Articles | Volume 15, issue 14
Research article
26 Jul 2018
Research article |  | 26 Jul 2018

Environmental drivers of soil phosphorus composition in natural ecosystems

Leonardo Deiss, Anibal de Moraes, and Vincent Maire

Related authors

An unknown oxidative metabolism substantially contributes to soil CO2 emissions
V. Maire, G. Alvarez, J. Colombet, A. Comby, R. Despinasse, E. Dubreucq, M. Joly, A.-C. Lehours, V. Perrier, T. Shahzad, and S. Fontaine
Biogeosciences, 10, 1155–1167,,, 2013

Related subject area

Biogeochemistry: Soils
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586,,, 2023
Short summary
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Frederick Büks
Biogeosciences, 20, 1529–1535,,, 2023
Short summary
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074,,, 2023
Short summary
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735,,, 2023
Short summary
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521,,, 2023
Short summary

Cited articles

Agbenin, J. O. and Tiessen, H.: Phosphorus forms in particle-size fractions of a toposequence from northeast Brazil, Soil Sci. Soc. Am. J., 59, 1687–1693,, 1995. 
Albrecht, W. A.: Soil fertility and biotic geography, Geogr. Rev., 47, 86–106,, 1957. 
Backnäs, S., Laine-Kaulio, H., and Kløve, B.: Phosphorus forms and related soil chemistry in preferential flowpaths and the soil matrix of a forested podzolic till soil profile, Geoderma, 189–190, 50–64,, 2012. 
Batjes, N. H.: Global distribution of soil phosphorus retention potential, ISRIC Report, World Soil Information, Wageningen, the Netherlands, 6, 1–42, 2011. 
Berg, A. S. and Joern, B. C.: Sorption dynamics of organic and inorganic phosphorus compounds in soil, J. Environ. Qual., 9, 1855–1862,, 2006. 
Short summary
Our results unraveled how soil inorganic and organic phosphorus compounds respond to edaphic variables, climatic variables, and soil weathering stages as a proxy for pedogenesis at an unprecedented geographical scale. Soil P composition is determined by distinctive drivers that regulate key ecological processes governing their presence, transformation, and persistence on terrestrial natural ecosystems.
Final-revised paper