Articles | Volume 16, issue 23
https://doi.org/10.5194/bg-16-4687-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-4687-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Jyrki Jauhiainen
CORRESPONDING AUTHOR
Natural Resources Institute Finland (Luke), P.O. Box 2, 00791
Helsinki, Finland
Department of Forest Sciences, University of Helsinki, P.O. Box 27,
00014 Helsinki, Finland
Jukka Alm
Natural Resources Institute Finland (Luke), 80100 Joensuu,
Finland
Brynhildur Bjarnadottir
Department of Education, University of Akureyri, 600 Akureyri,
Iceland
Ingeborg Callesen
Department of Geosciences and Natural Resource Management,
University of Copenhagen, 1958 Frederiksberg C, Denmark
Jesper R. Christiansen
Department of Geosciences and Natural Resource Management,
University of Copenhagen, 1958 Frederiksberg C, Denmark
Nicholas Clarke
Department of Terrestrial Ecology, Norwegian Institute of
Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway
Lise Dalsgaard
Department of Forest and Climate, Norwegian Institute of Bioeconomy
Research (NIBIO), P.O. Box 115, 1431 Ås, Norway
Hongxing He
Department of Biological and Environmental Sciences, University of
Gothenburg, P.O. Box 461, 40530 Gothenburg, Sweden
Sabine Jordan
Department of Soil and Environment, Swedish University of
Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
Vaiva Kazanavičiūtė
Department of Environmental Sciences, Vytautas Magnus university, 44248 Kaunas, Lithuania
Leif Klemedtsson
Department of Earth Sciences, University of Gothenburg, P.O. Box 460,
40530 Gothenburg, Sweden
Ari Lauren
Natural Resources Institute Finland (Luke), 80100 Joensuu,
Finland
Andis Lazdins
Latvian State Forest Research Institute (Silava), Salaspils,
2169, Latvia
Aleksi Lehtonen
Natural Resources Institute Finland (Luke), P.O. Box 2, 00791
Helsinki, Finland
Annalea Lohila
INAR Institute for Atmospheric and Earth System Research/Physics,
Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki,
Finland
Finnish Meteorological Institute, Climate System Research, P.O. Box
503, 00101 Helsinki, Finland
Ainars Lupikis
Latvian State Forest Research Institute (Silava), Salaspils,
2169, Latvia
Ülo Mander
Department of Geography, University of Tartu, 51014 Tartu,
Estonia
Kari Minkkinen
Department of Forest Sciences, University of Helsinki, P.O. Box 27,
00014 Helsinki, Finland
Åsa Kasimir
Department of Earth Sciences, University of Gothenburg, P.O. Box 460,
40530 Gothenburg, Sweden
Mats Olsson
Department of Soil and Environment, Swedish University of
Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
Paavo Ojanen
Department of Forest Sciences, University of Helsinki, P.O. Box 27,
00014 Helsinki, Finland
Hlynur Óskarsson
Agricultural University of Iceland, 311 Hvanneyri, Borgarnes,
Iceland
Bjarni D. Sigurdsson
Agricultural University of Iceland, 311 Hvanneyri, Borgarnes,
Iceland
Gunnhild Søgaard
Department of Forest and Climate, Norwegian Institute of Bioeconomy
Research (NIBIO), P.O. Box 115, 1431 Ås, Norway
Kaido Soosaar
Department of Geography, University of Tartu, 51014 Tartu,
Estonia
Lars Vesterdal
Department of Geosciences and Natural Resource Management,
University of Copenhagen, 1958 Frederiksberg C, Denmark
Raija Laiho
Natural Resources Institute Finland (Luke), P.O. Box 2, 00791
Helsinki, Finland
Related authors
No articles found.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2679, https://doi.org/10.5194/egusphere-2024-2679, 2024
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C uptake functions than pristine peatlands under a changing climate.
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-2523, https://doi.org/10.5194/egusphere-2024-2523, 2024
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in cropland and grassland in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC emission factors provided for the whole temperate zone including hemiboreal region. Contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martinez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-1994, https://doi.org/10.5194/egusphere-2024-1994, 2024
Short summary
Short summary
The emissions of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clearcut peatland forest site. The measurements covered the whole year of 2022 which was the second growing season after the clearcut. The site was a strong GHG source and the highest emissions came from CO2 followed by N2O and CH4. A statistical model that included information on different surfaces in the site was developed to unravel surface-type specific GHG fluxes.
Markku Koskinen, Jani Anttila, Valerie Vranová, Ladislav Holik, Kevin Roche, Michel Vorenhout, Mari Pihlatie, and Raija Laiho
EGUsphere, https://doi.org/10.5194/egusphere-2024-2050, https://doi.org/10.5194/egusphere-2024-2050, 2024
Short summary
Short summary
Redox potential, indicative of the active pathways of organic matter decomposition, was monitored for two years in a boreal peatland with three drainage regimes. Contrary to expectations, water table level and redox potential were found to not correlate in a monotonic fashion and thus the relationship between water table level and redox conditions is not modellable by non-dynamic models.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1967, https://doi.org/10.5194/egusphere-2024-1967, 2024
Short summary
Short summary
Our research explores diverse ecosystems’ role in climate cooling via the concept of CarbonSink+ Potential. We measured CO2 uptake and loaal aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that while forests are vital regarding CarbonSink+ Potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resource to mitigate global warming.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
EGUsphere, https://doi.org/10.5194/egusphere-2024-2102, https://doi.org/10.5194/egusphere-2024-2102, 2024
Short summary
Short summary
The vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown recent expansion of peatlands but their plant community succession of has not been studied. Although generally described as dry bog-types, our results show that peatland margins in a subarctic fen initiated as wet fen with high methane emissions and shifted to dryer peatland types only after dryer post Little Ice Age climate. Thus, they have acted as a carbon source for most of their history.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Aldis Butlers, Raija Laiho, Kaido Soosaar, Jyrki Jauhiainen, Thomas Schindler, Arta Bārdule, Muhammad Kamil-Sardar, Andreas Haberl, Valters Samariks, Hanna Vahter, Andis Lazdiņš, Dovilė Čiuldienė, Kęstutis Armolaitis, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1397, https://doi.org/10.5194/egusphere-2024-1397, 2024
Preprint archived
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated forest organic soil carbon balance and the impact of drainage. CO2 emissions from soil did not significantly differ, showing a uniform methodology should be applied in national greenhouse gas inventories. Neither drained or undrained soils lost carbon during the study period. However, it was estimated that the negative impact of drainage on carbon sequestration in hemiboreal forest soils is 0.43±2.69 t C ha−1 year−1.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-593, https://doi.org/10.5194/egusphere-2024-593, 2024
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through the analysis of soil environmental characteristics and microbiome, soil N2O and N2 emissions, and biomass production. Results show that wheat was growing well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climate.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-81, https://doi.org/10.5194/hess-2024-81, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We used hydrological models, field measurements and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics, and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Otso Peräkylä, Erkka Rinne, Ekaterina Ezhova, Anna Lintunen, Annalea Lohila, Juho Aalto, Mika Aurela, Pasi Kolari, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-712, https://doi.org/10.5194/egusphere-2024-712, 2024
Short summary
Short summary
