Articles | Volume 17, issue 9
https://doi.org/10.5194/bg-17-2499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
current address: University of Southampton, Waterfront Campus,
European Way, Southampton, SO14 3ZH, UK
Furu Mienis
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Judith D. L. van Bleijswijk
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Henko C. de Stigter
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Harry J. Witte
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Gert-Jan Reichart
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Utrecht University, Faculty of Geosciences, 3584 CD Utrecht, the
Netherlands
Gerard C. A. Duineveld
NIOZ Royal Netherlands Institute for Sea Research, department of
Ocean Systems, and Utrecht University, P. O. Box 59, 1790 AB Den Burg, Texel,
the Netherlands
Related authors
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Evert de Froe, Igor Yashayaev, Christian Mohn, Johanne Vad, Furu Mienis, Gerard Duineveld, Ellen Kenchington, Erica Head, Steve W. Ross, Sabena Blackbird, George A. Wolff, J. Murray Roberts, Barry MacDonald, Graham Tulloch, and Dick van Oevelen
Biogeosciences, 21, 5407–5433, https://doi.org/10.5194/bg-21-5407-2024, https://doi.org/10.5194/bg-21-5407-2024, 2024
Short summary
Short summary
Deep-sea sponge grounds are distributed globally and are considered hotspots of biological diversity and biogeochemical cycling. To date, little is known about the environmental constraints that control where deep-sea sponge grounds occur and what conditions favour high sponge biomass. Here, we characterize oceanographic conditions at two contrasting sponge grounds. Our results imply that sponges and associated fauna benefit from strong tidal currents and favourable regional ocean currents.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-59, https://doi.org/10.5194/cp-2024-59, 2024
Preprint under review for CP
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9,600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that 7,200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Short summary
Along the Namibian and Angolan margins, low oxygen conditions do not meet environmental ranges for cold–water corals and hence are expected to be unsuitable habitats. Environmental conditions show that tidal movements deliver water with more oxygen and high–quality organic matter, suggesting that corals compensate unfavorable conditions with availability of food. With the expected expansion of oxygen minimum zones in the future, this study provides an example how ecosystems cope with extremes.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019, https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Short summary
Systematics in the incorporation of different elements in shells of marine organisms can be used to test calcification models and thus processes involved in precipitation of calcium carbonates. On different scales, we observe a covariation of sulfur and magnesium incorporation in shells of foraminifera, which provides insights into the mechanics behind shell formation. The observed patterns imply that all species of foraminifera actively take up calcium and carbon in a coupled process.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Sergio Balzano, Julie Lattaud, Laura Villanueva, Sebastiaan W. Rampen, Corina P. D. Brussaard, Judith van Bleijswijk, Nicole Bale, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 5951–5968, https://doi.org/10.5194/bg-15-5951-2018, https://doi.org/10.5194/bg-15-5951-2018, 2018
Short summary
Short summary
We tried to identify the microbes which biosynthesize a class of lipids widespread in seawater, the long chain alkyl diols (LCDs). We could not find any microorganism likely involved in the production of LCDs. The amounts of LCDs found are too high to be produced by living organisms and are likely to be part of the refractory organic matter persisting for long periods in the water column.
Esmee Geerken, Lennart Jan de Nooijer, Inge van Dijk, and Gert-Jan Reichart
Biogeosciences, 15, 2205–2218, https://doi.org/10.5194/bg-15-2205-2018, https://doi.org/10.5194/bg-15-2205-2018, 2018
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, https://doi.org/10.5194/bg-14-3387-2017, 2017
Karoliina A. Koho, Lennart J. de Nooijer, Christophe Fontanier, Takashi Toyofuku, Kazumasa Oguri, Hiroshi Kitazato, and Gert-Jan Reichart
Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, https://doi.org/10.5194/bg-14-3067-2017, 2017
Short summary
Short summary
Here we report Mn / Ca ratios in living benthic foraminifera from the NE Japan margin. The results show that the Mn incorporation directly reflects the environment where the foraminifera calcify. Foraminifera that live deeper in sediment, under greater redox stress, generally incorporate more Mn into their carbonate skeletons. As such, foraminifera living close to the Mn reduction zone in sediment appear promising tools for paleoceanographic reconstructions of sedimentary redox conditions.
Inge van Dijk, Lennart J. de Nooijer, and Gert-Jan Reichart
Biogeosciences, 14, 497–510, https://doi.org/10.5194/bg-14-497-2017, https://doi.org/10.5194/bg-14-497-2017, 2017
Short summary
Short summary
Culturing foraminifera under controlled pCO2 conditions shows that incorporation of certain elements (Zn, Ba) into foraminiferal shells is impacted by the inorganic carbonate system. Modeling the chemical speciation of these elements suggests that incorporation is determined by the availability of free ions. Furthermore, analyzing and comparing trends in element incorporation in hyaline and porcelaneous species may provide constrains on the differences between their calcification strategies.
