Research article
28 May 2019
Research article | 28 May 2019
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams et al.
Related authors
Related subject area
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020,https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020,https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020,https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020,https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Increasing soil carbon stocks in eight permanent forest plots in China
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020,https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Soil responses to manipulated precipitation changes: A synthesis of meta-analyses
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-30,https://doi.org/10.5194/bg-2020-30, 2020
Revised manuscript accepted for BG
Short summary
Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
Julian Helfenstein, Chiara Pistocchi, Astrid Oberson, Federica Tamburini, Daniel S. Goll, and Emmanuel Frossard
Biogeosciences, 17, 441–454, https://doi.org/10.5194/bg-17-441-2020,https://doi.org/10.5194/bg-17-441-2020, 2020
Short summary
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry, Jiří Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Christian J. Jørgensen, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences, 17, 361–379, https://doi.org/10.5194/bg-17-361-2020,https://doi.org/10.5194/bg-17-361-2020, 2020
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland
Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen
Biogeosciences, 15, 4447–4457, https://doi.org/10.5194/bg-15-4447-2018,https://doi.org/10.5194/bg-15-4447-2018, 2018
Short summary
Cited articles
Aboal, M., Werner, O., García-Fernández, M. E., Palazón, J. A.,
Cristóbal, J. C., and Williams, W.: Should ecomorphs be conserved? The
case of Nostoc flagelliforme, an endangered extremophile cyanobacteria, J.
Nat. Conserv., 30, 52–64, https://doi.org/10.1016/j.jnc.2016.01.001, 2016.
Agrawal, S. C. and Singh, V.: Viability of dried filaments, survivability and
reproduction under water stress, and survivability following heat and UV
exposure in Lyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola,
Hormidium fluitans,
Spirogyra sp. and Vaucheria geminata, Folia
Microbiol., 47, 61–67, https://doi.org/10.1007/BF02818567, 2002.
Barger, N. N., Weber, B., Garcia-Pichel, F., Zaady, E., and Belnap, J.:
Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts, in
Biological Soil Crusts: An Organizing Principle in Drylands, 257–285,
Springer, Cham, 2016.
Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., and Davison, A. W.: A
reappraisal of the use of DMSO for the extraction and determination of
chlorophylls a and b in lichens and higher plants, Environ. Exp. Bot., 32,
85–100, https://doi.org/10.1016/0098-8472(92)90034-Y, 1992.
Belnap, J. and Eldridge, D.: Disturbance and Recovery of Biological Soil
Crusts, in Biological Soil Crusts: Structure, Function, and Management,
363–383, Springer, Berlin, Heidelberg, 2001.
Belnap, J. and Gillette, D. A.: Vulnerability of desert biological soil
crusts to wind erosion: the influences of crust development, soil texture,
and disturbance, J. Arid Environ., 39, 133–142, https://doi.org/10.1006/jare.1998.0388,
1998.
Bergman, B., Gallon, J. R., Rai, A. N., and Stal, L. J.:
N2 Fixation
by non-heterocystous cyanobacteria, FEMS Microbiol. Rev., 19, 139–185,
https://doi.org/10.1111/j.1574-6976.1997.tb00296.x, 1997.
Billi, D. and Potts, M.: Life and death of dried prokaryotes, Res.
Microbiol., 153, 7–12, https://doi.org/10.1016/S0923-2508(01)01279-7, 2002.
Bowker, M. A.: Biological Soil Crust Rehabilitation in Theory and Practice:
An Underexploited Opportunity, Restor. Ecol., 15, 13–23,
https://doi.org/10.1111/j.1526-100X.2006.00185.x, 2007.
Bowker, M. A., Maestre, F. T., Eldridge, D., Belnap, J., Castillo-Monroy, A.,
Escolar, C., and Soliveres, S.: Biological soil crusts (biocrusts) as a model
system in community, landscape and ecosystem ecology, Biodivers. Conserv.,
23, 1619–1637, https://doi.org/10.1007/s10531-014-0658-x, 2014.
Bristol, B. M.: On the retention of vitality by algae from old stored soils,
New Phytol., 18, 92–107, 1919.
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr,
K. I., Salisch, M., Reisser, W., and Weber, B.: Southern African biological
soil crusts are ubiquitous and highly diverse in drylands, being restricted
by rainfall frequency, Microb. Ecol., 57, 229–247,
https://doi.org/10.1007/s00248-008-9449-9, 2009.
Büdel, B., Williams, W. J., and Reichenberger, H.: Annual net primary
productivity of a cyanobacteria-dominated biological soil crust in the Gulf
Savannah, Queensland, Australia, Biogeosciences, 15, 491–505,
https://doi.org/10.5194/bg-15-491-2018, 2018.
