Articles | Volume 13, issue 2
https://doi.org/10.5194/bg-13-425-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-425-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers
Center for Ecology and Environmental Sciences, South China Botanical
Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
G. D. Jenerette
Department of Botany and Plant Sciences, Center for Conservation
Biology, University of California Riverside, Riverside, CA 92521, USA
Department of Biological Sciences, Tennessee State University,
Nashville, TN 37209, USA
R. L. Scott
USDA Agricultural Research Service, Southwest Watershed Research Center,
Tucson, AZ 85719, USA
Related authors
Yanxia Nie, Xiaoge Han, Jie Chen, Mengcen Wang, and Weijun Shen
Biogeosciences, 16, 4277–4291, https://doi.org/10.5194/bg-16-4277-2019, https://doi.org/10.5194/bg-16-4277-2019, 2019
Short summary
Short summary
The N–transformation rates and N–related functional gene abundance were surveyed in a tropical forest soil with experimental N additions. The C : N ratio was the determinant factor for N transformations in the dry season while the microbial biomass was the one in the wet season. This study also found that high N addition imposed significant positive effects on the functional gene abundance of AOA amoA and nirK but negative effects on that of AOB amoA and nosZ.
Lei Ouyang, Jianguo Gao, Ping Zhao, Weijun Shen, Xingquan Rao, Liwei Zhu, and Guangyan Ni
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-392, https://doi.org/10.5194/bg-2019-392, 2019
Preprint withdrawn
Short summary
Short summary
The different spatial and temporal patterns of water use, together with the contrasting water use strategies, could partly explain the current coexistence of two dominant tree species in South China. Their varying performance under different water conditions implies possible shifts in species dominance within the forest community that were potentially stimulated under future precipitation change scenarios from a long-term perspective.
Jie Chen, Guoliang Xiao, Yakov Kuzyakov, G. Darrel Jenerette, Ying Ma, Wei Liu, Zhengfeng Wang, and Weijun Shen
Biogeosciences, 14, 2513–2525, https://doi.org/10.5194/bg-14-2513-2017, https://doi.org/10.5194/bg-14-2513-2017, 2017
Short summary
Short summary
We conducted a field manipulation experiment by redistributing 67 % of dry-season rainfall into the wet season while keeping the annual rainfall unchanged in a subtropical forest. Soil net nitrification and N mineralization rates were decreased by 13–20 % in the dry season and increased by 50 % with an accelerated NO3 leaching in the wet season. Functional microbial gene abundance and microbial biomass were the main factors affecting the N-process responses to the rainfall seasonality changes.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Short summary
Earth's drylands provide ecosystem services to many people and will likely be strongly affected by climate change, but it is quite challenging to monitor the productivity and water use of dryland plants with satellites. We developed and tested an approach for estimating dryland vegetation activity using machine learning to combine information from multiple satellite sensors. Our approach excelled at estimating photosynthesis and water use largely due to the inclusion of satellite soil moisture.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yanxia Nie, Xiaoge Han, Jie Chen, Mengcen Wang, and Weijun Shen
Biogeosciences, 16, 4277–4291, https://doi.org/10.5194/bg-16-4277-2019, https://doi.org/10.5194/bg-16-4277-2019, 2019
Short summary
Short summary
The N–transformation rates and N–related functional gene abundance were surveyed in a tropical forest soil with experimental N additions. The C : N ratio was the determinant factor for N transformations in the dry season while the microbial biomass was the one in the wet season. This study also found that high N addition imposed significant positive effects on the functional gene abundance of AOA amoA and nirK but negative effects on that of AOB amoA and nosZ.