Lisa Warden, Jung-Hyun Kim, Claudia Zell, Geert-Jan Vis, Henko de Stigter, Jérôme Bonnin, and Jaap S. Sinninghe Damsté
Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, https://doi.org/10.5194/bg-13-5719-2016, 2016
Short summary
Short summary
Enhanced analytical techniques were applied to characterize fossilized microbial cell membrane lipids from samples in the Tagus River basin spanning the last 6000 years. Using the novel methods and calibration, the pH estimates were improved upon, and this study reveals new factors that should be considered when using this proxy as well as affirms the importance of examining the provenance of these lipids before applying them for paleoclimate reconstructions.
J. D. L. van Bleijswijk, C. Whalen, G. C. A. Duineveld, M. S. S. Lavaleye, H. J. Witte, and F. Mienis
Biogeosciences, 12, 4483–4496, https://doi.org/10.5194/bg-12-4483-2015, https://doi.org/10.5194/bg-12-4483-2015, 2015
Short summary
Short summary
The study characterizes the microbial community composition of a cold-water coral mound. Roche GS-FLX amplicon sequencing was carried out targeting Bacteria and Archaea. Water is well-mixed at 400m depth, less so at 5 mab, where composition of communities differed among summit, slope and off-mound. Near-bottom water differed from 5 mab, showing that waters in between frameworks represent a separate microbial habitat. Patterns of microbial distribution are coupled to topo- and hydrography.
F. Mienis, G. C. A. Duineveld, A. J. Davies, M. M. S. Lavaleye, S. W. Ross, H. Seim, J. Bane, H. van Haren, M. J. N. Bergman, H. de Haas, S. Brooke, and T. C. E. van Weering
Biogeosciences, 11, 2543–2560, https://doi.org/10.5194/bg-11-2543-2014, https://doi.org/10.5194/bg-11-2543-2014, 2014
K. A. Koho, K. G. J. Nierop, L. Moodley, J. J. Middelburg, L. Pozzato, K. Soetaert, J. van der Plicht, and G-J. Reichart
Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013, https://doi.org/10.5194/bg-10-1131-2013, 2013
C. P. D. Brussaard, A. A. M. Noordeloos, H. Witte, M. C. J. Collenteur, K. Schulz, A. Ludwig, and U. Riebesell
Biogeosciences, 10, 719–731, https://doi.org/10.5194/bg-10-719-2013, https://doi.org/10.5194/bg-10-719-2013, 2013
I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans
The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, https://doi.org/10.5194/tc-5-589-2011, 2011
Related subject area
Biogeochemistry: Environmental Microbiology
Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Overview: Global change effects on terrestrial biogeochemistry at the plant–soil interface
Ideas and perspectives: Microorganisms in the air through the lenses of atmospheric chemistry and microphysics
Grazing mortality as a controlling factor in the uncultured non-cyanobacterial diazotroph (Gamma A) around the Kuroshio region
Changes in diazotrophic community structure associated with Kuroshio succession in the northern South China Sea
Technical note: A comparison of methods for estimating coccolith mass
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems
Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa
Interdisciplinary strategy to assess the impact of meteorological variables on the biochemical composition of the rain and the dynamics of a small eutrophic lake under rain forcing
Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif
Diversity and assembly processes of microbial eukaryotic communities in Fildes Peninsula Lakes (West Antarctica)
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Physiological control on carbon isotope fractionation in marine phytoplankton
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Disturbance triggers non-linear microbe–environment feedbacks
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Microbial functional signature in the atmospheric boundary layer
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump
Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges
Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Senescence as the main driver of iodide release from a diverse range of marine phytoplankton
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges
Inducing the attachment of cable bacteria on oxidizing electrodes
Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone
Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing
Effects of sea animal colonization on the coupling between dynamics and activity of soil ammonia-oxidizing bacteria and archaea in maritime Antarctica
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
Biogeosciences, 21, 3965–3984, https://doi.org/10.5194/bg-21-3965-2024, https://doi.org/10.5194/bg-21-3965-2024, 2024
Short summary
Short summary
This study examined springs in north central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface waterbodies.
Lucia Fuchslueger, Emily Francesca Solly, Alberto Canarini, and Albert Carles Brangarí
Biogeosciences, 21, 3959–3964, https://doi.org/10.5194/bg-21-3959-2024, https://doi.org/10.5194/bg-21-3959-2024, 2024
Short summary
Short summary
This overview of the special issue “Global change effects on terrestrial biogeochemistry at the plant–soil interface” features empirical, conceptual and modelling-based studies and outlines key findings on plant responses to elevated CO2; soil organism responses to warming; impacts on soil organic carbon, nitrogen and mineral nutrient cycling; and water level changes affecting greenhouse gas emissions, from the Arctic to the tropics, which are crucial for deciphering feedbacks to global change.