Forests are seen as beneficial for climate. Yet, in areas with snow, trees break up the white snow surface, and absorb more sunlight than open areas. This has a warming effect, negating some of the climate benefit of trees. We studied two pairs of an open peatland and a forest in Finland. We found that the later the snow melts, the larger the difference in absorbed sunlight between forests and peatlands. This has implications for the future, as snow cover duration is affected by global warming.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2023-3037, https://doi.org/10.5194/egusphere-2023-3037, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes with important implications to their climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands to a source of methane but the magnitude varied regionally. In forests, changes in water table level influenced methane fluxes and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Jaan Pärn, Mikk Espenberg, Kaido Soosaar, Kuno Kasak, Sandeep Thayamkottu, Thomas Schindler, Reti Ranniku, Kristina Sohar, Lizardo Fachín Malaverri, Lulie Melling, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2024-24, https://doi.org/10.5194/egusphere-2024-24, 2024
Preprint archived
Short summary
Short summary
Earth’s climate largely depends on greenhouse gas exchange in tropical peatland ecosystems. Its relationships with tropical peatland conditions are poorly understood. We analysed natural peat swamp forests and fens, moderately drained and dry peatlands under a wide variety of land uses. The tropical peat swamp forests were large greenhouse gas sinks while tropical peatlands under moderate and low soil moisture levels emitted carbon dioxide and nitrous oxide.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2964, https://doi.org/10.5194/egusphere-2023-2964, 2024
Short summary
Short summary
Effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter in 2020 on the forest CO2 fluxes across 14 sites in Europe and found that in colder sites net ecosystem productivity (NEP) declined during the warm winter, while in the warmer sites NEP increased. Warming leads to increased respiration fluxes but if not translated into a direct warming of the soil might not enhance productivity, if the soil within the rooting zone remains frozen.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Laura Heimsch, Annalea Lohila, Juha-Pekka Tuovinen, Henriikka Vekuri, Jussi Heinonsalo, Olli Nevalainen, Mika Korkiakoski, Jari Liski, Tuomas Laurila, and Liisa Kulmala
Biogeosciences, 18, 3467–3483, https://doi.org/10.5194/bg-18-3467-2021, https://doi.org/10.5194/bg-18-3467-2021, 2021
Short summary
Short summary
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland for 2 years from 2018 to 2020. This agricultural grassland site focuses on the conversion from intensive towards more sustainable agricultural management. The first summer experienced prolonged dry periods, and notably larger fluxes were observed in the second summer. The field acted as a net carbon sink during both study years.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Hongxing He, Per-Erik Jansson, and Annemieke I. Gärdenäs
Geosci. Model Dev., 14, 735–761, https://doi.org/10.5194/gmd-14-735-2021, https://doi.org/10.5194/gmd-14-735-2021, 2021
Short summary
Short summary
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled C, N, and P dynamics for terrestrial ecosystems. Simulations from the new Coup-CNP model provide strong evidence that P fluxes need to be further considered in studies of how ecosystems and C turnover react to climate change.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Christian Juncher Jørgensen, Jacob Mønster, Karsten Fuglsang, and Jesper Riis Christiansen
Atmos. Meas. Tech., 13, 3319–3328, https://doi.org/10.5194/amt-13-3319-2020, https://doi.org/10.5194/amt-13-3319-2020, 2020
Short summary
Short summary
Recent discoveries have shown large emissions of methane (CH4) to the atmosphere from meltwater at the Greenland ice sheet (GrIS). Low-cost and low-power gas sensor technology offers great potential to supplement CH4 measurements using very expensive reference analyzers under harsh and remote conditions. In this paper we evaluate the in situ performance at the GrIS of a low-cost CH4 sensor to a state-of-the-art analyzer and find very excellent agreement between the two methods.
Heidi Hellén, Simon Schallhart, Arnaud P. Praplan, Toni Tykkä, Mika Aurela, Annalea Lohila, and Hannele Hakola
Atmos. Chem. Phys., 20, 7021–7034, https://doi.org/10.5194/acp-20-7021-2020, https://doi.org/10.5194/acp-20-7021-2020, 2020
Short summary
Short summary
We studied biogenic volatile organic compound emissions and their ambient concentrations in a sub-Arctic wetland. Although isoprene was the main terpenoid emitted, sesquiterpene emissions were also highly significant, especially in early summer. Sesquiterpenes have much higher potential to form secondary organic aerosol than isoprenes. High sesquiterpene emissions during early summer suggested that melting snow and thawing soil could be an important source of these compounds.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Christopher Poeplau, Páll Sigurðsson, and Bjarni D. Sigurdsson
SOIL, 6, 115–129, https://doi.org/10.5194/soil-6-115-2020, https://doi.org/10.5194/soil-6-115-2020, 2020
Short summary
Short summary
Global warming leads to increased mineralisation of soil organic matter, inducing a positive climate–carbon cycle feedback loop. Loss of organic matter can be associated with loss of soil structure. Here we use a strong geothermal gradient to investigate soil warming effects on soil organic matter and structural parameters in subarctic forest and grassland soils. Strong depletion of organic matter caused a collapse of aggregates, highlighting the potential impact of warming on soil function.
Mika Korkiakoski, Juha-Pekka Tuovinen, Timo Penttilä, Sakari Sarkkola, Paavo Ojanen, Kari Minkkinen, Juuso Rainne, Tuomas Laurila, and Annalea Lohila
Biogeosciences, 16, 3703–3723, https://doi.org/10.5194/bg-16-3703-2019, https://doi.org/10.5194/bg-16-3703-2019, 2019
Short summary
Short summary
We measured greenhouse gas and energy fluxes for 2 years after clear-cutting in a peatland forest. We found high carbon dioxide and nitrous oxide emissions. However, in the second year after clear-cutting, the carbon dioxide emissions had already decreased by 33 % from the first year. Also, clear-cutting turned the site from a methane sink into a methane source. We conclude that clear-cutting peatland forests exerts a strong climatic warming effect through accelerated emission of greenhouse gas.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Marja Maljanen, Heli Yli-Moijala, Bjarni Didrik Sigurdsson, and Christina Biasi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-213, https://doi.org/10.5194/bg-2019-213, 2019
Revised manuscript not accepted
Short summary
Short summary
We studied the proportion of biotic and abiotic CO2 fluxes from soil using static chamber method and stable isotope approach from a geothermally warmed area in southern Iceland. These sites can be used cost efficiently to study the effects of soil warming on the ecosystem. However, our study showed that a significant amount of CO2 emitted from the higher warming levels can have non-biotic origin and this has to be taken into account when measuring respiration fluxes on such volcanic sites.
Kari Minkkinen, Paavo Ojanen, Timo Penttilä, Mika Aurela, Tuomas Laurila, Juha-Pekka Tuovinen, and Annalea Lohila
Biogeosciences, 15, 3603–3624, https://doi.org/10.5194/bg-15-3603-2018, https://doi.org/10.5194/bg-15-3603-2018, 2018
Short summary
Short summary
Drainage often turns peatlands into C sources. We measured C dynamics of a drained forested boreal peatland over 4 years, including one with a drought during growing season. The drained peatland ecosystem was a strong sink of C in all studied years. Also, the peat soil sequestered C. A drought period in one summer significantly decreased C sequestration through decreased gross primary production, but since the drought also decreased ecosystem respiration, the site remained a C sink.