Lei Ouyang, Jianguo Gao, Ping Zhao, Weijun Shen, Xingquan Rao, Liwei Zhu, and Guangyan Ni
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-392, https://doi.org/10.5194/bg-2019-392, 2019
Preprint withdrawn
Short summary
Short summary
The different spatial and temporal patterns of water use, together with the contrasting water use strategies, could partly explain the current coexistence of two dominant tree species in South China. Their varying performance under different water conditions implies possible shifts in species dominance within the forest community that were potentially stimulated under future precipitation change scenarios from a long-term perspective.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks
Geosci. Model Dev., 12, 1703–1724, https://doi.org/10.5194/gmd-12-1703-2019, https://doi.org/10.5194/gmd-12-1703-2019, 2019
Short summary
Short summary
This paper evaluates a significant cold land surface temperature bias in semi-arid regions in the Met Office Unified Model when compared with satellite observations. Sparse vegetation canopies are not well represented in ancillary datasets, in particular regions of cold bias are correlated with low bare soil cover fractions. The study demonstrates the difficulties in modelling land surface temperatures that match state-of-the-art satellite retrievals required for operational data assimilation.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Jie Chen, Guoliang Xiao, Yakov Kuzyakov, G. Darrel Jenerette, Ying Ma, Wei Liu, Zhengfeng Wang, and Weijun Shen
Biogeosciences, 14, 2513–2525, https://doi.org/10.5194/bg-14-2513-2017, https://doi.org/10.5194/bg-14-2513-2017, 2017
Short summary
Short summary
We conducted a field manipulation experiment by redistributing 67 % of dry-season rainfall into the wet season while keeping the annual rainfall unchanged in a subtropical forest. Soil net nitrification and N mineralization rates were decreased by 13–20 % in the dry season and increased by 50 % with an accelerated NO3 leaching in the wet season. Functional microbial gene abundance and microbial biomass were the main factors affecting the N-process responses to the rainfall seasonality changes.
Congsheng Fu, Guiling Wang, Michael L. Goulden, Russell L. Scott, Kenneth Bible, and Zoe G. Cardon
Hydrol. Earth Syst. Sci., 20, 2001–2018, https://doi.org/10.5194/hess-20-2001-2016, https://doi.org/10.5194/hess-20-2001-2016, 2016
Short summary
Short summary
Hydraulic redistribution (HR) of plant root has important hydrological impact (on evapotranspiration, Bowen ratio, and soil moisture) in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.
S.-H. Hong, J. M. H. Hendrickx, J. Kleissl, R. G. Allen, W. G. M. Bastiaanssen, R. L. Scott, and A. L. Steinwand
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-13479-2014, https://doi.org/10.5194/hessd-11-13479-2014, 2014
Manuscript not accepted for further review
H. Huang, J. Wang, D. Hui, D. R. Miller, S. Bhattarai, S. Dennis, D. Smart, T. Sammis, and K. C. Reddy
Atmos. Chem. Phys., 14, 12839–12854, https://doi.org/10.5194/acp-14-12839-2014, https://doi.org/10.5194/acp-14-12839-2014, 2014
Short summary
Short summary
An EC system was assembled with a sonic anemometer and a new fast-response N2O analyzer and applied in a cornfield during a growing season. This N2O EC system provided reliable N2O flux measurements. The average flux was about 63% higher during the daytime than during the nighttime. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature.
H. Jiang, Q. Deng, G. Zhou, D. Hui, D. Zhang, S. Liu, G. Chu, and J. Li
Biogeosciences, 10, 3963–3982, https://doi.org/10.5194/bg-10-3963-2013, https://doi.org/10.5194/bg-10-3963-2013, 2013
Related subject area
Biogeochemistry: Modelling, Terrestrial
X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Future projections of Siberian wildfire and aerosol emissions
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulphur and nitrogen atmospheric deposition
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
When and why microbial-explicit soil organic carbon models can be unstable
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Climate-based prediction of carbon fluxes from deadwood in Australia
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
The effect of temperature on photosystem II efficiency across plant functional types and climate
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Elevated atmospheric CO2 concentration and vegetation structural changes contributed to gross primary productivity increase more than climate and forest cover changes in subtropical forests of China
Developing the DO3SE-crop model for Xiaoji, China
Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem
Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2
A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
Representation of the Terrestrial Carbon Cycle in CMIP6
Using Free Air CO2 Enrichment data to constrain land surface model projections of the terrestrial carbon cycle
Multiscale assessment of North American terrestrial carbon balance
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Spatial biases reduce the ability of Earth system models to simulate soil heterotrophic respiration fluxes
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Tropical dry forest response to nutrient fertilization: a model validation and sensitivity analysis
Connecting competitor, stress-tolerator and ruderal (CSR) theory and Lund Potsdam Jena managed Land 5 (LPJmL 5) to assess the role of environmental conditions, management and functional diversity for grassland ecosystem functions
A global fuel characteristic model and dataset for wildfire prediction
Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?
