Research article
17 Jan 2017
Research article | 17 Jan 2017
Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna
Cari D. Ficken and Justin P. Wright
Related subject area
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020,https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020,https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020,https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020,https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020,https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Increasing soil carbon stocks in eight permanent forest plots in China
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020,https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
Julian Helfenstein, Chiara Pistocchi, Astrid Oberson, Federica Tamburini, Daniel S. Goll, and Emmanuel Frossard
Biogeosciences, 17, 441–454, https://doi.org/10.5194/bg-17-441-2020,https://doi.org/10.5194/bg-17-441-2020, 2020
Short summary
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry, Jiří Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Christian J. Jørgensen, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences, 17, 361–379, https://doi.org/10.5194/bg-17-361-2020,https://doi.org/10.5194/bg-17-361-2020, 2020
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Cited articles
Aber, J. D., Ollinger, S. V., Driscoll, C. T., Likens, G. E., Holmes, R. T., Freuder, R. J., and Goodale, C. L.: Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations, Ecosystems, 5, 648–658, https://doi.org/10.1007/s10021-002-0203-8, 2002.
Ames, G. M., Anderson, S. M., and Wright, J. P.: Multiple environmental drivers structure plant traits at the community level in a pryogenic ecosystem, Funct. Ecol., 30, 789–798, https://doi.org/10.1111/1365-2435.12536, 2015.
Appling, A. P. and Heffernan, J. B.: Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles, Am. Nat., 184, 384–406, https://doi.org/10.1086/677282, 2014.
Archer, S. K., Allgeier, J. E., Semmens, B. X., Heppell, S. A., Pattengill-Semmens, C. V., Rosemond, A. D., Bush, P. G., McCoy, C. M., Johnson, B. C., and Layman, C. A.: Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling, Coral Reefs, 34, 19–23, https://doi.org/10.1007/s00338-014-1208-4, 2014.
Augustine, D. L., Brewer, P., Blumenthal, D. M., Derner, J. D., and Von Fischer, J. C.: Prescribed fire, soil inorganic nitrogen dynamics, and plant respnoses in a semiarid grassland, J. Arid. Environ., 104, 59–66, https://doi.org/10.1016/j.jaridenv.2014.01.022, 2014.
Binkley, D., Richter, D., David, M. B., and Caldwell, B.: Soil Chemistry in a Loblolly/Longleaf Pine Forest with Interval Burning, Ecol. Appl., 2, 157–164, https://doi.org/10.2307/1941772, 1992.
Bonachela, J. A., Raghib, M., and Levin, S. A.: Dynamic model of flexible phytoplankton nutrient uptake, P. Natl. Acad. Sci. USA, 108, 20633–20638, https://doi.org/10.1073/pnas.1118012108, 2011.
Booth, M. S., Stark, J. M., and Rastetter, E. B.: Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data, Ecol. Monogr., 75, 139–157, https://doi.org/10.1890/04-0988, 2005.
Boring, L. R., Hendricks, J. J., Wilson, C. A., and Mitchell, R. J.: Season of burn and nutrient losses in a longleaf pine ecosystem, Int. J. Wildland Fire, 13, 443–453, https://doi.org/10.1071/WF03060, 2004.
Brockway, D. G. and Lewis, C. E.: Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem, Forest Ecol. Manag., 96, 167–183, https://doi.org/10.1016/S0378-1127(96)03939-4, 1997.
Carter, M. C. and Foster, C. D.: Prescribed burning and productivity in southern pine forests: A review, Forest Ecol. Manag., 191, 93–109, https://doi.org/10.1016/j.foreco.2003.11.006, 2004.
Certini, G.: Effects of fire on properties of forest soils: A review, Oecologia, 143, 1–10, https://doi.org/10.1007/s00442-004-1788-8, 2005.
Christensen, N. L.: Fire and Soil-Plant Nutrient Relations in a Pine-Wiregrass Savanna on the Coastal Plain of North Carolina, Oecologia, 31, 27–44, https://doi.org/10.1007/BF00348706, 1977.
Craine, J. M., Brookshire, E. N. J., Cramer, M. D., Hasselquist, N. J., Koba, K., Marin-Spiotta, E., and Wang, L.: Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils, Plant Soil, 396, 1–26, https://doi.org/10.1007/s11104-015-2542-1, 2015.
Evans, R. D.: Physiological mechanisms influencing plant nitrogen isotope composition., Trends Plant. Sci., 6, 121–126, https://doi.org/10.1016/S1360-1385(01)01889-1, 2001.
