Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-1941-2021
https://doi.org/10.5194/bg-18-1941-2021
Research article
 | 
19 Mar 2021
Research article |  | 19 Mar 2021

Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study

Christopher Holder and Anand Gnanadesikan

Related authors

Using neural network ensembles to separate ocean biogeochemical and physical drivers of phytoplankton biogeography in Earth system models
Christopher Holder, Anand Gnanadesikan, and Marie Aude-Pradal
Geosci. Model Dev., 15, 1595–1617, https://doi.org/10.5194/gmd-15-1595-2022,https://doi.org/10.5194/gmd-15-1595-2022, 2022
Short summary

Related subject area

Biogeochemistry: Open Ocean
Model estimates of metazoans' contributions to the biological carbon pump
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023,https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023,https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023,https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022,https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Ecosystem impacts of marine heat waves in the northeast Pacific
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022,https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary

Cited articles

Bahl, A., Gnanadesikan, A., and Pradal, M.-A.: Variations in Ocean Deoxygenation Across Earth System Models: Isolating the Role of Parameterized Lateral Mixing, Global Biogeochem. Cy., 33, 703–724, https://doi.org/10.1029/2018GB006121, 2019. 
Belochitski, A., Binev, P., DeVore, R., Fox-Rabinovitz, M., Krasnopolsky, V., and Lamby, P.: Tree approximation of the long wave radiation parameterization in the NCAR CAM global climate model, J. Comput. Appl. Math., 236, 447–460, https://doi.org/10.1016/j.cam.2011.07.013, 2011. 
Bourel, M., Crisci, C., and Martínez, A.: Consensus methods based on machine learning techniques for marine phytoplankton presence–absence prediction, Ecol. Inform., 42, 46–54, https://doi.org/10.1016/j.ecoinf.2017.09.004, 2017. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Download
Short summary
A challenge for marine ecologists in studying phytoplankton is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small- and large-scale relationships. ML was able to provide qualitative information about the small-scale processes from large-scale information. This method could help identify important relationships from observations in future research.
Altmetrics
Final-revised paper
Preprint