Articles | Volume 18, issue 3
Biogeosciences, 18, 1049–1065, 2021
https://doi.org/10.5194/bg-18-1049-2021
Biogeosciences, 18, 1049–1065, 2021
https://doi.org/10.5194/bg-18-1049-2021

Research article 12 Feb 2021

Research article | 12 Feb 2021

Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia

Zhengchao Wu et al.

Related authors

Phytoplankton response to a plume front in the northern South China Sea
Qian P. Li, Weiwen Zhou, Yinchao Chen, and Zhengchao Wu
Biogeosciences, 15, 2551–2563, https://doi.org/10.5194/bg-15-2551-2018,https://doi.org/10.5194/bg-15-2551-2018, 2018
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021,https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021,https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020,https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020,https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020,https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary

Cited articles

Balestra, C., Alonso-Saez, L., Gasol, J. M., and Casotti, R.: Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms, Aquat. Microb. Ecol., 63, 123–131, https://doi.org/10.3354/ame01486, 2011. 
Bartual, A., Morillo-Garcia, S., Ortega, M. J., and Cozar, A.: First report on vertical distribution of dissolved polyunsaturated aldehydes in marine coastal waters, Mar. Chem., 204, 1–10, https://doi.org/10.1016/j.marchem.2018.05.004, 2018. 
Cloern, J. E.: Our evolving conceptual model of the coastal eutrophication problem, Mar. Ecol. Prog. Ser., 210, 223–253, https://doi.org/10.3354/meps210223, 2001. 
Crump, B. C., Baross, J. A., and Simenstad, C. A.: Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquat. Microb. Ecol., 14, 7–18, https://doi.org/10.3354/ ame014007, 1998. 
Download
Short summary
Seasonal hypoxia in the nearshore bottom waters frequently occurs in the Pearl River estuary. Aerobic respiration is the ultimate cause of local hypoxia. We found an elevated level of polyunsaturated aldehydes in the bottom water outside the estuary, which promoted the growth and metabolism of special groups of particle-attached bacteria and thus contributed to oxygen depletion in hypoxic waters. Our results may be important for understanding coastal hypoxia and its linkages to eutrophication.
Altmetrics
Final-revised paper
Preprint