Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating stream CO2 outgassing via drifting and anchored flux chambers in a controlled flume experiment
Filippo Vingiani
CORRESPONDING AUTHOR
Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy
Nicola Durighetto
Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy
Marcus Klaus
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
Jakob Schelker
Department of Limnology and Oceanography, University of Vienna, 1090 Vienna, Austria
WasserCluster Lunz GmbH, 3293 Lunz am See, Austria
Thierry Labasque
Géosciences Rennes, Université de Rennes 1, 35042 Rennes, France
Gianluca Botter
Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy
Related authors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Simone Noto, Flavia Tauro, Andrea Petroselli, Ciro Apollonio, Gianluca Botter, and Salvatore Grimaldi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-36, https://doi.org/10.5194/hess-2021-36, 2021
Preprint withdrawn
Short summary
Short summary
Although headwater observations are crucial in hydrology, monitoring ephemeral streams remains a challenge and, in turn, available data is limited. This research would like to stimulate the community to investigate on an extremely affordable approach for measuring water depth in small ephemeral streams. In this technical note, preliminary tests with a simple white-pole-wildlife-camera system demonstrate the promise of this new approach in sensing the water level in a small headwater catchment.
Cited articles
Alin, S. R., de Fátima F. L. Rasera, M., Salimon, C. I., Richey, J. E.,
Holtgrieve, G. W., Krusche, A. V., and Snidvongs, A.: Physical controls on
carbon dioxide transfer velocity and flux in low-gradient river systems and
implications for regional carbon budgets, J. Geophys. Res.-Biogeo., 116, G1, https://doi.org/10.1029/2010JG001398, 2011. a
Baker, M. A. and Gibson, C. H.: Sampling Turbulence in the Stratified Ocean:
Statistical Consequences of Strong Intermittency, J. Phys. Oceanogr., 17,
1817–1836, https://doi.org/10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2, 1987. a
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, 4, https://doi.org/10.1029/2004GB002238,
2004. a
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, 2015. a, b, c, d, e, f
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009. a
Beaulieu, J. J., Shuster, W. D., and Rebholz, J. A.: Controls on gas transfer
velocities in a large river, J. Geophys. Res.-Biogeo., 117, G2,
https://doi.org/10.1029/2011JG001794, 2012. a
Beven, K. and Binley, A.: The future of distributed models: Model calibration
and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992. a
Bluteau, C. E., Jones, N. L., and Ivey, G. N.: Estimating turbulent kinetic
energy dissipation using the inertial subrange method in environmental flows, Limnol. Oceanogr.-Meth., 9, 302–321, https://doi.org/10.4319/lom.2011.9.302, 2011. a, b, c, d
Boodoo, K. S., Schelker, J., Trauth, N., Battin, T. J., and Schmidt, C.:
Sources and variability of CO2 in a prealpine stream gravel bar, Hydrol.
Process., 33, 2279–2299, https://doi.org/10.1002/hyp.13450, 2019. a
Department of Scientific and Industrial Research: Effects of Polluting
Discharges on the Thames Estuary, The Reports of the Thames Survey Committee and the Water Pollution Research Laboratory, Water Pollution Research Technical Paper, No. 11, vol. 252s, Her majesty's Stationery Office, London, , 1964. a
Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H.,
Saltzman, E. S., Miller, S. D., and Ward, B.: Parameterizing air-sea gas
transfer velocity with dissipation, J. Geophys. Res.-Oceans, 122, 3041–3056, https://doi.org/10.1002/2016JC012088, 2017. a, b
Foken, T.: Micrometeorology, Springer-Verlag Berlin Heidelberg, 2008. a
Gålfalk, M., Bastviken, D., Fredriksson, S., and Arneborg, L.:
Determination of the piston velocity for water-air interfaces using flux
chambers, acoustic Doppler velocimetry, and IR imaging of the water surface, J. Geophys. Res.-Biogeo., 118, 770–782, https://doi.org/10.1002/jgrg.20064, 2013. a
Goring, D. G. and Nikora, V. I.: De-spiking Acoustic Doppler Velocimeter data, J. Hydraul. Eng., 128, 117–126,
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117), 2002. a
Hall, R. O. and Ulseth, A. J.: Gas exchange in streams and rivers, WIRES Water, 7, e1391, https://doi.org/10.1002/wat2.1391, 2020. a, b, c, d
Henjes, K., Taylor, P. K., and Yelland, M. J.: Effect of Pulse Averaging on