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2377, https://doi.org/10.5194/egusphere-2024-2377, 2024
Short summary
Short summary
Atmospheric microorganisms are a small fraction of Earth's microbiome, with bacteria being a significant part. Aerosolized bacteria are airborne for a few days encountering unique chemical and physical conditions affecting stress levels and survival. We explore chemical and microphysical conditions bacteria encounter, highlighting potential nutrient and oxidant limitations and diverse effects by pollutants, which may ultimately impact the microbiome's role in global ecosystems and biodiversity.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidataka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1294, https://doi.org/10.5194/egusphere-2024-1294, 2024
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph and plays a crucial role for marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024, https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Formate is an important intermediate during this process. It was mainly converted to carbon dioxide and acetate both in the presence and absence of sulfate. Methane was only a minor product and was mainly formed from the acetate. The acetate was depleted in the heavy carbon atom relative to formate, while the carbon dioxide was enriched.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023, https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Short summary
Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive.
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023, https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary
Short summary
Permafrost thaw initiates thermokarst landscape formation, resulting in distinct new habitats, including degraded permafrost soil, thermokarst lake sediments, and lake water. These distinct habitats harbored differentiated bacterial communities that originated from the same source, differing in diversity, assembly mechanisms, and environmental influences. The results imply ecological consequences of permafrost degradation in the face of further climate change.
Caitlyn A. Hall, Andre van Turnhout, Edward Kavazanjian Jr., Leon A. van Paassen, and Bruce Rittmann
Biogeosciences, 20, 2903–2917, https://doi.org/10.5194/bg-20-2903-2023, https://doi.org/10.5194/bg-20-2903-2023, 2023
Short summary
Short summary
Earthquake-induced soil liquefaction poses a significant global threat. Microbially induced desaturation and precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bacteria-driven ground improvement technique under existing structures. We developed a next-generation biogeochemical model to understand and predict the behavior of MIDP in the natural environment to design field-based hazard mitigation treatments.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti
Biogeosciences, 19, 5617–5631, https://doi.org/10.5194/bg-19-5617-2022, https://doi.org/10.5194/bg-19-5617-2022, 2022
Short summary
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Sania Arif, Heiko Nacke, Elias Schliekmann, Andreas Reimer, Gernot Arp, and Michael Hoppert
Biogeosciences, 19, 4883–4902, https://doi.org/10.5194/bg-19-4883-2022, https://doi.org/10.5194/bg-19-4883-2022, 2022
Short summary
Short summary
The natural enrichment of Chloroflexi (Ktedonobacteria) at the Kilianstollen Marsberg copper mine rocks being exposed to the acidic sulfate-rich leachate led to an investigation of eight metagenomically assembled genomes (MAGs) involved in copper and other transition heavy metal resistance in addition to low pH resistance and aromatic compounds degradation. The present study offers functional insights about a novel cold-adapted Ktedonobacteria MAG extremophily along with other phyla MAGs.
Chunmei Zhang, Huirong Li, Yinxin Zeng, Haitao Ding, Bin Wang, Yangjie Li, Zhongqiang Ji, Yonghong Bi, and Wei Luo
Biogeosciences, 19, 4639–4654, https://doi.org/10.5194/bg-19-4639-2022, https://doi.org/10.5194/bg-19-4639-2022, 2022
Short summary
Short summary
The unique microbial eukaryotic community structure and lower diversity have been demonstrated in five freshwater lakes of the Fildes Peninsula, Antarctica. Stochastic processes and biotic co-occurrence patterns were shown to be important in shaping microbial eukaryotic communities in the area. Our study provides a better understanding of the dynamic patterns and ecological assembly processes of microbial eukaryotic communities in Antarctic oligotrophic lakes (Fildes Peninsula).
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021, https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary
Short summary
Acetate is an important intermediate during the anaerobic degradation of organic matter. It is consumed by methanogenic and sulfidogenic microorganisms accompanied by stable carbon isotope fractionation. We determined isotope fractionation under different conditions in two paddy soils and two lake sediments and also determined the composition of the microbial communities. Despite a relatively wide range of experimental conditions, the range of fractionation factors was quite moderate.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021, https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Short summary
Physicochemical determinants of microbiome architecture across continental shelves–slopes are unknown, so we explored the geomicrobiology along 3 m sediment horizons of seasonal (shallow coastal) and perennial (deep sea) hypoxic zones of the Arabian Sea. Nature, concentration, and fate of the organic matter delivered to the sea floor were found to shape the microbiome across the western Indian margin, under direct–indirect influence of sedimentation rate and water column O2 level.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann
Biogeosciences, 17, 4355–4374, https://doi.org/10.5194/bg-17-4355-2020, https://doi.org/10.5194/bg-17-4355-2020, 2020
Short summary