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Eero Nikinmaa, Tuomo Kalliokoski, Kari Minkkinen, Jaana Bäck, Michael Boy, Yao Gao, Nina Janasik-Honkela, Janne I. Hukkinen, Maarit Kallio, Markku Kulmala, Nea Kuusinen, Annikki Mäkelä, Brent D. Matthies, Mikko Peltoniemi, Risto Sievänen, Ditte Taipale, Lauri Valsta, Anni Vanhatalo, Martin Welp, Luxi Zhou, Putian Zhou, and Frank Berninger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-141, https://doi.org/10.5194/bg-2017-141, 2017
Manuscript not accepted for further review
Short summary
Short summary
We estimated the impact of boreal forest management on climate, considering the effects of carbon, albedo, aerosols, and effects of industrial wood use. We made analyses both in current and warmer climate of 2050. The aerosol effect was comparable to that of carbon sequestration. Deciduous trees may have a large potential for mitigation due to their high albedo and aerosol effects. If the forests will be used more intensively and mainly for pulp and energy, the warming influence is clear.
Tea Thum, Sönke Zaehle, Philipp Köhler, Tuula Aalto, Mika Aurela, Luis Guanter, Pasi Kolari, Tuomas Laurila, Annalea Lohila, Federico Magnani, Christiaan Van Der Tol, and Tiina Markkanen
Biogeosciences, 14, 1969–1987, https://doi.org/10.5194/bg-14-1969-2017, https://doi.org/10.5194/bg-14-1969-2017, 2017
Short summary
Short summary
Modelling seasonal cycle at the coniferous forests poses a challenge. We implemented a model for sun-induced chlorophyll fluorescence (SIF) to a land surface model JSBACH. It was used to study the seasonality of the carbon cycle in the Fenno-Scandinavian region. Comparison was made to direct CO2 flux measurements and satellite observations of SIF. SIF proved to be a better proxy for photosynthesis than the fraction of absorbed photosynthetically active radiation.
Mika Korkiakoski, Juha-Pekka Tuovinen, Mika Aurela, Markku Koskinen, Kari Minkkinen, Paavo Ojanen, Timo Penttilä, Juuso Rainne, Tuomas Laurila, and Annalea Lohila
Biogeosciences, 14, 1947–1967, https://doi.org/10.5194/bg-14-1947-2017, https://doi.org/10.5194/bg-14-1947-2017, 2017
Short summary
Short summary
We measured methane exchange rates at the forest floor of a nutrient-rich drained peatland in southern Finland. The forest floor acted mainly as a small methane sink, but emission peaks were occasionally observed during spring and rainfall events. The strength of the sink correlated best with groundwater level and soil temperatures at 20 and 30 cm depths. Diurnal variations were also observed but they were caused by changes in ambient wind speed and not by biological processes.
Shoji Hashimoto, Kazuki Nanko, Boris Ťupek, and Aleksi Lehtonen
Geosci. Model Dev., 10, 1321–1337, https://doi.org/10.5194/gmd-10-1321-2017, https://doi.org/10.5194/gmd-10-1321-2017, 2017
Short summary
Short summary
Soil organic carbon (SOC) stock simulated by Earth system models (ESMs) and those of observational databases are not well correlated when the two are compared at fine grid scales. To identify the key factors that govern global SOC distribution, we applied a data-mining scheme to observational databases and outputs from ESMs. This study not only identifies key factors but it also presents a new approach that compares the observational databases with ESM outputs.
Kerry J. Dinsmore, Julia Drewer, Peter E. Levy, Charles George, Annalea Lohila, Mika Aurela, and Ute M. Skiba
Biogeosciences, 14, 799–815, https://doi.org/10.5194/bg-14-799-2017, https://doi.org/10.5194/bg-14-799-2017, 2017
Short summary
Short summary
Release of greenhouse gases from northern soils contributes significantly to the global atmosphere and plays an important role in regulating climate. This study, based in N. Finland, aimed to measure and understand release of CH4 and N2O, and using satellite imagery, upscale our results to a 2 × 2 km area. Wetlands released large amounts of CH4, with emissions linked to temperature and the presence of Sphagnum; landscape emissions were 2.05 mg C m−2 hr−1. N2O fluxes were consistently near-zero.
Aleksi Lehtonen, Tapio Linkosalo, Mikko Peltoniemi, Risto Sievänen, Raisa Mäkipää, Pekka Tamminen, Maija Salemaa, Tiina Nieminen, Boris Ťupek, Juha Heikkinen, and Alexander Komarov
Geosci. Model Dev., 9, 4169–4183, https://doi.org/10.5194/gmd-9-4169-2016, https://doi.org/10.5194/gmd-9-4169-2016, 2016
Short summary
Short summary
It is known that Earth system models have challenges to predict correct levels of soil carbon stocks. Quantification of those stocks is a prerequisite for reliable prediction of future carbon exchange between biosphere and atmosphere. Here, we tested Yasso07 and ROMULv soil carbon models against empirical data from Finland. We found that both the role of understorey vegetation and the impact of drought to decomposition should be incorporated into soil models to have realistic soil carbon stocks.
Boris Ťupek, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen
Biogeosciences, 13, 4439–4459, https://doi.org/10.5194/bg-13-4439-2016, https://doi.org/10.5194/bg-13-4439-2016, 2016
Short summary
Short summary
We evaluated the soil carbon stock estimates of Yasso07, Q, and CENTURY soil carbon models, used in national greenhouse gas inventories in Europe, Japan, and USA, with soil carbon stock measurements from Swedish Forest Soil National Inventories. Measurements grouped according to the gradient of soil nutrient status revealed that the models underestimated for the Swedish boreal forest soils with higher site fertility. We discussed mechanisms of underestimation and further model developments.
Järvi Järveoja, Matthias Peichl, Martin Maddison, Kaido Soosaar, Kai Vellak, Edgar Karofeld, Alar Teemusk, and Ülo Mander
Biogeosciences, 13, 2637–2651, https://doi.org/10.5194/bg-13-2637-2016, https://doi.org/10.5194/bg-13-2637-2016, 2016
Short summary
Short summary
Restoration is suggested as a strategy to reduce the large greenhouse gas (GHG) emissions from abandoned peat extraction areas. This study investigated GHG fluxes in restored sites with high and low water table level in comparison to a bare peat area. The results show that on the annual scale, both restored sites acted as similar GHG sources 3 years after restoration. However, their net GHG emissions were only half of those from the bare peat area, indicating considerable mitigation potential.
Hongxing He, Per-Erik Jansson, Magnus Svensson, Jesper Björklund, Lasse Tarvainen, Leif Klemedtsson, and Åsa Kasimir
Biogeosciences, 13, 2305–2318, https://doi.org/10.5194/bg-13-2305-2016, https://doi.org/10.5194/bg-13-2305-2016, 2016
Short summary
Short summary
We simulate CO2 and N2O dynamics over a full forest rotation on drained agricultural peatland, using CoupModel. Data used for validation include tree ring-derived biomass data (1966–2011) and measured abiotic and soil emission data (2006–2011). The results show that the C fixed in forest biomass is slightly larger than the soil losses over the full rotation period. However when including N2O and indirect emissions from forest thinning products, the forest system switches to a large GHG source.
Niki I. W. Leblans, Bjarni D. Sigurdsson, Rien Aerts, Sara Vicca, Borgthór Magnússon, and Ivan A. Janssens
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-111, https://doi.org/10.5194/bg-2016-111, 2016
Revised manuscript not accepted
Short summary
Short summary
Increasing nitrogen (N) deposition has enhanced productivity in many ecosystems and thereby the terrestrial sink for anthropogenic CO2 emissions. However, little is known about how long this N-induced carbon (C) sink can continue. We studied the effect of elevated N inputs on short- (decadal) and long-term (millennial) C storage in Icelandic grasslands and found that chronically elevated N inputs led to a strengthening of this sink for at least 1600 years, in absence of large-scale disturbances.
