Articles | Volume 13, issue 7
https://doi.org/10.5194/bg-13-2029-2016
https://doi.org/10.5194/bg-13-2029-2016
Research article
 | 
07 Apr 2016
Research article |  | 07 Apr 2016

Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat–corn rotation cropland in the North China Plain

Jonas Sommar, Wei Zhu, Lihai Shang, Che-Jen Lin, and Xinbin Feng

Related authors

Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016,https://doi.org/10.5194/acp-16-12861-2016, 2016
Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China
Xun Wang, Che-Jen Lin, Wei Yuan, Jonas Sommar, Wei Zhu, and Xinbin Feng
Atmos. Chem. Phys., 16, 11125–11143, https://doi.org/10.5194/acp-16-11125-2016,https://doi.org/10.5194/acp-16-11125-2016, 2016
Short summary
Development and Testing of a Passive Sampler for Measurement of Gaseous Mercury
Ingvar Wängberg, Ulla Hageström, Jonas Sommar, and Martin Ferm
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-528,https://doi.org/10.5194/acp-2016-528, 2016
Preprint withdrawn
Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review
Wei Zhu, Che-Jen Lin, Xun Wang, Jonas Sommar, Xuewu Fu, and Xinbin Feng
Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016,https://doi.org/10.5194/acp-16-4451-2016, 2016
Short summary
A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016,https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024,https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024,https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024,https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024,https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024,https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary

Cited articles

AMAP/UNEP: Technical Background Report for the Global Mercury Assessment 2013, Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, VI, 263 pp., 2013.
Bahlmann, E., Ebinghaus, R., and Ruck, W.: The effect of soil moisture on the emission of mercury from soils, Materials and Geoenvironment, 51, 791–794, 2004.
Bahlmann, E., Ebinghaus, R., and Ruck, W.: Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils, J. Environ. Manage., 81, 114–125, 2006.
Bao, X. Y., Wen, X. F., Sun, X. M., Zhao, F. H., and Wang, Y. Y.: Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain, PLoS ONE, 9, e110021, https://doi.org/10.1371/journal.pone.0110021, 2014.
Bash, J. O. and Miller, D. R.: A note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling, Sci. Total Environ., 388, 379–388, 2007.
Download
Short summary
A micrometeorological method (REA) has been implemented to assess the role of cereal crop fields in the North China Plain as a source or sink of elemental mercury vapor (Hg0) during the course of a full year. In combination with chamber measurements under the canopy, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the crop foliage, with net emissions prevailing from the ecosystem during the majority of a year.
Altmetrics
Final-revised paper
Preprint