Articles | Volume 15, issue 4
Biogeosciences, 15, 987–995, 2018
Biogeosciences, 15, 987–995, 2018

Research article 20 Feb 2018

Research article | 20 Feb 2018

Stable isotopic constraints on global soil organic carbon turnover

Chao Wang et al.

Related authors

Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect
Dongwei Liu, Weixing Zhu, Xiaobo Wang, Yuepeng Pan, Chao Wang, Dan Xi, Edith Bai, Yuesi Wang, Xingguo Han, and Yunting Fang
Biogeosciences, 14, 989–1001,,, 2017
Short summary

Related subject area

Biogeochemistry: Stable Isotopes & Other Tracers
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829,,, 2021
Short summary
Silicon uptake and isotope fractionation dynamics by crop species
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490,,, 2020
Short summary
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015,,, 2020
Short summary
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653,,, 2020
Short summary
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537,,, 2020
Short summary

Cited articles

Accoe, F., Boeckx, P., Cleemput, O. V., Hofman, G., Zhang, Y., and Guanxiong, C.: Evolution of the δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland, Rapid Commun. Mass Sp., 16, 2184–2189, 2002.
Acton, P., Fox, J., Campbell, E., Rowe, H., and Wilkinson, M.: Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils, J. Geophys. Res.-Biogeo., 118, 1532–1545, 2013.
Berg, B.: Litter decomposition and organic matter turnover in northern forest soils, Forest Ecol. Manag., 133, 13–22, 2000.
Bird, M. I., Chivas, A. R., and Head, J.: A latitudinal gradient in carbon turnover times in forest soils, Nature, 381, 143–146, 1996.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: A global relationship between the heterotrophic and autotrophic components of soil respiration?, Glob. Change Biol., 10, 1756–1766, 2004.
Short summary
Soil contains a large amount of organic carbon and plays a crucial role in regulating Earth's C cycle and climate system. In this study, we collected soil-carbon isotope data within a 1 m depth globally and provided an isotope-based approach for understanding soil carbon decomposition rate. Compared with other methods, utilization of C isotope composition ratios in the soil profile provides an independent approach that does not rely on disruption of plant-soil-microbe interactions.
Final-revised paper