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Lisa Tanet, Séverine Martini, Laurie Casalot, and Christian Tamburini
Biogeosciences, 17, 3757–3778, https://doi.org/10.5194/bg-17-3757-2020, https://doi.org/10.5194/bg-17-3757-2020, 2020
Short summary
Short summary
Bioluminescent bacteria, the most abundant light-emitting organisms in the ocean, can be free-living, be symbiotic or colonize organic particles. This review suggests that they act as a visual target and may indirectly influence the sequestration of biogenic carbon in oceans by increasing the attraction rate for consumers. We summarize the instrumentation available to quantify this impact in future studies and propose synthetic figures integrating these ecological and biogeochemical concepts.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Alexander Bratek, Justus E. E. van
Beusekom, Andreas Neumann, Tina Sanders, Jana Friedrich, Kay-Christian Emeis, and Kirstin Dähnke
Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, https://doi.org/10.5194/bg-17-2839-2020, 2020
Short summary
Short summary
The following paper highlights the importance of benthic N-transformation rates in different sediment types in the southern North Sea as a source of fixed nitrogen for primary producers and also as a sink of fixed nitrogen. Sedimentary fluxes of dissolved inorganic nitrogen support ∼7 to 59 % of the average annual primary production. Semi-permeable and permeable sediments contribute ∼68 % of the total benthic N2 production rates, counteracting eutrophication in the southern North Sea.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Helmke Hepach, Claire Hughes, Karen Hogg, Susannah Collings, and Rosie Chance
Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, https://doi.org/10.5194/bg-17-2453-2020, 2020
Short summary
Short summary
Tropospheric iodine takes part in numerous atmospheric chemical cycles, including tropospheric ozone destruction and aerosol formation. Due to its significance for atmospheric processes, it is crucial to constrain its sources and sinks. This paper aims at investigating and understanding features of biogenic iodate-to-iodide reduction in microalgal monocultures. We find that phytoplankton senescence may play a crucial role in the release of iodide to the marine environment.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Christine Rooks, James Kar-Hei Fang, Pål Tore Mørkved, Rui Zhao, Hans Tore Rapp, Joana R. Xavier, and Friederike Hoffmann
Biogeosciences, 17, 1231–1245, https://doi.org/10.5194/bg-17-1231-2020, https://doi.org/10.5194/bg-17-1231-2020, 2020
Short summary
Short summary
Sponge grounds are known as nutrient sources, providing nitrate and ammonium to the ocean. We found that they also can do the opposite: in six species from Arctic and North Atlantic sponge grounds, we measured high rates of denitrification, which remove these nutrients from the sea. Rates were highest when the sponge tissue got low in oxygen, which happens when sponges stop pumping because of stress. Sponge grounds may become nutrient sinks when exposed to stress.
Cheng Li, Clare E. Reimers, and Yvan Alleau
Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, https://doi.org/10.5194/bg-17-597-2020, 2020
Short summary
Short summary
Novel filamentous cable bacteria that grow in the top layer of intertidal mudflat sediment were attracted to electrodes poised at a positive electrical potential. Several diverse morphologies of Desulfobulbaceae filaments, cells, and colonies were observed on the electrode surface. These observations provide information to suggest conditions that will induce cable bacteria to perform electron donation to an electrode, informing future experiments that culture cable bacteria outside of sediment.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Qing Wang, Renbin Zhu, Yanling Zheng, Tao Bao, and Lijun Hou
Biogeosciences, 16, 4113–4128, https://doi.org/10.5194/bg-16-4113-2019, https://doi.org/10.5194/bg-16-4113-2019, 2019
Short summary
Short summary
We investigated abundance, potential activity, and diversity of soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) in five Antarctic tundra patches, including penguin colony, seal colony, and tundra marsh. We have found (1) sea animal colonization increased AOB population size.; (2) AOB contributed to ammonia oxidation rates more than AOA in sea animal colonies; (3) community structures of AOB and AOA were closely related to soil biogeochemical processes associated with animal activities.
Cited articles
Agogue, H., Lamy, D., Neal, P. R., Sogin, M. L., and Herndl, G. J.: Water
mass-specificity of bacterial communities in the North Atlantic revealed by
massively parallel sequencing, Mol. Ecol., 20, 258–274,
https://doi.org/10.1111/j.1365-294X.2010.04932.x, 2011.
Anantharaman, K., Breier, J. A., and Dick, G. J.: Metagenomic resolution of
microbial functions in deep-sea hydrothermal plumes across the Eastern Lau
Spreading Center, Isme J., 10, 225–239,
https://doi.org/10.1038/ismej.2015.81, 2016.
Boschen, R. E., Rowden, A. A., Clark, M. R., and Gardner, J. P. A.: Mining
of deep-sea seafloor massive sulfides: A review of the deposits, their
benthic communities, impacts from mining, regulatory frameworks and
management strategies, Ocean Coast. Manage., 84, 54–67,
https://doi.org/10.1016/j.ocecoaman.2013.07.005, 2013.
Breier, J. A., Toner, B. M., Fakra, S. C., Marcus, M. A., White, S. N.,
Thurnherr, A. M., and German, C. R.: Sulfur, sulfides, oxides and organic
matter aggregated in submarine hydrothermal plumes at 950′ N East
Pacific Rise, Geochim. Cosmochim. Ac., 88, 216–236,
https://doi.org/10.1016/j.gca.2012.04.003, 2012.
Caetano, M., Vale, C., Anes, B., Raimundo, J., Drago, T., Schimdt, S.,
Nogueira, M., Oliveira, A., and Prego, R.: The Condor seamount at
Mid-Atlantic Ridge as a supplementary source of trace and rare earth
elements to the sediments, Deep-Sea Res. Pt. II, 98, 24–37,
https://doi.org/10.1016/j.dsr2.2013.01.009, 2013.