Temporal variability of observed and simulated gross primary productivity, modulated by vegetation state and hydrometeorological drivers
Does dynamically modelled leaf area improve predictions of land surface water and carbon fluxes? – Insights into dynamic vegetation modules
Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia
A modeling approach to investigate drivers, variability and uncertainties in O2 fluxes and O2 : CO2 exchange ratios in a temperate forest
Modeling coupled nitrification–denitrification in soil with an organic hotspot
A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland
Enabling a process-oriented hydro-biogeochemical model to simulate soil erosion and nutrient losses
Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium limitation of forest productivity – Part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
Global evaluation of terrestrial biogeochemistry in the Energy Exascale Earth System Model (E3SM) and the role of the phosphorus cycle in the historical terrestrial carbon balance
Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts and climate change on future soil weathering rates in Sweden
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Observational benchmarks inform representation of soil organic carbon dynamics in land surface models
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024, https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Short summary
We provide an ensemble-model-based GPP dataset (ERF_GPP) that explains 85.1 % of the monthly variation in GPP across 170 sites, which is higher than other GPP estimate models. In addition, ERF_GPP improves the phenomenon of “high-value underestimation and low-value overestimation” in GPP estimation to some extent. Overall, ERF_GPP provides a more reliable estimate of global GPP and will facilitate further development of carbon cycle research.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1973, https://doi.org/10.5194/egusphere-2024-1973, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data and socioeconomic data to determine what affects burning in cropland and non-cropland area Europe. We found different drivers of burning in cropland burning vs non-cropland, to the point that some variable, e.g. population density, had completely the opposite effects.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024, https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate-change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024, https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Short summary
A first-of-its-kind global-scale model of temperature resilience and tolerance of photosystem II maximum quantum yield informs how plants maintain their efficiency of converting light energy to chemical energy for photosynthesis under temperature changes. Our finding explores this variation across plant functional types and habitat climatology, highlighting diverse temperature response strategies and a method to improve global-scale photosynthesis modeling under climate change.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-694, https://doi.org/10.5194/egusphere-2024-694, 2024
Short summary
Short summary
The DO3SE-crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-Crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, it integrates into Earth System Models for a comprehensive understanding of agriculture's interaction with global systems.
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024, https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary
Short summary
Stomata are pores on leaves that regulate gas exchange between plants and the atmosphere. Existing land models unrealistically assume stomata can jump between steady states when the environment changes. We implemented dynamic modeling to predict gradual stomatal responses at different scales. Results suggested that considering this effect on plant behavior patterns in diurnal cycles was important. Our framework also simplified simulations and can contribute to further efficiency improvements.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2024-277, https://doi.org/10.5194/egusphere-2024-277, 2024
Short summary
Short summary
This study investigates present day carbon cycle variables in CMIP5 and CMIP6 simulations. A significant improvement in the simulation of photosynthesis in models with nitrogen cycle is found, as well as only small differences between emission and concentration based simulations. Thus, we recommend the use of emission driven simulations in CMIP7 as default setup, and to view the nitrogen cycle as a necessary part of all future carbon cycle models.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2023-3037, https://doi.org/10.5194/egusphere-2023-3037, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes with important implications to their climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands to a source of methane but the magnitude varied regionally. In forests, changes in water table level influenced methane fluxes and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Shuyue Li, Bonnie Waring, Jennifer Powers, and David Medvigy
Biogeosciences, 21, 455–471, https://doi.org/10.5194/bg-21-455-2024, https://doi.org/10.5194/bg-21-455-2024, 2024
Short summary
Short summary
We used an ecosystem model to simulate primary production of a tropical forest subjected to 3 years of nutrient fertilization. Simulations parameterized such that relative allocation to fine roots increased with increasing soil phosphorus had leaf, wood, and fine root production consistent with observations. However, these simulations seemed to over-allocate to fine roots on multidecadal timescales, affecting aboveground biomass. Additional observations across timescales would benefit models.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Joe R. McNorton and Francesca Di Giuseppe
Biogeosciences, 21, 279–300, https://doi.org/10.5194/bg-21-279-2024, https://doi.org/10.5194/bg-21-279-2024, 2024
Short summary
Short summary
Wildfires have wide-ranging consequences for local communities, air quality and ecosystems. Vegetation amount and moisture state are key components to forecast wildfires. We developed a combined model and satellite framework to characterise vegetation, including the type of fuel, whether it is alive or dead, and its moisture content. The daily data is at high resolution globally (~9 km). Our characteristics correlate with active fire data and can inform fire danger and spread modelling efforts.