Ficken, C.: Nmin_Data.csv, figshare, https://doi.org/10.6084/m9.figshare.4543255.v2, 2017.
Frost, C. C.: Presettlement fire frequency regimes of the United States: A first approximation, Proceedings 20th Tall Timbers Fire Ecology Conference: Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescription, Boise, ID, USA, 70–81, 1998.
Hartford, R. A. and Frandsen, W. H.: When it's hot, it's hot… or maybe it's not! (Surface flaming may not portend extensive soil heating), Int. J. Wildland Fire, 2, 139–144, 1992.
Hogberg, P.: Tansley Review No. 95
15N Natual Abundance in Soil-Plant Systems, New Phytol., 137, 179–203, https://doi.org/10.1046/j.1469-8137.1997.00808.x, 1997.
Houlton, B. Z., Sigman, D. M., Schuur, E. A. G., and Hedin, L. O.: A climate-driven switch in plant nitrogen acquisition within tropical forest communities, P. Natl. Acad. Sci. USA, 104, 8902–8906, https://doi.org/10.1073/pnas.0609935104, 2007.
Huber, E., Bell, T. L., and Adams, M. A.: Combustion influences on natural abundance nitrogen isotope ratio in soil and plants following a wildfire in a sub-alpine ecosystem, Oecologia, 173, 1063–1074, https://doi.org/10.1007/s00442-013-2665-0, 2013.
Jackson, R. B. and Caldwell, M. M.: The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics, Ecology, 74, 612–614, https://doi.org/10.2307/1939320, 1993.
James, J. J. and Richards, J. H.: Plant nitrogen capture in pulse-driven systems: Interactions between root responses and soil processes, J. Ecol., 94, 765–777, https://doi.org/10.1111/j.1365-2745.2006.01137.x, 2006.
Just, M. G., Hohmann, M. G., and Hoffmann, W. A.: Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient, Plant Ecol., 217, 631–644, https://doi.org/10.1007/s11258-015-0545-x, 2016.
Kronzucker, H. J., Siddiqi, M. Y., and Glass, A. D. M.: Conifer root discrimination against soil nitrate and the ecology of forest succession, Nature, 385, 59–61, https://doi.org/10.1038/385059a0, 1997.
Lavoie, M., Starr, G., Mack, M. C., Martin, T. A., and Gholz, H. L.: Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a Longleaf Pine-Slash Pine forest in Florida, Nat. Area. J., 30, 82–94, https://doi.org/10.3375/043.030.0109, 2010.
Lavoie, N., Vézina, L. P., and Margolis, H. A.: Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings, Tree Physiol., 11, 171–183, https://doi.org/10.1093/treephys/11.2.171, 1992.
Likens, G. E., Bormann, F. H., and Johnson, N. M.: Nitrification: importance to nutrient losses from a cutover forested ecosystem, Science, 163, 1205–1206, https://doi.org/10.1126/science.163.3872.1205, 1969.
Lucash, M. S., Eissenstat, D. M., Joslin, J. D., McFarlane, K. J., and Yanai, R. D.: Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities, Trees, 21, 593–603, https://doi.org/10.1007/s00468-007-0160-0, 2007.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
Mitchell, R. J., Kirkman, L. K., Pecot, S. D., Wilson, C. A., Palik, B. J., and Boring, L. R.: Patterns and controls of ecosystem function in longleaf pine-wiregrass savannas. I. Aboveground net primary productivity, Can. J. Forest Res., 29, 743–751, https://doi.org/10.1139/x99-051, 1999.
Ojima, D. S., Schimel, D. S., Parton, W. J., and Owensby, C. E.: Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie, Biogeochemistry, 24, 67–84, https://doi.org/10.1007/BF02390180, 1994.
Raison, R. J.: Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review, Plant Soil., 51, 73–108, 1979.
R Core Development Team: R: A language and environment for statistical computing, available at: http://www.R-project.org (last access: 11 January 2017), 2011.
Richter, D., Ralston, C. W., and Harms, W. R.: Prescribed Fire: Effects on Water Quality and Forest Nutrient Cycling, Science, 215, 661–663, https://doi.org/10.1126/science.215.4533.661, 1982.
