Articles | Volume 14, issue 3
https://doi.org/10.5194/bg-14-733-2017
https://doi.org/10.5194/bg-14-733-2017
Research article
 | 
15 Feb 2017
Research article |  | 15 Feb 2017

Remote sensing of plant trait responses to field-based plant–soil feedback using UAV-based optical sensors

Bob van der Meij, Lammert Kooistra, Juha Suomalainen, Janna M. Barel, and Gerlinde B. De Deyn

Related authors

Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024,https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Plant clustering generates negative plant–soil feedback without changing the spatial distribution of soil fauna
Peihua Zhang, Dries Bonte, Gerlinde De Deyn, and Martijn L. Vandegehuchte
Web Ecol., 23, 1–15, https://doi.org/10.5194/we-23-1-2023,https://doi.org/10.5194/we-23-1-2023, 2023
Short summary
FEATURE FILTERING AND SELECTION FOR DRY MATTER ESTIMATION ON PERENNIAL RYEGRASS: A CASE STUDY OF VEGETATION INDICES
G. T. Alckmin, L. Kooistra, A. Lucieer, and R. Rawnsley
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1827–1831, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, 2019
AUTOMATIC APPLE TREE BLOSSOM ESTIMATION FROM UAV RGB IMAGERY
A. Tubau Comas, J. Valente, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 631–635, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, 2019
OPPORTUNITIES OF UAVS IN ORCHARD MANAGEMENT
C. Zhang, J. Valente, L. Kooistra, L. Guo, and W. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 673–680, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, 2019

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024,https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024,https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024,https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary

Cited articles

Aasen, H., Gnyp, M. L., Miao, Y., and Bareth, G.: Automated Hyperspectral Vegetation Index Retrieval from Multiple Correlation Matrices with Hypercor, Photogramm. Eng. Rem. S., 80, 51–61, 2014.
Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS Regression), Wiley Interdisciplinary Reviews: Computational Statistics 2.1, 97–106, 2010.
Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., González-Dugo, V., and Fereres, E.: Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors, International Archive of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 1–6, 2009.
Barel, J. M., Kuyper, T. W., de Boer, W., Douma, J. C., and De Deyn, G. B.: Legacy effects of winter cover crop mixtures on crop yield determined are driven by cover crop plant biomass and nitrogen concentration, under review, 2017.
Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C., Stock, W. D., Tibbett, M., and Zobel, M.: Rooting theories of plant community ecology in microbial interactions, Trends Ecol. Evol., 25, 468–478, 2010.
Download
Short summary
Plant–soil feedback (PSF) is an important mechanism to explain plant performance in natural and agricultural systems but is hard to quantify in field experiments. We used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way at high resolution using UAV-based optical sensors.
Altmetrics
Final-revised paper
Preprint