Burrows, S. M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A.,
Pöschl, U., and Lawrence, M. G.: Bacteria in the global atmosphere –
Part 2: Modeling of emissions and transport between different ecosystems,
Atmos. Chem. Phys., 9, 9281–9297, https://doi.org/10.5194/acp-9-9281-2009, 2009.
Carrick, P. J. and Krüger, R.: Restoring degraded landscapes in lowland
Namaqualand: Lessons from the mining experience and from regional ecological
dynamics, J. Arid Environ., 70, 767–781, https://doi.org/10.1016/j.jaridenv.2006.08.006,
2007.
Chamizo, S., Cantón, Y., Miralles, I., and Domingo, F.: Biological soil
crust development affects physicochemical characteristics of soil surface in
semiarid ecosystems, Soil Biol. Biochem., 49, 96–105,
https://doi.org/10.1016/j.soilbio.2012.02.017, 2012.
Chilton, A. M., Neilan, B. A., and Eldridge, D. J.: Biocrust morphology is
linked to marked differences in microbial community composition, Plant Soil,
429, 65–75, https://doi.org/10.1007/s11104-017-3442-3, 2017.
Chiquoine, L. P., Abella, S. R., and Bowker, M. A.: Rapidly restoring
biological soil crusts and ecosystem functions in a
severely disturbed desert
ecosystem, Ecol. Appl., 26, 1260–1272, https://doi.org/10.1002/15-0973, 2016.
Delgado-Baquerizo, M., Morillas, L., Maestre, F. T., and Gallardo, A.:
Biocrusts control the nitrogen dynamics and microbial functional diversity of
semi-arid soils in response to nutrient additions, Plant Soil, 372, 643–654,
https://doi.org/10.1007/s11104-013-1779-9, 2013.
Doherty, K. D., Antoninka, A. J., Bowker, M. A., Ayuso, S. V., and Johnson,
N. C.: A Novel Approach to Cultivate Biocrusts for Restoration and
Experimentation, Ecol. Restor., 33, 13–16, 2015.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M.
O., and Pöschl, U.: Contribution of cryptogamic covers to the global
cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462,
https://doi.org/10.1038/ngeo1486, 2012.
Eldridge, D. J. and Leys, J. F.: Exploring some relationships between
biological soil crusts, soil aggregation and wind erosion, J. Arid Environ.,
53, 457–466, https://doi.org/10.1006/jare.2002.1068, 2003.
Esmarch, F.: Untersuchungen über die Verbreitung der Cyanophyceen auf und
in Verschiedenen Böden, Hedwigia. B., 55, 224–273, 1914.
Fiore, M. F., Sant'Anna, C. L., Azevedo, M. T. de P., Komárek, J.,
Kaštovský, J., Sulek, J., and Lorenzi, A. A. S.: The Cyanobacterial
Genus Brasilonema, Gen. Nov., a Molecular and Phenotypic Evaluation1, J.
Phycol., 43, 789–798, https://doi.org/10.1111/j.1529-8817.2007.00376.x, 2007.
Fischer, T., Gypser, S., Subbotina, M., and Veste, M.: Synergic hydraulic and
nutritional feedback mechanisms control surface patchiness of biological soil
crusts on tertiary sands at a post-mining site, J. Hydrol. Hydromech., 62,
293–302, https://doi.org/10.2478/johh-2014-0038, 2014.
Fujita, Y. and Nakahara, H.: Variations in the microalgal structure in paddy
soil in Osaka, Japan: comparison between surface and subsurface soils,
Limnology, 7, 83–91, https://doi.org/10.1007/s10201-006-0167-z, 2006.
Garcia-Pichel, F. and Wojciechowski, M. F.: The evolution of a capacity to
build supra-cellular ropes enabled filamentous cyanobacteria to colonize
highly erodible substrates, PLoS One, 4, e7801, https://doi.org/10.1371/journal.pone.0007801, 2009.
Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P., and Potrafka, R. M.:
Temperature drives the continental-scale distribution of key microbes in
topsoil communities, Science, 340, 1574–1577, 2013.
Genty, B., Briantais, J.-M., and Baker, N. R.: The relationship between the
quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence, Biochim. Biophys. Acta, 990, 87–92,
https://doi.org/10.1016/S0304-4165(89)80016-9, 1989.
Gillieson, D., Wallbrink, P., and Cochrane, A.: Vegetation change, erosion
risk and land management on the Nullarbor Plain, Australia, Environ. Geol.,
28, 145–153, https://doi.org/10.1007/s002540050087, 1996.