Brooke A. Eastman, William R. Wieder, Melannie D. Hartman, Edward R. Brzostek, and William T. Peterjohn
Biogeosciences, 21, 201–221, https://doi.org/10.5194/bg-21-201-2024, https://doi.org/10.5194/bg-21-201-2024, 2024
Short summary
Short summary
We compared soil model performance to data from a long-term nitrogen addition experiment in a forested ecosystem. We found that in order for soil carbon models to accurately predict future forest carbon sequestration, two key processes must respond dynamically to nitrogen availability: (1) plant allocation of carbon to wood versus roots and (2) rates of soil organic matter decomposition. Long-term experiments can help improve our predictions of the land carbon sink and its climate impact.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
EGUsphere, https://doi.org/10.5194/egusphere-2023-2101, https://doi.org/10.5194/egusphere-2023-2101, 2023
Short summary
Short summary
Plants at the land surface mediates between soil and atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to care for this dynamics. Here, two models which predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness which is caused by a mismatch between implemented physical relations and observable connections.
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, and Albert I. J. M. Van Dijk
Biogeosciences, 20, 4109–4134, https://doi.org/10.5194/bg-20-4109-2023, https://doi.org/10.5194/bg-20-4109-2023, 2023
Short summary
Short summary
Australia's land-based ecosystems play a critical role in controlling the variability in the global land carbon sink. However, uncertainties in the methods used for quantifying carbon fluxes limit our understanding. We develop high-resolution estimates of Australia's land carbon fluxes using machine learning methods and find that Australia is, on average, a stronger carbon sink than previously thought and that the seasonal dynamics of the fluxes differ from those described by other methods.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023, https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) is a useful constraint for estimating photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a novel temperature function for enzyme carbonic anhydrase (CA) activity and optimize conductances using observations. The optimal activity of CA occurs below 40 °C, and Ball–Woodrow–Berry parameters are slightly changed. These reduce/increase uptakes in the tropics/higher latitudes and contribute to resolving discrepancies in the COS global budget.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, https://doi.org/10.5194/bg-20-2265-2023, 2023
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences, 20, 1879–1899, https://doi.org/10.5194/bg-20-1879-2023, https://doi.org/10.5194/bg-20-1879-2023, 2023
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health.
In this study, climate change effects on weathering were studied on sites in Sweden using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer and increases with global warming but that weathering during drought summers can become as low as winter weathering.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-50, https://doi.org/10.5194/bg-2023-50, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon climate feedbacks. We used machine learning to develop and compare predictive relationships in observations and ESMs. We found different relationships between environmental factors and SOC stocks in observations and ESMs. SOC predictions in ESMs may be improved by representing the functional relationships of environmental controllers consistent with observations.
Cited articles
Asner, G. P., Archer, S., Hughes, R. F., Ansley, R. J., and Wessman, C. A.:
Net changes in regional woody vegetation cover and carbon storage in Texas
Drylands, 1937–1999, Glob. Change Biol., 9, 316–335, 2003.
Barron-Gafford, G. A., Scott, R. L., Jenerette, G. D., Hamerlynck, E. P.,
and Huxman, T. E.: Temperature and precipitation controls over leaf- and
ecosystem-level CO2 flux along a woody plant encroachment gradient,
Glob. Change Biol., 18, 1389–1400, 2012.
Barron-Gafford, G. A., Scott, R. L., Jenerette, G. D., Hamerlynck, E. P.,
and Huxman, T. E.: Landscape and environmental controls over leaf and
ecosystem carbon dioxide fluxes under woody plant expansion, J. Ecol., 101,
1471–1483, 2013.
Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (Eds.):
Climate Change and Water. Technical Paper of the Intergovernmental Panel on
Climate Change, IPCC Secretariat, Genenva, 2008.
Borken, W. and Matzner, E.: Reappraisal of drying and wetting effects on C
and N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824,
2009.
Cable, J. M., Ogle, K., Barron-Gafford, G. A., Bentley, L. P., Cable, W. L.,
Scott, R. L., Williams, D. G., and Huxman, T. E.: Antecedent conditions
influence soil respiration differences in shrub and grass patches,
Ecosystems, 16, 1230–1247, 2013.
Collins, S. L., Belnap, J., Grimm, N. B., Rudgers, J. A., Dahm, C. N.,
D'Odorico, P., Litvak, M., Natvig, D. O., Peters, D. C., Pockman, W. T.,
Sinsabaugh, R. L., and Wolf, B. O.: A multiscale, hierarchical model of
pulse dynamics in arid-land ecosystems, Annu. Rev. Ecol. Evol. S., 45,
397–419, 2014.
Cook, B. I. and Seager, R.: The response of the North American Monsoon to
increased greenhouse gas forcing, J. Geophys. Res.-Atmos., 118, 1690–1699,
2013.
de Vries, F. T., Liiri, M. E., Bjornlund, L., Setala, H. M., Christensen,
S., and Bardgett, R. D.: Legacy effects of drought on plant growth and the
soil food web, Oecologia, 170, 821–833, 2012.
