Articles | Volume 17, issue 7
Biogeosciences, 17, 2061–2083, 2020
https://doi.org/10.5194/bg-17-2061-2020
Biogeosciences, 17, 2061–2083, 2020
https://doi.org/10.5194/bg-17-2061-2020

Research article 16 Apr 2020

Research article | 16 Apr 2020

Potential predictability of marine ecosystem drivers

Thomas L. Frölicher et al.

Related authors

Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021,https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Increase in ocean acidity variability and extremes under increasing atmospheric CO2
Friedrich A. Burger, Jasmin G. John, and Thomas L. Frölicher
Biogeosciences, 17, 4633–4662, https://doi.org/10.5194/bg-17-4633-2020,https://doi.org/10.5194/bg-17-4633-2020, 2020
Short summary
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020,https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Is deoxygenation detectable before warming in the thermocline?
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020,https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019,https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Tolerance of tropical marine microphytobenthos exposed to elevated irradiance and temperature
Sazlina Salleh and Andrew McMinn
Biogeosciences, 18, 5313–5326, https://doi.org/10.5194/bg-18-5313-2021,https://doi.org/10.5194/bg-18-5313-2021, 2021
Short summary
Persistent impacts of the 2018 drought on forest disturbance regimes in Europe
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021,https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021,https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021,https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Effects of elevated CO2 and extreme climatic events on forage quality and in vitro rumen fermentation in permanent grassland
Vincent Niderkorn, Annette Morvan-Bertrand, Aline Le Morvan, Angela Augusti, Marie-Laure Decau, and Catherine Picon-Cochard
Biogeosciences, 18, 4841–4853, https://doi.org/10.5194/bg-18-4841-2021,https://doi.org/10.5194/bg-18-4841-2021, 2021
Short summary

Cited articles

Boer, G. J.: A study of atmosphere-ocean predictability on long time scales, Clim. Dynam., 16, 469–477, https://doi.org/10.1007/s003820050340, 2000. 
Boer, G. J.: Long time-scale potential predictability in an ensemble of coupled climate models, Clim. Dynam., 23, 29–44, https://doi.org/10.1007/s00382-004-0419-8, 2004. 
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. 
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. 
Download
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Altmetrics
Final-revised paper
Preprint