Harris, J. A.: Measurements of the soil microbial community for estimating
the success of restoration, Eur. J. Soil Sci., 54, 801–808,
https://doi.org/10.1046/j.1351-0754.2003.0559.x, 2003.
Hou, B. and Warland, I.: Heavy mineral sands potential of the Eucla Basin in
South Australia-a world-class palaeobeach placer province, Mesa J., 37,
4–12, 2005.
Hu, C., Liu, Y., Zhang, D., Huang, Z., and Paulsen, B. S.: Cementing
mechanism of algal crusts from desert area, Chinese Sci. Bull., 47,
1361–1368, https://doi.org/10.1360/02tb9301, 2002.
Jasper, D. A.: Beneficial Soil Microorganisms of the Jarrah Forest and Their
Recovery in Bauxite Mine Restoration in Southwestern Australia, Restor.
Ecol., 15, S74–S84, https://doi.org/10.1111/j.1526-100X.2007.00295.x, 2007.
Kidron, G. J., Barinova, S., and Vonshak, A.: The effects of heavy winter
rains and rare summer rains on biological soil crusts in the Negev Desert,
Catena, 95, 6–11, https://doi.org/10.1016/j.catena.2012.02.021, 2012.
Komárek, J. and Anagnostidis, K.: Cyanoprokaryota, 2. Teil
Oscillatoriales, in: Süßwasserflora von Mitteleuropa 19/2, edited by:
Büdel, B., Krientz, L., Gärtner, G., and Schagerl, M., Gustav Fischer
Verlag, Jena, Germany, 2005.
Lipman, C. B.: The successful revival of Nostoc commune from a herbarium
specimen eighty-seven years old, B. Torrey Bot. Club, 68, 664–666, 1941.
Lukešová, A.: Soil Algae in Brown Coal and Lignite Post-Mining Areas
in Central Europe (Czech Republic and Germany), Restor. Ecol., 9, 341–350,
https://doi.org/10.1046/j.1526-100X.2001.94002.x, 2001.
Maestre, F. T., Castillo-Monroy, A. P., Bowker, M. A., and Ochoa-Hueso, R.:
Species richness effects on ecosystem multifunctionality depend on evenness,
composition and spatial pattern, J. Ecol., 100, 317–330,
https://doi.org/10.1111/j.1365-2745.2011.01918.x, 2012.
Mager, D. M. and Thomas, A. D.: Extracellular polysaccharides from
cyanobacterial soil crusts: A review of their role in dryland soil processes,
J. Arid Environ., 75, 91–97, https://doi.org/10.1016/j.jaridenv.2010.10.001, 2011.
Mazor, G., Kidron, G. J., Vonshak, A., and Abeliovich, A.: The role of
cyanobacterial exopolysaccharides in structuring desert microbial crusts,
FEMS Microbiol. Ecol., 21, 121–130, https://doi.org/10.1016/0168-6496(96)00050-5,
1996.
McCutcheon, J., Wilson, S. A., and Southam, G.: Microbially accelerated
carbonate mineral precipitation as a strategy for in situ carbon
sequestration and rehabilitation of asbestos mine sites, Environ. Sci.
Technol., 50, 1419–1427, 2016.
McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z.,
Probst, A., Andersen, G. L., Knight, R., and Hugenholtz, P.: An improved
Greengenes taxonomy with explicit ranks for ecological and evolutionary
analyses of bacteria and archaea, ISME J., 6, 610–618, https://doi.org/10.1038/ismej.2011.139, 2012.
McKenna Neuman, C., Maxwell, C. D., and Boulton, J. W.: Wind transport of
sand surfaces crusted with photoautotrophic microorganisms, CATENA, 27,
229–247, https://doi.org/10.1016/0341-8162(96)00023-9, 1996.
Rao, B., Liu, Y., Lan, S., Wu, P., Wang, W., and Li, D.: Effects of sand
burial stress on the early developments of
cyanobacterial crusts in the
field, Eur. J. Soil Biol., 48, 48–55, https://doi.org/10.1016/j.ejsobi.2011.07.009,
2012.
Rossi, F., Mugnai, G., and Philippis, R. D.: Complex role of the polymeric
matrix in biological soil crusts, Plant Soil, 429, 19–34,
https://doi.org/10.1007/s11104-017-3441-4, 2017.
Sant'Anna, C. L., Azevedo, M. T. P., Fiore, M. F., Lorenzi, A. S.,
Kaštovský, J., and Komárek, J.: Subgeneric diversity of
Brasilonema (Cyanobacteria, Scytonemataceae), Braz. J. Bot., 34, 51–62,
2011.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., and
Robinson, C. J.: Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities, Appl. Environ. Microbiol., 75, 7537–7541, 2009.
Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production by
Prochlorococcus, a marine cyanobacterium, and other phytoplankton, Mar.