Diffenbaugh, N. S., Giorgi, F., and Pal, J. S.: Climate change hotspots in
the United States, Geophys. Res. Lett., 35, L16709,
https://doi.org/10.1029/2008GL035075, 2008.
Evans, S. E. and Burke, I. C.: Carbon and nitrogen decoupling under an
11-year drought in the shortgrass steppe, Ecosystems, 16, 20–33, 2013.
Evans, S. E. and Wallenstein, M. D.: Soil microbial community response to
drying and rewetting stress: does historical precipitation regime matter?,
Biogeochemistry, 109, 101–116, 2012.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: Integrating terrestrial and oceanic
components, Science, 281, 237–240, 1998.
Flanagan, L. B., Wever, L. A., and Carlson, P. J.: Seasonal and interannual
variation in carbon dioxide exchange and carbon balance in a northern
temperate grassland, Glob. Change Biol., 8, 599–615, 2002.
Gao, Q. and Reynolds, J. F.: Historical shrub-grass transitions in the
northern Chihuahuan Desert: modeling the effects of shifting rainfall
seasonality and event size over a landscape gradient, Glob. Change Biol.,
9, 1475–1493, 2003.
Hamerlynck, E. P., Scott, R. L., Moran, M. S., Keefer, T. O., and Huxman, T.
E.: Growing season ecosystem and leaf-level gas exchange of an exotic and
native semiarid bunchgrass, Oecologia, 163, 561–570, 2010.
Hamerlynck, E. P., Scott, R. L., and Barron-Gafford, G. A.: Consequences of
cool-season drought-induced plant mortality to Chihuahuan Desert grassland
ecosystem and soil respiration dynamics, Ecosystems, 16, 1178–1191, 2013.
Hastings, S. J., Oechel, W. C., and Muhlia-Melo, A.: Diurnal, seasonal and
annual variation in the net ecosystem CO2 exchange of a desert shrub
community (Sarcocaulescent) in Baja California, Mexico, Glob. Change Biol.,
11, 927–939, 2005.
Heisler, J. L. and Weltzin, J. F.: Variability matters: towards a
perspective on the influence of precipitation on terrestrial ecosystems, New
Phytol., 172, 189–192, 2006.
Heisler-White, J. L., Knapp, A. K., and Kelly, E. F.: Increasing
precipitation event size increases aboveground net primary productivity in a
semi-arid grassland, Oecologia, 158, 129–140, 2008.
Homyak, P. M., Sickman, J. O., Miller, A. E., Melack, J. M., Meixner, T.,
and Schimel, J. P.: Assessing nitrogen-saturation in a seasonally dry
Chaparral watershed: Limitations of traditional indicators of N-saturation,
Ecosystems, 17, 1286–1305, 2014.
Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The US carbon budget:
Contributions from land-use change, Science, 285, 574–578, 1999.
Hui, D. F., Luo, Y. Q., and Katul, G.: Partitioning interannual variability
in net ecosystem exchange into climatic variability and functional change,
Tree Physiol., 23, 433–442, 2003.
Huxman, T. E., Cable, J. M., Ignace, D. D., Eilts, J. A., English, N. B.,
Weltzin, J., and Willimas, D. G.: Response of net ecosystem gas exchange to
a simulated precipitation pulse in a semi-arid grassland: the role of native
versus non-native grasses and soil texture, Oecologia, 141, 295–305, 2004a.
Huxman, T. E., Snyder, K. A., Tissue, D., Leffler, A. J., Ogle, K., Pockman,
W. T., Sandquist, D. R., Potts, D. L., and Schwinning, S.: Precipitation
pulses and carbon fluxes in semiarid and arid ecosystems, Oecologia, 141,
254–268, 2004b.
Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M.
E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T.,
Sala, O. E., Haddad, B. M., Harte, J., Kock, G. W., Schwinning, S., Small,
E. E., and Willimas, D. G.: Convergence across biomes to a common rain-use
efficiency, Nature, 429, 651–654, 2004c.
Jenerette, G. D., Scott, R. L., and Huxman, T. E.: Whole ecosystem metabolic
pulses following precipitation events, Funct. Ecol., 22, 924–930, 2008.
Jenerette, G. D., Scott, R. L., and Huete, A. R.: Functional differences
between summer and winter season rain assessed with MODIS-derived phenology
in a semi-arid region, J. Veg. Sci., 21, 16–30, 2010.
Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J., and
Villegas, J. C.: Organization of complexity in water limited ecohydrology,
Ecohydrology, 5, 184–199, 2012.
Jobbagy, E. G. and Sala, O. E.: Controls of grass and shrub aboveground
production in the Patagonian steppe, Ecol. Appl., 10, 541–549, 2000.
Katul, G. A., Proporato, A., and Oren R.: Stochastic dynamics of plant-water
interactions, Annu. Rev. Ecol. Evol. S., 38, 767–791, 2007.
Kemp, P. R., Reynolds, J. F., Pachepsky, Y., and Chen, J. L.: A comparative
modeling study of soil water dynamics in a desert ecosystem, Water Resour.
Res., 33, 73–90, 1997.
Kemp, P. R., Reynolds, J. F., Virginia, R. A., and Whitford, W. G.:
Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects
of three years of summer drought, J. Arid Environ., 53, 21–39, 2003.
Knapp, A. K., Fay, P. A., Blair, J. M., Collins, S. L., Smith, M. D.,
Carlisle, J. D., Harper, C. W., Danner, B. T., Lett, M. S., and McCarron, J.
K.: Rainfall variability, carbon cycling, and plant species diversity in a
mesic grassland, Science, 298, 2202–2205, 2002.
Lauenroth, W. K. and Sala, O. E.: Long-term forage production of
North-American shortgrass steppe, Ecol. Appl., 2, 397–403, 1992.
Ma, S. Y., Baldocchi, D. D., Xu, L. K., and Hehn, T.: Inter-annual
variability in carbon dioxide exchange of an oak/grass savanna and open
grassland in California, Agr. Forest Meteorol., 147, 157–171, 2007.
Ma, S. Y., Baldocchi, D. D., Hatala, J. A., Detto, M., and Yuste, J. C.: Are
rain-induced ecosystem respiration pulses enhanced by legacies of antecedent
photodegradation in semi-arid environments?, Agr. Forest Meteorol., 154,
203–213, 2012.
Maestre, F. T., Salguero-Gomez, R., and Quero, J. L.: It is getting hotter
in here: determining and projecting the impacts of global environmental
change on drylands Introduction, Philos. T. R. Soc. B., 367, 3062–3075,
2012.
McCalley, C. K. and Sparks, J. P.: Abiotic gas formation drives nitrogen loss
from a desert ecosystem, Science, 326, 837–840, 2009.
McCulley, R. L., Burke, I. C., and Lauenroth, W. K.: Conservation of
nitrogen increases with precipitation across a major grassland gradient in
the Central Great Plains of North America, Oecologia, 159, 571–581, 2009.
Monger, C., Sala, O. E., Duniway, M. C., Goldfus, H., Meir, I. A., Poch, R.
M., Throop, H. L., and Vivoni, E. R.: Legacy effects in linked
ecological-soil-geomorphic systems of drylands, Front. Ecol. Environ., 13,
13–19, 2015.
Noy-Meir, I.: Desert ecosystems: environment and producers, Annu. Rev. Ecol.
Evol. S., 4, 25–51, 1973.
Oesterheld, M., Loreti, J., Semmartin, M., and Sala, O. E.: Inter-annual
variation in primary production of a semi-arid grassland related to
previous-year production, J. Veg. Sci., 12, 137–142, 2001.
Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J.
M., Huxman, T. E., Loik, M. E., and Tissue, D. T.: Quantifying ecological
memory in plant and ecosystem processes, Ecol. Lett., 18, 221–235, 2015.
Oikawa, P. Y., Gratz, D. A., Chatterjee, A., Eberwein, J. E., Allsman, L.
A., and Jenerette, G. D.: Unifying soil respiration pulses, inhibition, and
temperature hysteresis through dynamics of labile carbon and soil O2,
J. Geophys. Res.-Biogeo., 115, 521–536, 2014.
Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes,
R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E.
G., Kamnalrut, A., and Kinyamario, J. I.: Observations and modeling of
biomass and soil organic-matter dynamics for the grassland biome worldwide,
Global Biogeochem. Cy., 7, 785–809, 1993.
Paruelo, J. M., Lauenroth, W. K., Burke, I. C., and Sala, O. E.: Grassland
precipitation-use efficiency varies across a resource gradient, Ecosystems,
2, 64–68, 1999.
Peters, D. P. C., Yao, J., Sala, O. E., and Anderson, J. P.: Directional
climate change and potential reversal of desertification in arid and
semiarid ecosystems, Glob. Change Biol., 18, 151–163, 2012.