Cave, R. R., German, C. R., Thomson, J., and Nesbitt, R. W.: Fluxes to
sediments underlying the Rainbow hydrothermal plume at 36∘14′ N on
the Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 66, 1905–1923,
https://doi.org/10.1016/S0016-7037(02)00823-2, 2002.
Cerqueira, T., Barroso, C., Froufe, H., Egas, C., and Bettencourt, R.:
Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal
Sediments of Azores Vent Fields, Microb. Ecol., 76, 387–403,
https://doi.org/10.1007/s00248-018-1144-x, 2018.
Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N.:
Geochemistry of high H2 and CH4 vent fluids issuing from
ultramafic rocks at the Rainbow hydrothermal field (36∘14′ N, MAR),
Chem. Geol., 191, 345–359, https://doi.org/10.1016/S0009-2541(02)00134-1,
2002.
Chavagnac, V., German, C. R., Milton, J. A., and Palmer, M. R.: Sources of
REE in sediment cores from the Rainbow vent site (36∘14′ N, MAR),
Chem. Geol., 216, 329–352, https://doi.org/10.1016/S0009-2541(02)00134-1,
2005.
Clarke, K. R. and Gorley, R. N.: PRIMER v6: User Manual/Tutorial (Plymouth
Routines in Multivariate Ecological Research), PRIMER-E, Plymouth, 190 pp., 2006.
Collins, P. C., Croot, P., Carlsson, J., Colaço, A., Grehan, A., Hyeong,
K., Kennedy, R., Mohn, C., Smith, S., and Yamamoto, H.: A primer for the
Environmental Impact Assessment of mining at seafloor massive sulfide
deposits, Mar. Policy, 42, 198–209,
https://doi.org/10.1016/j.marpol.2013.01.020, 2013.
Connell, J. H. and Slayter, R. O.: Mechanisms of Succession in Natural
Communities and Their Role in Community Stability and Organization, Am. Nat.,
111, 1119–1144, https://doi.org/10.1086/283241, 1977.
Cowen, J. P. and Bruland, K. W.: Metal Deposits Associated with Bacteria –
Implications for Fe and Mn Marine Biogeochemistry, Deep-Sea Res., 32,
253–272, https://doi.org/10.1016/0198-0149(85)90078-0, 1985.
Cowen, J. P., Massoth, G. J., and Feely, R. A.: Scavenging Rates of
Dissolved Manganese in a Hydrothermal Vent Plume, Deep-Sea Res., 37,
1619–1637, https://doi.org/10.1016/0198-0149(90)90065-4, 1990.
Dell'Anno, A. and Corinaldesi, C.: Degradation and turnover of
extracellular DNA in marine sediments: Ecological and methodological
considerations, Appl. Environ. Microbiol., 70, 4384–4386,
https://doi.org/10.1128/AEM.70.7.4384--4386.2004, 2004.
Dick, G. J., Clement, B. G., Webb, S. M., Fodrie, F. J., Bargar, J. R., and
Tebo, B. M.: Enzymatic microbial Mn(II) oxidation and Mn biooxide production
in the Guaymas Basin deep-sea hydrothermal plume, Geochim. Cosmochim. Ac., 73,
6517–6530, https://doi.org/10.1016/j.gca.2009.07.039, 2009.
Dick, G. J. and Tebo, B. M.: Microbial diversity and biogeochemistry of the
Guaymas Basin deep-sea hydrothermal plume, Environ. Microbiol., 12, 1334–1347,
https://doi.org/10.1111/j.1462-2920.2010.02177.x, 2010.
Dick, G. J., Anantharaman, K., Baker, B. J., Li, M., Reed, D. C., and Sheik,
C. S.: The microbiology of deep-sea hydrothermal vent plumes: ecological and
biogeographic linkages to seafloor and water column habitats, Front.
Microbiol., 4, 124, https://doi.org/10.3389/fmicb.2013.00124, 2013.
Djurhuus, A., Mikalsen, S. O., Giebel, H. A., and Rogers, A. D.: Cutting
through the smoke: the diversity of microorganisms in deep-sea hydrothermal
plumes, Roy. Soc. Open Sci., 4, 160829, https://doi.org/10.1098/rsos.160829,
2017.
Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Colon, C. F. J.,
Donval, J. P., Fouquet, Y., Prieur, D., and Appriou, P.: The rainbow vent
fluids (36∘14′ N, MAR): the influence of ultramafic rocks and phase
separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids,
Chem. Geol., 184, 37–48, https://doi.org/10.1016/S0009-2541(01)00351-5, 2002.
Edmond, J. M. Campell, A. C., Palmer, M. R., Klinkhammer, G. P., German, C. R.,
Edmonds, H. N., Elderfield, H., Thompson, G., and Rona, P.: Time series
studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic
Ridge: a new solution chemistry model and a mechanisms for Cu ∕ Zn zonation in
massive sulphide orebodies, Geol. Soc. Spec. Publ., 87, 77–86, https://doi.org/10.1144/GSL.SP.1995.087.01.07,
1995.
