Articles | Volume 14, issue 3
Biogeosciences, 14, 733–749, 2017
https://doi.org/10.5194/bg-14-733-2017
Biogeosciences, 14, 733–749, 2017
https://doi.org/10.5194/bg-14-733-2017

Research article 15 Feb 2017

Research article | 15 Feb 2017

Remote sensing of plant trait responses to field-based plant–soil feedback using UAV-based optical sensors

Bob van der Meij et al.

Related authors

FEATURE FILTERING AND SELECTION FOR DRY MATTER ESTIMATION ON PERENNIAL RYEGRASS: A CASE STUDY OF VEGETATION INDICES
G. T. Alckmin, L. Kooistra, A. Lucieer, and R. Rawnsley
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1827–1831, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, 2019
AUTOMATIC APPLE TREE BLOSSOM ESTIMATION FROM UAV RGB IMAGERY
A. Tubau Comas, J. Valente, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 631–635, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, 2019
OPPORTUNITIES OF UAVS IN ORCHARD MANAGEMENT
C. Zhang, J. Valente, L. Kooistra, L. Guo, and W. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 673–680, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, 2019
DETECTING RUMEX OBTUSIFOLIUS WEED PLANTS IN GRASSLANDS FROM UAV RGB IMAGERY USING DEEP LEARNING
J. Valente, M. Doldersum, C. Roers, and L. Kooistra
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 179–185, https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019, 2019
ASSESSING CHANGES IN POTATO CANOPY CAUSED BY LATE BLIGHT IN ORGANIC PRODUCTION SYSTEMS THROUGH UAV-BASED PUSHBROOM IMAGING SPECTROMETER
M. H. D. Franceschini, H. Bartholomeus, D. van Apeldoorn, J. Suomalainen, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 109–112, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, 2017

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021,https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry
Shunli Yu, Guoxun Wang, Ofir Katz, Danfeng Li, Qibing Wang, Ming Yue, and Canran Liu
Biogeosciences, 18, 655–667, https://doi.org/10.5194/bg-18-655-2021,https://doi.org/10.5194/bg-18-655-2021, 2021
Short summary
Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021,https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop
Peiqi Yang, Christiaan van der Tol, Petya K. E. Campbell, and Elizabeth M. Middleton
Biogeosciences, 18, 441–465, https://doi.org/10.5194/bg-18-441-2021,https://doi.org/10.5194/bg-18-441-2021, 2021
Short summary
Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland
Aurelio Guevara-Escobar, Enrique González-Sosa, Mónica Cervantes-Jiménez, Humberto Suzán-Azpiri, Mónica Elisa Queijeiro-Bolaños, Israel Carrillo-Ángeles, and Víctor Hugo Cambrón-Sandoval
Biogeosciences, 18, 367–392, https://doi.org/10.5194/bg-18-367-2021,https://doi.org/10.5194/bg-18-367-2021, 2021
Short summary

Cited articles

Aasen, H., Gnyp, M. L., Miao, Y., and Bareth, G.: Automated Hyperspectral Vegetation Index Retrieval from Multiple Correlation Matrices with Hypercor, Photogramm. Eng. Rem. S., 80, 51–61, 2014.
Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS Regression), Wiley Interdisciplinary Reviews: Computational Statistics 2.1, 97–106, 2010.
Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., González-Dugo, V., and Fereres, E.: Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors, International Archive of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 1–6, 2009.
Barel, J. M., Kuyper, T. W., de Boer, W., Douma, J. C., and De Deyn, G. B.: Legacy effects of winter cover crop mixtures on crop yield determined are driven by cover crop plant biomass and nitrogen concentration, under review, 2017.
Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C., Stock, W. D., Tibbett, M., and Zobel, M.: Rooting theories of plant community ecology in microbial interactions, Trends Ecol. Evol., 25, 468–478, 2010.
Download
Short summary
Plant–soil feedback (PSF) is an important mechanism to explain plant performance in natural and agricultural systems but is hard to quantify in field experiments. We used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way at high resolution using UAV-based optical sensors.
Altmetrics
Final-revised paper
Preprint