Porporato, A. and Rodriguez-Iturbe, I.: Ecohydrology bearings – invited
commentary from random variability to ordered structures: a search for
general sysnthesis in ecohydrology, Ecoydrology, 6, 333–342, 2013.
Porporato, A., Daly, E., and Rodriguez-Iburbe, I.: Soil water balance and
ecosystem response to climate change, Am. Nat., 164, 625–632, 2004.
Potts, D. L., Scott, R. L., Cable, J. M., Huxman, T. E., and Williams, D.
G.: Sensitivity of mesquite shrubland CO2 exchange to precipitation in
contrasting landscape settings, Ecology, 89, 2900–2910, 2008.
Reichmann, L. G., Sala, O. E., and Peters, D. P. C.: Precipitation legacies
in desert grassland primary production occur through previous-year tiller
density, Ecology, 94, 435–443, 2013a.
Reichmann, L. G., Sala, O. E., and Peters, D. P. C.: Water controls on
nitrogen transformations and stocks in an arid ecosystem, Ecosphere, 4,
1–17, 2013b.
Reynolds, J. F., Virginia, R. A., and Schlesinger, W. H.: Defining
functional types for models of desertification, in: Plant Functional Types:
Their Relevance to Ecosystem Properties and Global Change, edited by: Shugart, T. M.
and Woodward, F. I., Cambridge University Press, Cambridge, 1997.
Reynolds, J. F., Virginia, R. A., Kemp, P. R., de Soyza, A. G., and Tremmel,
D. C.: Impact of drought on desert shrubs: Effects of seasonality and degree
of resource island development, Ecol. Monogr., 69, 69–106, 1999.
Reynolds, J. F., Kemp, P. R., and Tenhunen, J. D.: Effects of long-term
rainfall variability on evapotranspiration and soil water distribution in
the Chihuahuan Desert: A modeling analysis, Plant Ecol., 150, 145–159, 2000.
Reynolds, J. F., Kemp, P. R., Ogle, K., and Fernandez, R. J.: Modifying the
“pulse-reserve” paradigm for deserts of North America: precipitation pulses,
soil water, and plant responses, Oecologia, 141, 194–210, 2004.
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L.,
Mortimore, M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H.,
Fernandez, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans,
R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global
desertification: Building a science for dryland development, Science, 316,
847–851, 2007.
Rodriguez-Iturbe, I., Isham, V., Cox, D. R., Manfreda, S., and Porporato, A.:
Space-time modeling of soil moisture: Stochastic rainfall forcing with
heterogeneous vegeation, Water Resour. Res., 42,
W06D05, https://doi.org/10.1029/2005WR004497,
2006.
Sala, O. E., Lauenroth, W. K., and Parton, W. J.: Long-term soil-water
dynamics in the shortgrass steppe, Ecology, 73, 1175–1181, 1992.
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., and Peters, D.:
Legacies of precipitation fluctuations on primary production: theory and
data synthesis, Philos. T. R. Soc. B., 367, 3135–3144, 2012.
Schlesinger, W. H.: Biogeochemistry: An Analysis of Global Change, Academic
Press Inc, San Diego, CA, 1991.
Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E.: Effects of
seasonal drought on net carbon dioxide exchange from a
woody-plant-encroached semiarid grassland, J. Geophys. Res.-Biogeo., 114,
G04004, https://doi.org/10.1029/2008JG000900, 2009.
Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S., and
Barron-Gafford, G. A.: Carbon dioxide exchange in a semidesert grassland
through drought-induced vegetation change, J. Geophys. Res.-Biogeo., 115,
G03026, https://doi.org/10.1029/2010JG001348, 2010.
Scott, R. L., Huxman, T. E., Barron-Gafford, G. A., Jenerette, G. D., Young,
J. M., and Hamerlynck, E. P.: When vegetation change alters ecosystem water
availability, Glob. Change Biol., 20, 2198–2210, 2014.
Seager, R., Ting, M. F., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang,
H. P., Harnik, N., Leetmaa, A., Lau, N. C., Li, C. H., Velez, J., and Naik,
N.: Model projections of an imminent transition to a more arid climate in
southwestern North America, Science, 316, 1181–1184, 2007.
Shen, W. J., Wu, J. G., Kemp, P. R., Reynolds, J. F., and Grimm, N. B.:
Simulating the dynamics of primary productivity of a Sonoran ecosystem:
Model parameterization and validation, Ecol. Model., 189, 1–24, 2005.