Edmonds, H. N. and German, C. R.: Particle geochemistry in the Rainbow
hydrothermal plume, Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 68, 759–772,
https://doi.org/10.1016/S0016-7037(03)00498-8, 2004.
Emery, W. J. and Meincke, J.: Global Water Masses – Summary and Review,
Oceanol Acta, 9, 383–391, 1986.
Findlay, A. J., Gartman, A., Shaw, T. J., and Luther, G. W.: Trace metal
concentration and partitioning in the first 1.5 m of hydrothermal vent
plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow, Chem. Geol.,
412, 117–131, https://doi.org/10.1016/j.chemgeo.2015.07.021, 2015.
Fouquet, Y., Barriga, F., Charlou, J. L., Elderfield, H., German, C. R.,
Ondréas, H., Parson, L., Radford-Knoery, J., Relvas, J., Ribeiro, A.,
Schultz, A., Apprioual, R., Cambon, P., Costa, I., Donval, J. P., Douville,
E., Landuré, J. Y., Normund, A., Pellé, H., Ponsevera, E., Riches,
S., Santana, H., and Stephan, M.: Flores diving cruise with the Nautile near
the Azores. First dives on the Rainbow field: hydrothermal seawater/mantle
interaction, Inter Ridge News, 7, 24–28, 1998.
Frank, K. L., Rogers, D. R., Olins, H. C., Vidoudez, C., and Girguis, P. R.:
Characterizing the distribution and rates of microbial sulfate reduction at
Middle Valley hydrothermal vents, Isme J., 7, 1391–1401,
https://doi.org/10.1038/ismej.2013.17, 2013.
German, C. R., Campbell, A. C., and Edmond, J. M.: Hydrothermal Scavenging
at the Mid-Atlantic Ridge – Modification of Trace-Element Dissolved Fluxes,
Earth Planet. Sc. Lett., 107, 101–114,
https://doi.org/10.1016/0012-821X(91)90047-L, 1991.
German, C. R., Klinkhammer, G. P., and Rudnicki, M. D.: The Rainbow
hydrothermal plume, ∘14′ N, MAR, Geophys. Res. Lett., 23, 2979–2982,
https://doi.org/10.1029/96GL02883, 1996.
German, C. R., Richards, K. J., Rudnicki, M. D., Lam, M. M., Charlou, J. L.,
and Party, F. S.: Topographic control of a dispersing hydrothermal plume,
Earth Planet. Sc. Lett., 156, 267–273,
https://doi.org/10.1016/S0012-821X(98)00020-X, 1998.
Gwyther, D. and Wright, M.: Environmental Impact Statement: Solwara 1,
Coffey Natural Systems Pty Ltd, 47–65, 2008.
Han, Y. C., Gonnella, G., Adam, N., Schippers, A., Burkhardt, L., Kurtz, S.,
Schwarz-Schampera, U., Franke, H., and Perner, M.: Hydrothermal chimneys
host habitat-specific microbial communities: analogues for studying the
possible impact of mining seafloor massive sulfide deposits, Sci. Rep.-UK, 8, 10386,
https://doi.org/10.1038/s41598-018-28613-5, 2018.
Huber, J. A., Butterfield, D. A., and Baross, J. A.: Bacterial diversity in a
subseafloor habitat following a deep-sea volcanic eruption, FEMS Microbiol.
Ecol., 43, 393–409, https://doi.org/10.1111/j.1574-6941.2003.tb01080.x,
2003.
Hoagland, P., Beaulieu, S., Tivey, M. A., Eggert, R. G., German, C., Glowka,
L., and Lin, J.: Deep-sea mining of seafloor massive sulfides, Mar. Policy,
34, 728–732, https://doi.org/10.1016/j.marpol.2009.12.001, 2010.
Jannasch, H. W. and Mottl, M. J.: Geomicrobiology of Deep-Sea Hydrothermal
Vents, Science, 229, 717–725, https:/doi.org/10.1126/science.229.4715.717,
1985.
Jones, D. O. B., Amon, D. L., and Chapman, A. S. A.: Mining Deep-Ocean
Mineral Deposits: What are the Ecological Risks?, Elements, 14, 325–330,
https://doi.org/10.2138/gselements.14.5.325, 2018.
Klunder, L., de Stigter, H., Lavaleye, M. S. S., van Bleijswijk, J. D. L., van der Veer, H. W., Reichart, G.-J., and Duineveld, G. C. A.: A Molecular
Approach to Explore the Background Benthic Fauna Around a Hydrothermal Vent and Their Larvae: Implications for Future Mining
of Deep-Sea SMS Deposits, Front. Mar. Sci., 7, 134,
https://doi.org/10.3389/fmars.2020.00134, 2020.
Khripounoff, A., Vangriesheim, A., Crassous, P., Segonzac, M., Colaco, A.,
Desbruyeres, D., and Barthelemy, R.: Particle flux in the Rainbow
hydrothermal vent field (Mid-Atlantic Ridge): Dynamics, mineral and
biological composition, J. Mar. Res., 59, 633–656,
https://doi.org/10.1357/002224001762842217, 2001.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res., 41, e1, https://doi.org/10.1093/nar/gks808, 2013.