Saito, L., Miller, W. W., Johnson, D. W., Qualls, R. G., Provencher, L., Carroll, E., and Szameitat, P.: Fire Effects on Stable Isotopes in a Sierran Forested Watershed This study was supported by the Nevada Agricultural Experiment Station, College of Agriculture, Biotechnology, and Natural Resources, University of Nevada, Reno, publication number 52055531, and the US Forest Service, Lake Tahoe Basin Management Unit, J. Environ. Qual., 36, 91–100, https://doi.org/10.2134/jeq2006.0233, 2007.
Schafer, J. L. and Mack, M. C.: Short-term effects of fire on soil and plant nutrients in palmetto flatwoods, Plant Soil., 334, 433–447, https://doi.org/10.1007/s11104-010-0394-2, 2010.
Schafer, J. L. and Mack, M. C.: Foliar Nutrient Concentrations and Ratios of Scrubby Flatwoods Species Change with Time After Fire, Castanea, 79, 237–245, https://doi.org/10.2179/14-013, 2014.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a changing paradigm, Ecology, 3, 591–602, https://doi.org/10.1890/03-8002, 2004.
Shenoy, A., Kielland, K., and Johnstone, J. F.: Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests, Plant Ecol., 214, 587–596, https://doi.org/10.1007/s11258-013-0191-0, 2013.
Smithwick, E. A. H., Turner, M. G., Mack, M. C., and Chapin, F. S.: Postfire soil N cycling in Northern conifer forests affect by severe, stand-replacing wildfire, Ecosystems, 8, 163–181, https://doi.org/10.1007/s10021-004-0097-8, 2005.
Sorrie, B. A., Gray, J. B., and Crutchfield, P. J.: The vascular flora of the Longleaf Pine ecosystem of Fort Bragg and Weymouth Woods, North Carolina, Castanea, 71, 129–161, 2006.
Stambaugh, M. C., Guyette, R. P., and Marschall, J. M.: Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of frequent fire regime, J. Veg. Sci., 22, 1094–1104, https://doi.org/10.1111/j.1654-1103.2011.01322.x, 2011.
Ste-Marie, C. and Paré, D.: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands, Soil Biol. Biochem., 31, 1579–1589, https://doi.org/10.1016/S0038-0717(99)00086-3, 1999.
Stephan, K., Kavenaugh, K. L., and Koyama, A.: Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogoechemistry using
15N natural abundance in terrestrial and aquatic ecosystem components, PLoS ONE, 10, e0119560, https://doi.org/10.1371/journal.pone.0119560, 2015.
Tilman, D. and Pacala, S. W.: The maintenance of species richness in plant communities, in: Species Diversity in Ecology Communities, edited by: Ricklefs, R. E. and Schluter, D., University of Chicago Press, Chicago, IL, 13–25, 1993.
Trammell, T. L. E., Rhoades, C. C., and Bukaveckas, P. A.: Effects of prescribed fire on nutrient pools and losses from glades occurring within oak-hickory forests of Central Kentucky, Restor. Ecol., 12, 597–604, https://doi.org/10.1111/j.1061-2971.2004.00275.x, 2004.
Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B., and Romme, W. H.: Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem, P. Natl. Acad. Sci. USA, 104, 4782–4789, https://doi.org/10.1073/pnas.0700180104, 2007.
Vijver, C. A. D. M. V. D., Poot, P., and Prins, H. H. T.: Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna, Plant Soil., 214, 173–185, https://doi.org/10.1023/A:1004753406424, 1999.
Vitousek, P. M.: The regulation of element concentrations in mountain streams in the northeastern United States, Ecol. Monogr., 47, 65–87, 1977.
Wan, S., Hui, D., and Luo, Y.: Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis, Ecol. Appl., 11, 1349–1365, https://doi.org/10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2, 2001.
Wang, L. and Macko, S. A.: Constrained preferences in nitrogen uptake across plant species and environments, Plant Cell Environ., 34, 525–536, https://doi.org/10.1111/j.1365-3040.2010.02260.x, 2011.
Wilson, C. A., Mitchell, R. J., Hendricks, J. J., and Boring, L. R.: Patterns and controls of ecosystem function in longleaf pine- wiregrass savannas. II. Nitrogen dynamics, Can. J Forest Res., 29, 752–760, https://doi.org/10.1139/x99-050, 1999.
Wilson, C. A., Mitchell, R. J., Boring, L. R., and Hendricks, J. J.: Soil nitrogen dynamics in a fire-maintained forest ecosystem: Results over a 3-year burn interval, Soil Biol. Biochem., 34, 679–689, https://doi.org/10.1016/S0038-0717(01)00233-4, 2002.