Shen, W. J., Jenerette, G. D., Hui, D. F., Phillips, R. P., and Ren, H.:
Effects of changing precipitation regimes on dryland soil respiration and C
pool dynamics at rainfall event, seasonal and interannual scales, J. Geophys. Res.-Biogeo., 113, G03024, https://doi.org/10.1029/2008JG000685,
2008a.
Shen, W. J., Wu, J. G., Grimm, N. B., and Hope, D.: Effects of
urbanization-induced environmental changes on ecosystem functioning in the
Phoenix metropolitan region, USA, Ecosystems, 11, 138–155, 2008b.
Shen, W. J., Reynolds, J. F., and Hui, D. F.: Responses of dryland soil
respiration and soil carbon pool size to abrupt vs. gradual and individual
vs. combined changes in soil temperature, precipitation, and atmospheric
[CO2]: a simulation analysis, Glob. Change Biol., 15, 2274–2294, 2009.
Sherry, R. A., Weng, E. S., Arnone, J. A., Johnson, D. W., Schimel, D. S.,
Verburg, P. S., Wallace, L. L., and Luo, Y. Q.: Lagged effects of
experimental warming and doubled precipitation on annual and seasonal
aboveground biomass production in a tallgrass prairie, Glob. Change Biol.,
14, 2923–2936, 2008.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L. (Eds.): Climate Change 2007: The Physical
Science Basis, Cambridge University Press, Cambridge, 2007.
Sponseller, R. A.: Precipitation pulses and soil CO2 flux in a Sonoran
Desert ecosystem, Glob. Change Biol., 13, 426–436, 2007.
Swemmer, A. M., Knapp, A. K., and Snyman, H. A.: Intra-seasonal
precipitation patterns and above-ground productivity in three perennial
grasslands, J. Ecol., 95, 780–788, 2007.
Vargas, R., Baldocchi, D. D., Allen, M. F., Bahn, M., Black, T. A., Collins,
S. L., Yuste, J. C., Hirano, T., Jassal, R. S., Pumpanen, J., and Tang, J.
W.: Looking deeper into the soil: biophysical controls and seasonal lags of
soil CO2 production and efflux, Ecol. Appl., 20, 1569–1582, 2010.
Wiegand, T., Snyman, H. A., Kellner, K., and Paruelo, J. M.: Do grasslands
have a memory: Modeling phytomass production of a semiarid South African
grassland, Ecosystems, 7, 243–258, 2004.
Willimas, C. A. and Albertson, J. D.: Dynamical effects of the statistical
structure of annual rainfall on dryland vegetation, Glob. Change Biol., 12,
777–792, 2006.
Williams, C. A., Hanan, N., Scholes, R. J., and Kutsch, W.: Complexity in
water and carbon dioxide fluxes following rain pulses in an african savanna,
Oecologia, 161, 469–480, 2009.
Xu, L. K. and Baldocchi, D. D.: Seasonal variation in carbon dioxide
exchange over a Mediterranean annual grassland in California, Agr. Forest
Meteorol., 123, 79–96, 2004.
Xu, L. K., Baldocchi, D. D., and Tang, J. W.: How soil moisture, rain
pulses, and growth alter the response of ecosystem respiration to
temperature, Global Biogeochem. Cy., 18, GB4002, https://doi.org/10.1029/2004GB002281, 2004.
Yahdjian, L. and Sala, O. E.: Vegetation structure constrains primary
production response to water availability in the Patagonian steppe, Ecology,
87, 952–962, 2006.
Yahdjian, L. and Sala, O. E.: Size of precipitatin pulses controls nitrogen
transformation and losses in an arid Patagonian ecosystem, Ecosystems, 13,
575–585, 2010.
Yahdjian, L., Sala, O. E., and Austin, A. T.: Differential controls of water
input on litter decomposition and nitrogen dynamics in the Patagonian
Steppe, Ecosystems, 9, 128–141, 2006.
Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss
subalpine forest is significantly driven not only by current but also by previous year's weather,
Biogeosciences, 11, 1627–1635, https://doi.org/10.5194/bg-11-1627-2014, 2014.
Short summary
This simulation study found that dry legacy imposed positive impacts on net ecosystem production (NEP) whereas wet legacy had negative impacts on NEP, indicating that dry legacy can foster more C sequestration and wet legacy more C release. The carryover of soil nitrogen was mainly responsible for the gross ecosystem production (GEP) responses, while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the ecosystem respiration (Re) responses.
This simulation study found that dry legacy imposed positive impacts on net ecosystem production...
Altmetrics
Final-revised paper
Preprint