Levin, L. A., Mengerink, K., Gjerde, K. M., Rowden, A. A., Van Dover, C. L.,
Clark, M. R., Ramirez-Llodra, E., Currie, B., Smith, C. R., Sato, K. N.,
Gallo, N., Sweetman, A. K., Lily, H., Armstrong, C. W., and Brider, J.:
Defining “Serious Harm” to the Marine Environment in the Context of
Deep-Seabed Mining, Mar. Policy, 74, 245–259,
https://doi.org/10.1016/j.marpol.2016.09.032, 2016
López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini,
J., and Moreira, D.: Bacterial diversity in hydrothermal sediment and
epsilonproteobacterial dominance in experimental microcolonizers at the
Mid-Atlantic Ridge, Environ. Microbiol., 5, 961–976,
https://doi.org/10.1046/j.1462-2920.2003.00495.x, 2003.
Ludford, E. M., Palmer, M. R., German, C. R., and Klinkhammer, G. P.: The
geochemistry of Atlantic hydrothermal particles, Geophys. Res. Lett., 23,
3503–3506, https://doi.org/10.1029/96GL02078, 1996.
Mandernack, K. W. and Tebo, B. M.: Manganese Scavenging and Oxidation at
Hydrothermal Vents and in Vent Plumes, Geochim. Cosmochim. Ac., 57, 3907–3923,
https://doi.org/10.1016/0016-7037(93)90343-U, 1993.
Marques, A. F. A., Barriga, F., Chavagnac, V., and Fouquet, Y.: Mineralogy,
geochemistry, and Nd isotope composition of the Rainbow hydrothermal field,
Mid-Atlantic Ridge, Miner. Deposita, 41, 52–67,
https://doi.org/10.1007/s00126-005-0040-8, 2006.
McCollom, T. M.: Geochemical constraints on primary productivity in
submarine hydrothermal vent plumes, Deep-Sea Res. Pt. I, 47, 85–101,
https://doi.org/10.1016/S0967-0637(99)00048-5, 2000.
Michard, G., Albarède, F., Michard, A., Minister, J. F., Charlou. J. L.,
and Tan, N.: Chemistry of Solution from the 13∘ N East Pacific Rise
Hydrothermal Site, Earth Planet. Sc. Lett. 67, 297–307,
https://doi.org/10.1016/0012-821X(84)90169-9, 1984.
Mino, S., Nakagawa, S., Makita, H., Toki, T., Miyazaki, J., Sievert, S. M.,
and Watanabe, H.: Endemicity of the cosmopolitan mesophilic
chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents, ISME
J., 11, 909, https://doi.org/10.1038/ismej.2016.178, 2017.
Nakagawa, S., Takai, K., Inagaki, F., Hirayama, H., Nunoura, T., Horikoshi,
K., and Sako, Y.: Distribution, phylogenetic diversity and physiological
characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field,
Environ. Microbiol., 7, 1619–1632,
https://doi.org/10.1111/j.1462-2920.2005.00856.x, 2005.
Olins, H. C., Rogers, D. R., Preston, C., Ussler, W., Pargett, D., Jensen,
S., Roman, B., Birch, J. M., Scholin, C. A., Haroon, M. F., and Girguis, P.
R.: Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected
Distributions of Microbial Activity within a Hydrothermal Vent Field, Front.
Microbiol., 8, 1042, https://doi.org/10.3389/fmicb.2017.01042, 2017.
Opatkiewicz, A. D., Butterfield, D. A., and Baross, J. A.: Individual
hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial
communities, Fems Microbiol. Ecol., 70, 413–424,
https://doi.org/10.1111/j.1574-6941.2009.00747.x, 2009.
Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J.: Microbial
ecology of the dark ocean above, at, and below the seafloor, Microbiol. Mol.
Biol. Rev., 75, 361–422, https://doi.org/10.1128/MMBR.00039-10, 2011.
Phillips, B. T.: Beyond the vent: New perspectives on hydrothermal plumes
and pelagic biology, Deep-Sea Res. Pt. II, 137, 480–485,
https://doi.org/10.1016/j.dsr2.2016.10.005, 2017.
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M.
R., Escobar, E., Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., and
Van Dover, C. L.: Man and the Last Great Wilderness: Human Impact on the
Deep Sea, Plos One, 6, e2258, https://doi.org/10.1371/journal.pone.0022588, 2011.
Reed, D. C., Breier, J. A., Jiang, H. S., Anantharaman, K., Klausmeier, C.
A., Toner, B. M., Hancock, C., Speer, K., Thurnherr, A. M., and Dick, G. J.:
Predicting the response of the deep-ocean microbiome to geochemical
perturbations by hydrothermal vents, Isme J., 9, 1857–1869,
https://doi.org/10.1038/ismej.2015.4, 2015.
Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., and Tagliabue, A.: Basin-Scale Transport of Hydrothermal Dissolved
Metals across the South Pacific Ocean, Nature, 523, 200–203,
https://doi.org/10.1038/nature14577, 2015.