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016, https://doi.org/10.5194/hess-20-175-2016, 2016
F. Minunno, M. Peltoniemi, S. Launiainen, M. Aurela, A. Lindroth, A. Lohila, I. Mammarella, K. Minkkinen, and A. Mäkelä
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-5089-2015, https://doi.org/10.5194/gmdd-8-5089-2015, 2015
Revised manuscript not accepted
V. Marteinsson, A. Klonowski, E. Reynisson, P. Vannier, B. D. Sigurdsson, and M. Ólafsson
Biogeosciences, 12, 1191–1203, https://doi.org/10.5194/bg-12-1191-2015, https://doi.org/10.5194/bg-12-1191-2015, 2015
Short summary
Short summary
Colonization of life on Surtsey has been observed systematically since the formation of the island. Microbial colonization and the influence of associate vegetation and birds on viable counts of environmental bacteria at the surface of the Surtsey was explored for the first time in diverse surface soils. Also, hot subsurface samples deep in the centre of this volcanic island were collected. Both uncultivated bacteria and archaea were found in the subsurface samples collected below 145 m.
P. E. Kauppi, R. A. Birdsey, Y. Pan, A. Ihalainen, P. Nöjd, and A. Lehtonen
Biogeosciences, 12, 855–862, https://doi.org/10.5194/bg-12-855-2015, https://doi.org/10.5194/bg-12-855-2015, 2015
B. Tupek, K. Minkkinen, J. Pumpanen, T. Vesala, and E. Nikinmaa
Biogeosciences, 12, 281–297, https://doi.org/10.5194/bg-12-281-2015, https://doi.org/10.5194/bg-12-281-2015, 2015
C. Metzger, P.-E. Jansson, A. Lohila, M. Aurela, T. Eickenscheidt, L. Belelli-Marchesini, K. J. Dinsmore, J. Drewer, J. van Huissteden, and M. Drösler
Biogeosciences, 12, 125–146, https://doi.org/10.5194/bg-12-125-2015, https://doi.org/10.5194/bg-12-125-2015, 2015
Short summary
Short summary
To identify site specific differences in CO2-related processes in open peatlands, we calibrated a process oriented model to fit to detailed measurements of carbon fluxes and compared the resulting parameter ranges between the sites. For most processes a common configuration could be applied. Site specific differences were identified for soil respiration coefficients, plant radiation-use efficiencies and plant storage fractions for spring regrowth.
S. J. O'Shea, G. Allen, M. W. Gallagher, K. Bower, S. M. Illingworth, J. B. A. Muller, B. T. Jones, C. J. Percival, S. J-B. Bauguitte, M. Cain, N. Warwick, A. Quiquet, U. Skiba, J. Drewer, K. Dinsmore, E. G. Nisbet, D. Lowry, R. E. Fisher, J. L. France, M. Aurela, A. Lohila, G. Hayman, C. George, D. B. Clark, A. J. Manning, A. D. Friend, and J. Pyle
Atmos. Chem. Phys., 14, 13159–13174, https://doi.org/10.5194/acp-14-13159-2014, https://doi.org/10.5194/acp-14-13159-2014, 2014
Short summary
Short summary
This paper presents airborne measurements of greenhouse gases collected in the European Arctic. Regional scale flux estimates for the northern Scandinavian wetlands are derived. These fluxes are found to be in excellent agreement with coincident surface measurements within the aircraft's sampling domain. This has allowed a significant low bias to be identified in two commonly used process-based land surface models.
T. Leppelt, R. Dechow, S. Gebbert, A. Freibauer, A. Lohila, J. Augustin, M. Drösler, S. Fiedler, S. Glatzel, H. Höper, J. Järveoja, P. E. Lærke, M. Maljanen, Ü. Mander, P. Mäkiranta, K. Minkkinen, P. Ojanen, K. Regina, and M. Strömgren
Biogeosciences, 11, 6595–6612, https://doi.org/10.5194/bg-11-6595-2014, https://doi.org/10.5194/bg-11-6595-2014, 2014
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
G. Stefansdottir, A. L. Aradottir, and B. D. Sigurdsson
Biogeosciences, 11, 5763–5771, https://doi.org/10.5194/bg-11-5763-2014, https://doi.org/10.5194/bg-11-5763-2014, 2014
B. Magnússon, S. H. Magnússon, E. Ólafsson, and B. D. Sigurdsson
Biogeosciences, 11, 5521–5537, https://doi.org/10.5194/bg-11-5521-2014, https://doi.org/10.5194/bg-11-5521-2014, 2014
K. Ilieva-Makulec, B. Bjarnadottir, and B. D. Sigurdsson
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-14239-2014, https://doi.org/10.5194/bgd-11-14239-2014, 2014
Revised manuscript not accepted
M. Koskinen, K. Minkkinen, P. Ojanen, M. Kämäräinen, T. Laurila, and A. Lohila
Biogeosciences, 11, 347–363, https://doi.org/10.5194/bg-11-347-2014, https://doi.org/10.5194/bg-11-347-2014, 2014
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1483-2013, https://doi.org/10.5194/bgd-10-1483-2013, 2013
Revised manuscript not accepted
Related subject area
Biogeochemistry: Wetlands
Shoulder season controls on methane emissions from a boreal peatland
Patterns and drivers of organic matter decomposition in peatland open-water pools
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Assessing root-soil interactions in wetland plants: root exudation and radial oxygen loss
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Technical Note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in freshwater mineral soil wetlands
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Modelling long-term blanket peatland development in eastern Scotland
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary
Multi-year effect of wetting on CH4 flux at taiga–tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4
Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Katherine Ann Haviland and Genevieve Noyce
EGUsphere, https://doi.org/10.5194/egusphere-2024-1547, https://doi.org/10.5194/egusphere-2024-1547, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, Spartina patens and S. americanus. We found that S. patens produces more carbon, and less oxygen, than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
EGUsphere, https://doi.org/10.5194/egusphere-2024-1162, https://doi.org/10.5194/egusphere-2024-1162, 2024
Short summary
Short summary
Precise and accurate estimates of wetland organic carbon sequestration rates are crucial to track progress of climate action goals through effective carbon budgeting. Radioisotope dating methods using cesium-137 (137Cs) and lead-210 (210Pb) are needed to provide temporal references for these estimations. The choice between using 137Cs or 210Pb, or their combination, depends on respective study objectives, with careful consideration of factors such as dating range and estimation complexity.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023, https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary
Short summary
Shrub leaves had higher mercury concentrations than sedge leaves in the sedge-dominated peatland. Dead shrub leaves leached less soluble mercury but more bioaccessible dissolved organic matter than dead sedge leaves. Leached mercury was positively related to the aromaticity of dissolved organic matter in leachate. Future plant species composition changes under climate change will affect Hg input from plant leaves to northern peatlands.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Luke C. Jeffrey, Damien T. Maher, Scott G. Johnston, Kylie Maguire, Andrew D. L. Steven, and Douglas R. Tait
Biogeosciences, 16, 1799–1815, https://doi.org/10.5194/bg-16-1799-2019, https://doi.org/10.5194/bg-16-1799-2019, 2019
Short summary
Short summary
Wetlands represent the largest natural source of methane (CH4), so understanding CH4 drivers is important for management and climate models. We compared several CH4 pathways of a remediated subtropical Australian wetland. We found permanently inundated sites emitted more CH4 than seasonally inundated sites and that the soil properties of each site corresponded to CH4 emissions. This suggests that selective wetland remediation of favourable soil types may help to mitigate unwanted CH4 emissions.
