358, 2002.
Van Dijk, S. and Meixner, F. X.: Production and consumption of NO in forest and pasture soils from the Amazon Basin: a laboratory study, Water, Air and Soil Pollution: Focus, 1, 119–130, 2001.
Vitousek, P. M., Menge, D. N. L., Reed, S. C., and Cleveland, C. C.: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems, Phil. Trans. R. Soc. B, 368, 20130119, https://doi.org/10.1098/rstb.2013.0119. 2013
Williams, E. J., Guenther, A., and Fehsenfeld, F. C.: An inventory of nitric oxide emissions from soils in the United States, J. Geophys. Res. 97, 7511–7519, 1992.
Yan, X., Ohara, T., and Akimoto, H.: Statistical modelling of global soil NOx emissions, Global Biogeochem. Cy., 19, GB3019, https://doi.org/10.1029/2004GB002276, 2005.
Yang, W. X. and Meixner, F. X.: Laboratory studies on the release of nitric oxide from sub-tropical grassland soils: The effect of soil temperature and moisture, in: Gaseous Nitrogen Emissions from Grasslands, edited by: Jarvis, S. C. and Pain, B. F., CAB International, Wallingford, New York, 67–70, 1997.
Yao, Z, Wu, X., Wolf, B., Dannenmann, M., Butterbach-Bahl, K., Brüggemann, N., Chen, W., and Zheng, X.: Soil atmosphere exchange potential of \chemNO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying- wetting events, J. Geophys. Res., 115, D17116, https://doi.org/10.1029/2009JD013528, 2010.
Yienger, J. J. and Levy II, H.: Empirical model of global soil biogenic NOx emissions, J. Geophys. Res., 100, 11447–11464, 1995.
Short summary
This study provides seasonal and interannual variation of simulated biogenic NO emission fluxes in a Sahelian rangeland in Mali, a region where intense NO emissions occur during the wet season. Emissions are related to their biogeochemical origin, to the quantity of biomass, and to the quantity of livestock, which drive the N pool and N turnover in the soil, using a coupled vegetation–litter decomposition–emission model.
This study provides seasonal and interannual variation of simulated biogenic NO emission fluxes...
Altmetrics
Final-revised paper
Preprint