Sonic Anemometer Spectra, J. Atmos. Ocean. Tech., 16, 181–184,
https://doi.org/10.1175/1520-0426(1999)016<0181:EOPAOS>2.0.CO;2, 1999. a
Horgby, Å. s., Segatto, P., Bertuzzo, E., Lauerwald, R., Lehner, B.,
Ulseth, A., Vennemann, T., and Battin, T.: Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains, Nat. Commun., 10, 4888, https://doi.org/10.1038/s41467-019-12905-z, 2019. a
Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers, Nat. Geosci., 8, 696–699, https://doi.org/10.1038/ngeo2507, 2015. a
Jeffrey, L. C., Maher, D. T., Santos, I. R., Call, M., Reading, M. J.,
Holloway, C., and Tait, D. R.: The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary, Estuar. Coast Shelf, 208, 83–95, https://doi.org/10.1016/j.ecss.2018.04.022, 2018. a, b
Kitaigorodskii, S. A. and Lumley, J. L.: Wave-Turbulence interactions in the
Upper Ocean. Part I: The Energy Balance of the Interacting Fields of Surface Wind Waves and Wind-Induced Three-Dimensional Turbulence, J. Phys. Oceanogr., 13, 1977–1987, https://doi.org/10.1175/1520-0485(1983)013<1977:WTIITU>2.0.CO;2, 1983. a
Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorreck, M., Somlai-Haase, C., Bastviken, D., Flury, S., McGinnis, D. F., Maeck, A., Müller, D., and Premke, K.: Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters, Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, 2015. a, b, c, d, e, f
Lorke, A., Bodmer, P., Koca, K., and Noss, C.: Hydrodynamic control of
gas-exchange velocity in small streams, https://doi.org/10.31223/osf.io/8u6vc, 2019. a
Mannich, M., Fernandes, C., and Bleninger, T.: Uncertainty analysis of gas flux measurements at air–water interface using floating chambers, Ecohydrol. Hydrobiol., 19, 475–486, https://doi.org/10.1016/j.ecohyd.2017.09.002, 2019. a
Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R.,
Hartmann, J., and Barth, J. A. C.: A review of CO2 and associated carbon
dynamics in headwater streams: A global perspective, Rev. Geophys., 55,
560–585, https://doi.org/10.1002/2016RG000547, 2017. a
Maurice, L., Rawlins, B. G., Farr, G., Bell, R., and Gooddy, D. C.: The
Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their
Implications for Evasion of CO2, J. Geophys. Res.-Biogeo., 122, 2862–2875, https://doi.org/10.1002/2017JG004045, 2017. a
Moog, D. B. and Jirka, G. H.: Air-Water Gas Transfer in Uniform Channel Flow, J. Hydraul. Eng., 125, 3–10, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(3), 1999. a, b
Moore, R.: Introduction to salt dilution gauging for streamflow measurement
part 2: Constant-rate injection, available at: https://pdfs.semanticscholar.org/4210/42e4d7a842b6be48ec746b1453a82fb3ed5e.pdf, (last access: 25 June 2020), 2004. a
Moore, R.: Introduction to Salt Dilution Gauging for Streamflow Measurement
Part III: Slug Injection Using Salt in Solution, available at: https://www.uvm.edu/bwrl/lab_docs/protocols/2005_Moore_Slug_salt_dilution_gauging_volumetric_method_Streamline.pdf, (last access: 25 June 2020), 2005. a
Mori, N.: Despiking, available at:
https://www.mathworks.com/matlabcentral/fileexchange/15361-despiking, MATLAB Central File Exchange, retrieved: 1 November 2020. a
Mori, N., Suzuki, T., and Kakuno, S.: Noise of Acoustic Doppler Velocimeter
Data in Bubbly Flows, J. Eng. Mech., 133, 122–125,
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(122), 2007. a
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.:
Spatio-temporal patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in Southwest Sweden, Sci. Rep.-UK, 7, 39729,
https://doi.org/10.1038/srep39729, 2017. a
Nortek: How is a Coordinate transformation done?, available at:
https://support.nortekgroup.com/hc/en-us/articles/360029820971-How-is-a-Coordinate-transformation-done- (last access: 29 March 2020),
2020. a
Peter, H., Singer, G. A., Preiler, C., Chifflard, P., Steniczka, G., and
Battin, T. J.: Scales and drivers of temporal pCO2 dynamics in an Alpine
stream, J. Geophys. Res.-Biogeo., 119, 1078–1091,
https://doi.org/10.1002/2013JG002552, 2014. a, b, c, d
Ploum, S. W., Leach, J. A., Kuglerová, L., and Laudon, H.: Thermal detection
of discrete riparian inflow points (DRIPs) during contrasting hydrological
events, Hydrol. Process., 32, 3049–3050, https://doi.org/10.1002/hyp.13184, 2018. a
Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., and Rutgersson, A.: Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes, Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, 2014. a
Pope, S. B.: Turbulent Flows, Cambridge University Press, United States of America by Cambridge University Press, New York, 2000. a