Ryo Shingubara, Atsuko Sugimoto, Jun Murase, Go Iwahana, Shunsuke Tei, Maochang Liang, Shinya Takano, Tomoki Morozumi, and Trofim C. Maximov
Biogeosciences, 16, 755–768, https://doi.org/10.5194/bg-16-755-2019, https://doi.org/10.5194/bg-16-755-2019, 2019
Short summary
Short summary
(1) Wetting event with extreme precipitation increased methane emission from wetland, especially two summers later, despite the decline in water level after the wetting. (2) Isotopic compositions of methane in soil pore water suggested enhancement of production and less significance of oxidation in the following two summers after the wetting event. (3) Duration of water saturation in the active layer may be important for predicting methane emission after a wetting event in permafrost ecosystems.
Wiebke Münchberger, Klaus-Holger Knorr, Christian Blodau, Verónica A. Pancotto, and Till Kleinebecker
Biogeosciences, 16, 541–559, https://doi.org/10.5194/bg-16-541-2019, https://doi.org/10.5194/bg-16-541-2019, 2019
Short summary
Short summary
Processes governing CH4 dynamics have been scarcely studied in southern hemispheric bogs. These can be dominated by cushion-forming plants with deep and dense roots suppressing emissions. Here we demonstrate how the spatial distribution of root activity drives a pronounced pattern of CH4 emissions, likewise also possible in densely rooted northern bogs. We conclude that presence of cushion vegetation as a proxy for negligible CH4 emissions from cushion bogs needs to be interpreted with caution.
Cited articles
Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, Ü., and
Smith, P.: Emissions of methane from northern peatlands: a review of
management impacts and implications for future management options, Ecol.
Evol., 6, 7080–7102, https://doi.org/10.1002/ece3.2469, 2016.
Alm, J., Schulman, L., Walden, J., Nykänen, H., Martikainen, P. J., and
Silvola, J.: Carbon balance of a boreal bog during a year with an
exceptionally dry summer, Ecology, 80, 161–174, https://doi.org/10.2307/176987, 1999.
Askaer, L., Elberling, B., Friborg, T., Jørgensen, C. J., and Hansen, B.
U.: Plant-mediated CH4 transport and C gas dynamics quantified in-situ
in a Phalaris arundinacea-dominant wetland, Plant Soil, 343, 287–301, https://doi.org/10.1007/s11104-011-0718-x, 2011.
Aurela, M., Laurila, T., and Tuovinen, J.-P.: Annual CO2 balance of a
subarctic fen in northern Europe: Importance of the wintertime efflux, J.
Geophys. Res., 107, 4607, https://doi.org/10.1029/2002JD002055, 2002.
Ball, T., Smith, K. A., and Moncriff, J. B.: Effect of stand age on
greenhouse gas fluxes from a Sitka spruce [Picea sitchensis (Bong.) Carr.] chronosequence on
a peaty gley soil, Glob. Change Biol., 13, 2128–2142, https://doi.org/10.1111/j.1365-2486.2007.01427.x, 2007.
Barthelmes, A., Couwenberg, J., Risager, M., Tegetmeyer, C., and Joosten,
H.: Peatlands and Climate in a Ramsar context: A Nordic-Baltic Perspective,
https://doi.org/10.6027/TN2015-544, 2015.
Bhuiyan, M. R., Minkkinen, K., Helmisaari, H.-S., Ojanen, P., Penttilä,
T., and Laiho, R.: Estimating fine-root production by tree species and
understorey functional groups in two contrasting peatland forests, Plant
Soil, 412, 299–316, https://doi.org/10.1007/s11104-016-3070-3, 2017.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: A global relationship between
the heterotrophic and autotrophic components of soil respiration?, Glob.
Change Biol., 10, 1756–1766, https://doi.org/10.1111/j.1365-2486.2004.00816.x, 2004.
Brændholt, A., Steenberg Larsen, K., Ibrom, A., and Pilegaard, K.: Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence, Biogeosciences, 14, 1603–1616, https://doi.org/10.5194/bg-14-1603-2017, 2017.
Butterbach-Bahl, K., Rothe, A., and H. Papen, H.: Effect of tree distance on
N2O and CH4-fluxes from soils in temperate forest ecosystems,
Plant Soil, 240, 91–103, https://doi.org/10.1023/A:1015828701885, 2002.
Comstedt, D., Boström, B., and Ekblad, A.: Autotrophic and heterotrophic soil respiration in a Norway spruce forest: estimating the root decomposition and soil moisture effects in a trenching experiment, Biogeochemistry, 104, 121–132, https://doi.org/10.1007/s10533-010-9491-9, 2011.
Couwenberg, J.: Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic?, Mires Peat, 8, 1–10, 2011.
Covey, K. R. and Megonigal, J. P.: Methane production and emissions in trees
and forests, New Phytol., 222, 35–51, https://doi.org/10.1111/nph.15624, 2019.
Danevčič, T., Mandic-Mulec, I., Stres, B., Stopar, D., and Hacin, J.: Emissions of CO2, CH4 and N2O from Southern European peatlands, Soil Biol. Biochem., 42, 1437–1446, https://doi.org/10.1016/j.soilbio.2010.05.004, 2010.
Dise, N. B.: Winter fluxes of methane from Minnesota peatlands.
Biogeochemistry, 17, 71–83, https://doi.org/10.1007/BF00002641, 1992.
Domisch, T., Finér, L., Laiho, R., Karsisto, M., and Laine, J.:
Decomposition of Scots pine litter and the fate of released carbon in
pristine and drained pine mires, Soil Biol. Biochem., 32, 1571–1580,
https://doi.org/10.1016/S0038-0717(00)00070-5, 2000.
Ernfors, M., von Arnold, K., Stendahl, J., Olsson, M., and Klemedtsson, L.:
Nitrous oxide emissions from drained organic forest soils – an up-scaling
based on C:N ratios. Biogeochemistry, 89, 29–41, https://doi.org/10.1007/s10533-008-9190-y, 2008.
Ernfors, M., Rütting, T., and Klemedtsson, L.: Increased nitrous oxide
emissions from a drained organic forest soil after exclusion of
ectomycorrhizal mycelia, Plant Soil, 343, 161–170, https://doi.org/10.1007/s11104-010-0667-9, 2011.
Evans, C. D., Renou-Wilson, F., and Strack, M.: The role of waterborne
carbon in the greenhouse gas balance of drained and re-wetted peatlands,
Aquat. Sci., 78, 573–590, https://doi.org/10.1007/s00027-015-0447-y, 2016.
FAO: Peatlands – Guidance for climate change mitigation by conservation,
rehabilitation and sustainable use, Rome, Food and Agriculture Organization
of the United Nations, edited by: Joosten, H., Tapio-Biström, M.-L., Tol, S.,
available at: http://www.fao.org/docrep/015/an762e/an762e.pdf (last access: 4 December 2019),
2012.
Finér, L., Ohashi, M., Noguchi, K., and Hirano, Y.: Fine root production
and turnover in forest ecosystems in relation to stand and environmental
characteristics, Forest Ecol. Manag., 262, 2008–2023, https://doi.org/10.1016/j.foreco.2011.08.042, 2011.
Frenzel, P. and Rudolph, J.: Methane emission from a wetland plant: the role
of CH4 oxidation in Eriophorum, Plant Soil, 202, 27–32, https://doi.org/10.1023/A:1004348929219, 1998.
Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M., and Dise,
N. B.: Woody stem methane emission in mature wetland alder trees, Atmos.
Environ., 44, 2157–2160, https://doi.org/10.1016/j.atmosenv.2010.02.034, 2010.