Severmann, S., Johnson, C. M., Beard, B. L., German, C. R., Edmonds, H. N.,
Chiba, H., and Green, D. R. H.: The effect of plume processes on the Fe
isotope composition of hydrothermally derived Fe in the deep ocean as
inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36∘14′ N,
Earth Planet. Sc. Lett., 225, 63–76,
https://doi.org/10.1016/j.epsl.2004.06.001, 2004.
Sheik, C. S., Anantharaman, K., Breier, J. A., Sylvan, J. B., Edwards, K.
J., and Dick, G. J.: Spatially resolved sampling reveals dynamic microbial
communities in rising hydrothermal plumes across a back-arc basin, Isme J.,
9, 1434–1445, https://doi.org/10.1038/ismej.2014.228, 2015.
Sunamura, M., Higashi, Y., Miyako, C., Ishibashi, J., and Maruyama, A.: Two
bactetia phylotypes are predominant in the Suiyo Seamount hydrothermal
plume, Appl. Environ. Microb., 70, 1190–1198,
https://doi.org/10.1128/AEM.70.2.1190-1198.2004, 2004.
Sylvan, J. B., Pyenson, B. C., Rouxel, O., German, C. R., and Edwards, K.
J.: Time-series analysis of two hydrothermal plumes at 9∘50′ N East Pacific Rise reveals distinct, heterogeneous bacterial
populations, Geobiology, 10, 178–192,
https://doi.org/10.1111/j.1472-4669.2011.00315.x, 2012.
Thurnherr, A. M. and Richards, K. J.: Hydrography and high-temperature heat
flux of the Rainbow hydrothermal site (36∘14′ N, Mid-Atlantic
Ridge), J. Geophys. Res.-Oceans, 106, 9411–9426,
https://doi.org/10.1029/2000JC900164, 2001.
Thurnherr, A. M., Richards, K. J., German, C. R., Lane-Serff, G. F., and
Speer, K. G.: Flow and mixing in the rift valley of the Mid-Atlantic Ridge,
J. Phys. Oceanogr., 32, 1763–1778,
https://doi.org/10.1175/1520-0485(2002)032<1763:FAMITR>2.0.CO;2, 2002.
Trocine, R. P. and Trefry, J. H.: Distribution and chemistry of suspended
particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at
26∘ N, Earth Planet. Sc. Lett. 88, 1–15,
https://doi.org/10.1016/0012-821X(88)90041-6, 1988.
van Bleijswijk, J. D. L., Whalen, C., Duineveld, G. C. A., Lavaleye, M. S. S., Witte, H. J., and Mienis, F.: Microbial assemblages on a cold-water coral mound at the SE Rockall Bank (NE Atlantic): interactions with hydrography and topography, Biogeosciences, 12, 4483–4496, https://doi.org/10.5194/bg-12-4483-2015, 2015.
van Haren, H., Duineveld, G., and de Stigter, H.: Prefrontal bore mixing,
Geophys. Res. Lett., 44, 9408–9415, https://doi.org/10.1002/2017GL074384, 2017.
Vare, L. L., Baker, M. C., Howe, J. A., Levin, L. A., Neira, C.,
Ramirez-Llodra, E. Z., Reichelt-Brushett, A., Rowden, A. A., Shimmield, T.
M., Simpson, S. L., and Soto, E. H.: Scientific Considerations for the
Assessment and Management of Mine Tailings Disposal in the Deep Sea,
Front. Mar. Sci., 5, 17, https://doi.org/10.3389/fmars.2018.00017,
2018.
Weaver, P. P., Billett, D. S., and Van Dover, C. L.: Environmental risks of
deep-sea mining, in: Handbook on Marine Environment Protection, Springer,
215–245, https://doi.org/10.1007/978-3-319-60156-4_11, 2018.
Wetzel, L. R. and Shock, E. L.: Distinguishing ultramafic- from
basalt-hosted submarine hydrothermal systems by comparing calculated vent
fluid compositions, J. Geophys. Res.-Sol. Ea., 105, 8319–8340,
https://doi.org/10.1029/1999JB900382, 2000.
Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C.,
Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F. O.: The SILVA and
“all-species living tree project (LTP)” taxonomic frameworks, Nucleic
Acids Res., 42, 643–648, https://doi.org/10.1093/nar/gkt1209, 2014.
Zinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M. C.,
Huse, S. M., Welch, D. B. M., Martiny, J. B. H., Sogin, M., Boetius, A., and
Ramette, A.: Global Patterns of Bacterial Beta-Diversity in Seafloor and
Seawater Ecosystems, Plos One, 6, 63–76,
https://doi.org/10.1371/journal.pone.0024570, 2011.
Short summary
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of fine-grained, chemically reactive, suspended matter. Understanding how natural hydrothermal plumes evolve as they disperse from their source, and how they affect their surrounding environment, may help in characterising the behaviour of the diluted part of mining plumes. The natural plume provided a heterogeneous, geochemically enriched habitat conducive to the development of a distinct microbial ecology.
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of...
Altmetrics
Final-revised paper
Preprint