Rawitch, M. J., Macpherson, G. L., and Brookfield, A. E.: Exploring methods of measuring CO2 degassing in headwater streams, Sust. Water Resour. Manag., 5, 1765–1779, https://doi.org/10.1007/s40899-019-00332-3, 2019. a, b, c, d
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland,
P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the gas
transfer velocity and hydraulic geometry in streams and small rivers,
Limnol. Oceanogr., 2, 41–53,
https://doi.org/10.1215/21573689-1597669, 2012. a, b, c, d, e
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover,
M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P.,
Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013. a, b, c
Rosentreter, J. A., Maher, D. T., Ho, D. T., Call, M., Barr, J. G., and Eyre,
B. D.: Spatial and temporal variability of CO2 and CH4 gas transfer
velocities and quantification of the CH4 microbubble flux in mangrove
dominated estuaries, Limnol. Oceanogr., 62, 561–578,
https://doi.org/10.1002/lno.10444, 2017. a
Ruddick, B., Anis, A., and Thompson, K.: Maximum Likelihood Spectral Fitting:
The Batchelor Spectrum, J. Atmos. Ocean. Tech., 17, 1541–1555,
https://doi.org/10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2, 2000. a
Sand-Jensen, K. and Staehr, P. A.: CO2 dynamics along Danish lowland streams: water–air gradients, piston velocities and evasion rates, Biogeochemistry, 111, 615–628, https://doi.org/10.1007/s10533-011-9696-6, 2012. a, b, c
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015. a
Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. d. L. C., Valerio, A. M.,
Gagne-Maynard, W., Cunha, A. C., Less, D. F. S., Diniz, J. E. M., Brito,
D. C., Krusche, A. V., and Richey, J. E.: Carbon Dioxide Emissions along the Lower Amazon River, Front. Mar. Sci., 4, 76,
https://doi.org/10.3389/fmars.2017.00076, 2017. a
Schelker, J., Singer, G. A., Ulseth, A. J., Hengsberger, S., and Battin, T. J.: CO2 evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer: CO2 evasion from a steep, high gradient stream network, Limnol. Oceanogr., 61, 1826–1838, https://doi.org/10.1002/lno.10339, 2016. a, b, c, d
Sukhodolov, A., Thiele, M., and Bungartz, H.: Turbulence structure in a river
reach with sand bed, Water Resour Res, 34, 1317–1334,
https://doi.org/10.1029/98WR00269, 1998. a
Tokoro, T., Kayanne, H., Watanabe, A., Nadaoka, K., Tamura, H., Nozaki, K.,
Kato, K., and Negishi, A.: High gas-transfer velocity in coastal regions with high energy-dissipation rates, J. Geophys. Res.-Oceans, 113,
https://doi.org/10.1029/2007JC004528, 2008. a, b
Vachon, D., Prairie, Y. T., and Cole, J. J.: The relationship between
near-surface turbulence and gas transfer velocity in freshwater systems and
its implications for floating chamber measurements of gas exchange, Limnol.
Oceanogr., 55, 1723–1732, https://doi.org/10.4319/lo.2010.55.4.1723, 2010. a, b, c
Vingiani, F., Durighetto, N., Klaus, M., Schelker, J., Labasque, T., and Botter, G.: Evaluating stream CO2 outgassing via drifting and anchored flux chambers in a controlled flume experiment, https://doi.org/10.25430/researchdata.cab.unipd.it.00000425, 2021.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.:
Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing,
Annu. Rev. Mar. Sci., 1, 213–244,
https://doi.org/10.1146/annurev.marine.010908.163742, 2009. a
Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. R.: Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a
macro-tidal estuary, Estuaries, 26, 1401–1415, https://doi.org/10.1007/BF02803649,
2003. a, b, c, d
Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J.,
Zemmelink, H. J., Dacey, J. W. H., and Ho, D. T.: Environmental turbulent
mixing controls on air-water gas exchange in marine and aquatic systems,
Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028790, 2007. a, b
Short summary
Flexible foil chamber design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of CO2 measurements in low-order streams. Moreover, the study demonstrates the value of analytical and numerical techniques for the estimation of gas exchange velocities. These results may contribute to the development of novel procedures for chamber data analysis which might improve the robustness and reliability of chamber-based CO2 measurements in first-order streams.
Flexible foil chamber design and the anchored deployment might be useful techniques to enhance...
Altmetrics
Final-revised paper
Preprint