Glagolev, M. V., Chistotin, M. V., Shnyrev, N. A., and Sirin, A. A.: The
emission of carbon dioxide and methane from drained peatlands changed by
economic use and from natural mires during the summer-fall period (on
example of a region of Tomsk oblast), Agrochemistry, 5, 46–58, 2008.
Holz, M., Aurangojeb, M., Kasimir, Å., Boeckx, P., Kuzyakov, Y.,
Klemedtsson, L., and Rütting, T.: Gross Nitrogen Dynamics in the
Mycorrhizosphere of an Organic Forest Soil, Ecosystems, 19, 284–295,
https://doi.org/10.1007/s10021-015-9931-4, 2016.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, prepared
by the National Greenhouse Gas Inventories Programme, edited by: Eggleston, H. S.,
Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., IGES, Japan, available at:
https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (last access: 4 December 2019), 2006.
IPCC: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories: Wetlands, edited by: Hiraishi, T., Krug, T., Tanabe, K., Srivastava,
N., Baasansuren, J., Fukuda, M., and Troxler, T. G., IPCC,
Switzerland, 353 pp., available at: https://www.ipcc-nggip.iges.or.jp/public/wetlands/ (last access: 4 December 2019), 2014.
Jagodzinski, A. M., Ziółkowski, J., Warnkowska, A., and Prais, H.:
Tree age effects on fine root biomass and morphology over chronosequences of
Fagus sylvatica, Quercus robur and Alnus glutinosa stands, PLoS ONE, 11, e0148668, https://doi.org/10.1371/journal.pone.0148668, 2016.
Joosten, H.: The Global Peatland CO2 Picture: Peatland Status and
Drainage Related Emissions in All Countries of the World (Wetland
International, Ede, The Netherlands), available at: https://www.wetlands.org/publications/the-global-peatland-co2-picture/ (last access: 4 December 2019),
2010.
Kasimir, Å., He, H., Coria, J., and Nordén, A.: Land use of drained
peatlands: Greenhouse gas fluxes, plant production, and economics, Glob.
Change Biol., 24, 3302–3316, https://doi.org/10.1111/gcb.13931, 2018.
Kasimir-Klemedtsson, Å, Klemedtsson, L., Berglund, K., Martikainen, P.,
Silvola, J., and Oenema, O.: Greenhouse gas emissions from farmed organic
soils: a review, Soil Use Manage., 13, 245–250, https://doi.org/10.1111/j.1475-2743.1997.tb00595.x, 1997.
Kim, Y., Ueyama, M., Nakagawa, F., Tsunogai, U., Harazono, Y., and Tanaka,
N.: Assessment of winter fluxes of CO2 and CH4 in boreal forest
soils of central Alaska estimated by the profile method and the chamber
method: a diagnosis of methane emission and implications for the regional
carbon budget, Tellus B, 59, 223–233, https://doi.org/10.1111/j.1600-0889.2006.00233.x, 2007.
Klemedtsson, L., von Arnold, K., Weslien, P., and Gundersen, P.: Soil CN
ratio as a scalar parameter to predict nitrous oxide emissions, Glob.
Change Biol., 11, 1142–1147, https://doi.org/10.1111/j.1365-2486.2005.00973.x, 2005.
Kokkonen, N., Laine, A., Laine, J., Vasander, H., Kurki, K., Gong, J., and
Tuittila, E.-S.: Responses of peatland vegetation to 15-year water level
drawdown as mediated by fertility level, J. Veg. Sci., 30, 1206–1216, https://doi.org/10.1111/jvs.12794, 2019.
Kulmala, M.: Build a global Earth observatory. Nature, 553, 21–23,
https://doi.org/10.1038/d41586-017-08967-y, 2018.
Laiho, R. and Pearson, M.: Surface peat and its dynamics following drainage
– do they facilitate estimation of carbon losses with the C/ash method?
Mires Peat, 17, 1–19,
https://doi.org/10.19189/MaP.2016.OMB.247, 2016.
Laiho, R., Vasander, H., Penttilä, T., and Laine, J.: Dynamics of
plant-mediated organic matter and nutrient cycling following water-level
drawdown in boreal peatlands, Global Biogeochem. Cy., 17, 1053,
https://doi.org/10.1029/2002GB002015, 2003.
Laiho, R., Bhuiyan, R., Straková, P., Mäkiranta, P., Badorek, T.,
and Penttilä, T.: Modified ingrowth core method plus infrared
calibration models for estimating fine root production in peatlands, Plant
Soil, 385, 311–327, https://doi.org/10.1007/s11104-014-2225-3,
2014.
Larmola, T., Tuittila, E.-S., Tiirola, M., Nykänen, H., Martikainen, P.
J., Yrjälä, K., Tuomivirta, T., and Fritze, H.: The role of Sphagnum
mosses in the methane cycling of a boreal mire, Ecology, 91, 2356–2365,
https://doi.org/10.1890/09-1343.1, 2010.
Lehtonen, A., Palviainen, M., Ojanen, P., Kalliokoski, T., Nöjd, P.,
Kukkola, M., Penttilä, T., Mäkipää, R.,
Leppälammi-Kujansuu, J., and Helmisaari, H.-S.: Modelling fine root
biomass of boreal tree stands using site and stand variables, Forest Ecol.
Manag., 359, 361–369, https://doi.org/10.1016/j.foreco.2015.06.023, 2016.
Leppälä, M., Laine, A. M., and Tuittila, E.-S.: Winter carbon losses
from a boreal mire succession sequence follow summertime patterns in carbon
dynamics, Suo, 62, 1–11, available at: http://www.suo.fi/pdf/article9874.pdf (last access: 4 December 2019),
2011.
Lohila, A., Laurila, T., Aro, L., Aurela, M., Tuovinen, J.-P., Laine, J.,
Kolari, P., and Minkkinen, K.: Carbon dioxide exchange above a 30-year-old
Scots pine plantation established on organic-soil cropland, Boreal Environ.
Res., 12, 141–157, available at: http://www.borenv.net/BER/pdfs/ber12/ber12-141.pdf (last access: 4 December 2019), 2007.
Lohila, A., Minkkinen, K., Aurela, M., Tuovinen, J.-P., Penttilä, T., Ojanen, P., and Laurila, T.: Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink, Biogeosciences, 8, 3203–3218, https://doi.org/10.5194/bg-8-3203-2011, 2011.
Lupikis, A. and Lazdins, A.: Soil carbon stock changes in transitional mire
drained for Forestry in Latvia: a case study, Res. Rural Dev., 1, 55–61,
https://doi.org/10.22616/rrd.23.2017.008, 2017.
Machacova, K., Papen, H., Kreuzwieser, J., and Rennenberg, H.: Inundation
strongly stimulates nitrous oxide emissions from stems of the upland tree
Fagus sylvatica and the riparian tree Alnus glutinosa, Plant Soil, 364, 287–301, https://doi.org/10.1007/s11104-012-1359-4, 2013.
Meyer, A., Tarvainen, L., Nousratpour, A., Björk, R. G., Ernfors, M., Grelle, A., Kasimir Klemedtsson, Å., Lindroth, A., Räntfors, M., Rütting, T., Wallin, G., Weslien, P., and Klemedtsson, L.: A fertile peatland forest does not constitute a major greenhouse gas sink, Biogeosciences, 10, 7739–7758, https://doi.org/10.5194/bg-10-7739-2013, 2013.
Minkkinen, K. and Laine, J.: Long-term effect of forest drainage on the peat
carbon stores of pine mires in Finland, Can. J. Forest Res., 28, 1267–1275,
https://doi.org/10.1139/x98-104, 1998.