Chem., 80, 227–245, 2003.
Skinner, S. and Entwisle, T.: Non-marine algae of Australia: 1. Survey of
colonial gelatinous blue-green macroalgae (Cyanobacteria), Telopea, 9,
573–599, https://doi.org/10.7751/telopea20024003, 2002.
Stal, L. J.: Physiological ecology of cyanobacteria in microbial mats and
other communities, New Phytol., 131, 1–32,
https://doi.org/10.1111/j.1469-8137.1995.tb03051.x, 1995.
Stal, L. J.: Microphytobenthos, their Extracellular Polymeric Substances, and
the Morphogenesis of Intertidal Sediments, Geomicrobiol. J., 20, 463–478,
https://doi.org/10.1080/713851126, 2003.
Tongway, D. and Hindley, N.: Landscape function analysis: a system for
monitoring rangeland function, Afr. J. Range For, Sci., 21, 109–113,
https://doi.org/10.2989/10220110409485841, 2004.
Tongway, D. J.: Soil and landscape processes in the restoration of
rangelands, Rangel. J., 12, 54–57, https://doi.org/10.1071/rj9900054, 1990.
Tongway, D. J. and Ludwig, J. A.: Rehabilitation of Semiarid Landscapes in
Australia. I. Restoring Productive Soil Patches, Restor. Ecol., 4, 388–397,
https://doi.org/10.1111/j.1526-100X.1996.tb00191.x, 1996.
Ullmann, I. and Büdel, B.: Ecological determinants of species composition
of biological soil crusts on a landscape scale, Biol. Soil Crusts Struct.
Funct. Manag., Springer, Berlin, Heidelberg, 203–213, 2001.
Vaccarino, M. A. and Johansen, J. R.: Brasilonema Angustatum Sp. Nov.
(nostocales), a New Filamentous Cyanobacterial Species from the Hawaiian
Islands1, J. Phycol., 48, 1178–1186, https://doi.org/10.1111/j.1529-8817.2012.01203.x,
2012.
Vishnivetskaya, T. A., Spirina, E. V., Shatilovich, A. V., Erokhina, L. G.,
Vorobyova, E. A., and Gilichinsky, D. A.: The resistance of viable permafrost
algae to simulated environmental stresses: implications for astrobiology,
Int. J. Astrobiol., 2, 171–177, https://doi.org/10.1017/S1473550403001575, 2003.
Weber, B., Bowker, M., Zhang, Y., and Belnap, J.: Natural Recovery of
Biological Soil Crusts After Disturbance, in Biological Soil Crusts: An
Organizing Principle in Drylands, 479–498, Springer, Cham, 2016.
Wellburn, A. R.: The Spectral Determination of Chlorophylls a and b, as well
as Total Carotenoids, Using Various Solvents with Spectrophotometers of
Different Resolution, J. Plant Physiol., 144, 307–313,
https://doi.org/10.1016/S0176-1617(11)81192-2, 1994.
Williams, W., Büdel, B., and Williams, S.: Wet season cyanobacterial N
enrichment highly correlated with species richness and Nostoc in the northern
Australian savannah, Biogeosciences, 15, 2149–2159,
https://doi.org/10.5194/bg-15-2149-2018, 2018.
Williams, W. J. and Büdel, B.: Species diversity, biomass and long-term
patterns of biological soil crusts with special focus on Cyanobacteria of the
Acacia aneura Mulga Lands of Queensland, Australia, Algol. Stud., 140,
23–50, 2012.
Williams, W. J. and Eldridge, D. J.: Deposition of sand over a cyanobacterial
soil crust increases nitrogen bioavailability in a semi-arid woodland, Appl.
Soil Ecol., 49, 26–31, https://doi.org/10.1016/j.apsoil.2011.07.005, 2011.
Williams, W. J., Büdel, B., Reichenberger, H., and Rose, N.:
Cyanobacteria in the Australian northern savannah detect the difference
between intermittent dry season and wet season rain, Biodivers. Conserv., 23,
1827–1844, https://doi.org/10.1007/s10531-014-0713-7, 2014.
Zhang, B., Kong, W., Wu, N., and Zhang, Y.: Bacterial diversity and community
along the succession of biological soil crusts in the Gurbantunggut Desert,
Northern China, J. Basic Microbiol., 56, 670–679, 2016.
Zhao, Y., Zhu, Q., Li, P., Zhao, L., Wang, L., Zheng, X., and Ma, H.: Effects
of artificially cultivated biological soil crusts on soil nutrients and
biological activities in the Loess Plateau, J. Arid Land, 6, 742–752,
https://doi.org/10.1007/s40333-014-0032-6, 2014.