Minkkinen, K. and Laine, J.: Vegetation heterogeneity and ditches create
spatial variability in methane fluxes from peatlands drained for forestry,
Plant Soil, 285, 289–304, https://doi.org/10.1007/s11104-006-9016-4, 2006.
Minkkinen, K., Vasander, H., Jauhiainen, S., Karsisto, M., and Laine, J.:
Post-drainage changes in vegetation composition and carbon balance in
Lakkasuo mire, Central Finland, Plant Soil, 207, 107–120, https://doi.org/10.1023/A:1004466330076, 1999.
Minkkinen, K., Penttilä, T., and Laine, J.: Tree stand volume as a
scalar for methane fluxes in forestry-drained peatlands in Finland, Boreal
Environ. Res., 12, 127–132, 2007.
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.:
Spatio-temporal patterns of stream methane and carbon dioxide emissions in a
hemiboreal catchment in Southwest Sweden, Sci. Rep.-UK, 7,
39729, https://doi.org/10.1038/srep39729, 2017.
Nieminen, M., Koskinen, M., Sarkkola, S., Laurén, A., Kaila, A.,
Kiikkilä, O., Nieminen, T. M., and Ukonmaanaho, L.: Dissolved organic
carbon export from harvested peatland forests with differing site
characteristics, Water Air Soil Poll., 225, 181, https://doi.org/10.1007/s11270-015-2444-0, 2015.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.:
Greenhouse gas emissions from soils – A review, Geochemistry, 76, 327–352,
https://doi.org/10.1016/j.chemer.2016.04.002, 2016.
Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Soil – atmosphere
CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands,
Forest Ecol. Manag., 260, 411–421, https://doi.org/10.1016/j.foreco.2010.04.036, 2010.
Ojanen, P., Minkkinen, K., and Penttilä, T.: The current greenhouse gas
impact of forestry-drained boreal peatlands, Forest Ecol. Manag., 289,
201–208, https://doi.org/10.1016/j.foreco.2012.10.008, 2013.
Ojanen, P., Lehtonen, A., Heikkinen, J., Penttilä, T., and Minkkinen,
K.: Soil CO2 balance and its uncertainty in forestry-drained peatlands
in Finland, Forest Ecol. Manag., 325, 60–73, https://doi.org/10.1016/j.foreco.2014.03.049, 2014.
Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Corrigendum to
“Soil–atmosphere CO2, CH4 and N2O fluxes in boreal
forestry-drained peatlands” [For. Ecol. Manage., 260, 411–421, 2010], Forest Ecol. Manag., 412, 95–96,
https://doi.org/10.1016/j.foreco.2018.01.020, 2018.
Päivänen, J.: The bulk density of peat and its determination, Silva
Fenn., 3, 1–19, https://doi.org/10.14214/sf.a14569, 1969.
Papen, H. and Butterbach-Bahl, K.: A 3-year continuous record of nitrogen
trace gas fluxes from untreated and limed soil of a N-saturated spruce and
beech forest ecosystem in Germany: 1. N2O emissions, J. Geophys. Res.,
1041, 18487–18504, https://doi.org/10.1029/1999JD900293, 1999.
Pärn, J., Verhoeven, J., Butterbach-Bahl K., Dise, N., Ullah, S., Aasa,
A., Egorov, S., Espenberg, M., Järveoja, J., Jauhiainen, J., Kasak, K.,
Klemedtsson, L., Kull, A., Laggoun-Défarge, F., Lapshina, E., Lohila,
A., Lõhmus, K., Maddison, M., Mitsch, W., Müller, C., Niinemets,
Ü., Osborne, B., Pae, T., Salm, J.-O., Sgouridis, F., Sohar, K.,
Soosaar, K., Storey, K., Teemusk, A., Tenywa, M., Tournebize, J., Truu, J.,
Veber, G., Villa, J., Zaw, S., and Mander, Ü.: Nitrogen-rich organic
soils under warm well-drained conditions are global nitrous oxide emission
hotspots, Nat. Commun., 9, 1135, https://doi.org/10.1038/s41467-018-03540-1, 2018.
Pavelka, M., Acosta, M., Kiese, R., Altimir, N., Brümmer, C., Crill, P.,
Darenova, E., Fuß, R., Gielen, B., Graf, A., Klemedtsson, L., Lohila,
A., Longdoz, B., Lindroth, A., Nilsson, M., Jiménez, S. M., Merbold, L.,
Montagnani, L., Peichl, M., Pihlatie, M., Pumpanen, J., Ortiz, P. S.,
Silvennoinen, H., Skiba, U., Vestin, P., Weslien, P., Janous, D., and
Kutsch, W.: Standardisation of chamber technique for CO2, N2O and
CH4 fluxes measurements from terrestrial ecosystems, Int. Agrophys.,
32, 569–587, https://doi.org/10.1515/intag-2017-0045, 2018.
Peacock, M., Ridley, L. M., Evans, C. D., and Gauci, V.: Management effects
on greenhouse gas dynamics in fen ditches, Sci. Total Environ., 578,
601–612, https://doi.org/10.1016/j.scitotenv.2016.11.005,
2017.
Petrescu, A. M. R., Lohila, A., Tuovinen, J.-P., Baldocchi, D. D., Desai, A.
R., Roulet, N., Vesala T., Dolman, A. J., Oechel, W. C., Marcolla, B.,
Friborg, T., Rinne, J., Matthes J. C., Merbold, L., Meijide, A., Kiely, G.,
Sottocornola, M., Sachs, T., Zona, D., Varlagin, A., Lair, D. Y. F,
Veenendaal, E., Parmentier, F .-J. W., Skiba, U., Lund, M., Hensen, A., van
Huissteden, J., Flanagan, L. B., Shurpali, N. J., Grünwald, T., Humphreys, E. R., Jackowicz-Korczynski, M., Aurela, M. A,
Laurila, T., Grüning, C., Corradi, C. A. R.,
Schrier-Uijls, A. P., Christensen, T. R., Tamstorf, M. P., Mastepanov, M.,
Martikainen, P. J., Verma, S. B., Bernhofer, C., and Cescatti, A.: The
uncertain climate footprint of wetlands under human pressure, P. Natl. Acad.
Sci. USA, 112, 4594–4599, https://doi.org/10.1073/pnas.1416267112, 2015.
Pitkänen, A., Turunen, J., Tahvanainen, T., and Simola, H.: Carbon
storage change in a partially forestry-drained boreal mire determined
through peat column inventories, Boreal Environ. Res., 18, 223–234, 2013.
Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil
carbon pools and world life zones, Nature, 298, 156–159, https://doi.org/10.1038/298156a0, 1982.
Post, W. M., Pastor, J., Zinke, P. J., and Stangenberger, A. G.: Global
patterns of soil nitrogen storage, Nature, 317, 613–616, https://doi.org/10.1038/317613a0, 1985.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C.,
Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Damsté,
J. S. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J. M., and
Strous, M.: Methanotrophic symbionts provide carbon for photosynthesis in
peat bogs, Nature, 436, 1153–1156, https://doi.org/10.1038/nature03802, 2005.
Repola, J.: Biomass equations for birch in Finland, Silva Fenn., 42,
605–624, https://doi.org/10.14214/sf.236, 2008.
Repola, J.: Biomass equations for Scots pine and Norway spruce in Finland,
Silva Fenn., 43, 625–647, https://doi.org/10.14214/sf.184,
2009.
Roulet, N. T. and Moore, T. R.: The effect of forestry drainage practices on the emission of methane from northern peatlands, Can. J. Forest Res., 25, 491–499, https://doi.org/10.1139/x95-055, 1995.
Rusch, H. and Rennenberg, H.: Black alder (Alnus Glutinosa (L.) Gaertn.) trees mediate
methane and nitrous oxide emission from the soil to the atmosphere, Plant
Soil, 201, 1–7, https://doi.org/10.1023/A:1004331521059, 1998.
Saarinen, M. and Hotanen, J.-P.: Covariation between raw humus layer and
vegetation on peatlands drained for forestry in western Finland, Suo, 51, 227–242, 2000 (in Finnish,
summary and graphics in English).
Saarnio, S. and Silvola, J.: Effects of increased CO2 and N on
CH4 efflux from a boreal mire: a growth chamber experiment, Oecologia,
119, 349–356, https://doi.org/10.1007/s004420050795, 1999.
Sander, B. O. and Wassmann, R.: Common practices for manual greenhouse gas
sampling in rice production: a literature study on sampling modalities of
the closed chamber method, Greenhouse Gas Measurement and Management, 4,
1–13, https://doi.org/10.1080/20430779.2014.892807, 2014.
Sarkkola, S., Hökkä, H., Koivusalo, H., Nieminen, M., Ahti, E.,
Päivänen, J., and Laine, J.: Role of tree stand evapotranspiration
in maintaining satisfactory drainage conditions in drained peatlands, Can.
J. Forest Res., 40, 1485–1496, https://doi.org/10.1139/X10-084, 2010.
Silc, T. and Stanek, W.: Bulk density estimation of several peats in
northern Ontario using the von Post humification scale, Can. J. Soil Sci.,
51, 138–141, https://doi.org/10.4141/cjss77-010, 1977.
Simola, H., Pitkänen, A., and Turunen, J.: Carbon loss in drained
forestry peatlands in Finland, estimated by re-sampling peatlands surveyed
in the 1980s, Eur. J. Soil Sci., 63, 798–807, https://doi.org/10.1111/j.1365-2389.2012.01499.x, 2012.
Sirin, A. A., Suvorov, G. G., Chistotin, M. V., and Glagolev, M. V.: Values
of methane emission from drainage ditches. Environmental Dynamics and
Climate Change, 3, 1–10, https://doi.org/10.17816/edgcc321-10,
2012.
Statistics Finland: Greenhouse gas emissions in Finland 1990 to 2017,
National Inventory Report under the UNFCCC and the Kyoto protocol, European Union, Statistics Finland, available at: https://unfccc.int/documents/194637 (last acccess: 4 December 2019), 2019.
Strack, M., Waller, M. F., and Waddington, J. M.: Sedge succession and
peatland methane dynamics: A potential feedback to climate change,
Ecosystems, 9, 278–287, https://doi.org/10.1007/s10021-005-0070-1, 2006.
Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, L., Shaw, K.,
Whittington, P., and Price, J. S.: Effect of water table drawdown on
peatland dissolved organic carbon export and dynamics, Hydrol. Process., 22,
3373–3385, https://doi.org/10.1002/hyp.6931, 2008.
Straková, P., Anttila, J., Spetz, P., Kitunen, V., Tapanila, T., and
Laiho, R.: Litter quality and its response to water level drawdown in boreal
peatlands at plant species and community level, Plant Soil, 335, 501–520,
https://doi.org/10.1007/s11104-010-0447-6, 2010.
Straková, P., Niemi, R. M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., and Laiho, R.: Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes, Biogeosciences, 8, 2741–2755, https://doi.org/10.5194/bg-8-2741-2011, 2011.
Straková, P., Penttilä, T., Laine, J., and Laiho, R.: Disentangling
direct and indirect effects of water table drawdown on above- and
belowground plant litter decomposition: Consequences for accumulation of
organic matter in boreal peatlands, Glob. Change Biol., 18, 322–335,
https://doi.org/10.1111/j.1365-2486.2011.02503.x, 2012.
Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and methodological
impacts in soil CO2 efflux partitioning: A meta-analytical review,
Glob. Change Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x, 2006.
Tubiello, F. N., Biancalani, R., Salvatore, M., Rossi, S., and Conchedda,
G.: A Worldwide assessment of greenhouse gas emissions from drained organic
soils, Sustainability, 8, 371, https://doi.org/10.3390/su8040371, 2016.
Tuomi, M., Laiho, R., Repo, A., and Liski, J.: Wood decomposition model for
boreal forests, Ecol. Model., 222, 709–718, https://doi.org/10.1016/j.ecolmodel.2010.10.025, 2010.
Ťupek, B., Mäkipää, R., Heikkinen, J., Peltoniemi, M.,
Ukonmaanaho, L., Hokkanen, T., Nöjd, P., Nevalainen, S., Lindgren, M., and
Lehtonen, A.: Foliar turnover rates in Finland – comparing estimates from
needle-cohort and litterfall-biomass methods, Boreal Environ. Res., 20,
283–304, 2015.
Urbanová, Z., Picek, T., and Bárta, J.: Effect of peat re-wetting on
carbon and nutrient fluxes, greenhouse gas production and diversity of
methanogenic archaeal community, Ecol. Eng., 37, 1017–1026, https://doi.org/10.1016/j.ecoleng.2010.07.012, 2011.
Uri, V., Kukumägi, M., Aosaar, J., Varik, M., Becker, H., Morozov, G.,
and Karoles, K.: Ecosystems carbon budgets of differently aged downy birch
stands growing on well-drained peatlands, Forest Ecol. Manag., 399, 82–93,
https://doi.org/10.1016/j.foreco.2017.05.023, 2017.
von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson,
L.: Fluxes of CO2, CH4 and N2O from drained organic soils in
deciduous forests, Soil Biol. Biochem., 37, 1059–1071, https://doi.org/10.1016/j.soilbio.2004.11.004, 2005a.
von Arnold, K., Weslien, P., Nilsson, M., Svensson, B. H., and Klemedtsson,
L.: Fluxes of CO2, CH4 and N2O from drained coniferous
forests on organic soils, Forest Ecol. Manag., 210, 239–254, https://doi.org/10.1016/j.foreco.2005.02.031, 2005b.
Wang, X., Wang, C., and Bond-Lamberty, B.: Quantifying and reducing the
differences in forest CO2-fluxes estimated by eddy covariance, biometric
and chamber methods: A global synthesis, Agr. Forest Meteorol., 247,
93–103, https://doi.org/10.1016/j.agrformet.2017.07.023,
2017.
Weiss, R., Alm, J., Laiho, R., and Laine, J.: Modelling moisture retention
in peat soils, Soil Sci. Soc. Am. J., 62, 305–313, https://doi.org/10.2136/sssaj1998.03615995006200020002x, 1998.
Welch, B., Gauci, V., and Sayer, E. J.: Tree stem bases are sources of
CH4 and N2O in a tropical forest on upland soil during the dry to
wet season transition, Glob. Change Biol., 25, 361–372, https://doi.org/10.1111/gcb.14498, 2019.
Wilson, D., Blain, D., Couwenberg, J., Evans, C. D., Murdiyarso, D., Page,
S. E., Renou-Wilson, F., Rieley, J. O., Sirin, A., Strack, M., and Tuittila,
E.-S.: Greenhouse gas emission factors associated with rewetting of organic
soils, Mires Peat, 17, 1–28, https://doi.org/10.19189/MaP.2016.OMB.222, 2016.
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils...
Altmetrics
Final-revised paper
Preprint