Articles | Volume 18, issue 10
Biogeosciences, 18, 3053–3086, 2021
https://doi.org/10.5194/bg-18-3053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Biogeochemistry in the BGC-Argo era: from process studies...
Research article 20 May 2021
Research article | 20 May 2021
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Hannah L. Bourne et al.
Related authors
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
James K. B. Bishop, Michael B. Fong, and Todd J. Wood
Biogeosciences, 13, 3109–3129, https://doi.org/10.5194/bg-13-3109-2016, https://doi.org/10.5194/bg-13-3109-2016, 2016
Short summary
Short summary
Is the ocean’s biological carbon pump stable or changing? The Carbon Flux Explorer (CFE), capable of year-long missions without tending ships, was invented to address this question. The CFE dives to 1000 m depths and drifts with currents to optically measure the downward flux of sinking carbon using imaging methods. During wintertime tests in California coastal waters, the CFE observed fluxes ∼10 times higher than previously reported. Traditional approaches have undersampled > 1 mm aggregates.
Related subject area
Biogeochemistry: Open Ocean
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
Oxygen budget of the north-western Mediterranean deep- convection region
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise)
Elevated sources of cobalt in the Arctic Ocean
Increase in ocean acidity variability and extremes under increasing atmospheric CO2
Impact of dust enrichment on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview
Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?
Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico
The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean
Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes
Ocean carbonate system variability in the North Atlantic Subpolar surface water (1993–2017)
Characterizing the surface microlayer in the Mediterranean Sea: trace metal concentrations and microbial plankton abundance
Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges
Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments
Seasonal cycling of zinc and cobalt in the Southeast Atlantic along the GEOTRACES GA10 section
Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)
No nitrogen fixation in the Bay of Bengal?
Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific
Physical drivers of the nitrate seasonal variability in the Atlantic cold tongue
Coccolithophore biodiversity controls carbonate export in the Southern Ocean
Arctic (Svalbard islands) active and exported diatom stocks and cell health status
How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?
Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?
Sensitivity of ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a biogeochemical model
Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence
The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model
Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths
Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean
What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?
Investigating the effect of El Niño on nitrous oxide distribution in the eastern tropical South Pacific
Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing
Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section
Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study
Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates
Evidence of high N2 fixation rates in the temperate northeast Atlantic
The oceanic cycle of carbon monoxide and its emissions to the atmosphere
The export flux of particulate organic carbon derived from 210Po∕210Pb disequilibria along the North Atlantic GEOTRACES GA01 transect: GEOVIDE cruise
The composition and distribution of semi-labile dissolved organic matter across the southwest Pacific
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021, https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary
Short summary
A challenge for marine ecologists in studying phytoplankton is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small- and large-scale relationships. ML was able to provide qualitative information about the small-scale processes from large-scale information. This method could help identify important relationships from observations in future research.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021, https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary
Short summary
This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought.
Arthur Capet, Luc Vandenbulcke, and Marilaure Grégoire
Biogeosciences, 17, 6507–6525, https://doi.org/10.5194/bg-17-6507-2020, https://doi.org/10.5194/bg-17-6507-2020, 2020
Short summary
Short summary
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m contains enough oxygen to support marine life such as fish. This oxygenation depth has been shown to be decreasing (1955–2019). Here, we evidence that atmospheric warming induced a clear shift in an important ventilation mechanism. We highlight the impact of this shift on oxygenation. There are important implications for marine life and carbon and nutrient cycling if this new ventilation regime persists.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Friedrich A. Burger, Jasmin G. John, and Thomas L. Frölicher
Biogeosciences, 17, 4633–4662, https://doi.org/10.5194/bg-17-4633-2020, https://doi.org/10.5194/bg-17-4633-2020, 2020
Short summary
Short summary
Ensemble simulations of an Earth system model reveal that ocean acidity extremes have increased in the past few decades and are projected to increase further in terms of frequency, intensity, duration, and volume extent. The increase is not only caused by the long-term ocean acidification due to the uptake of anthropogenic CO2, but also due to changes in short-term variability. The increase in ocean acidity extremes may enhance the risk of detrimental impacts on marine organisms.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-202, https://doi.org/10.5194/bg-2020-202, 2020
Revised manuscript under review for BG
Christopher Gordon, Katja Fennel, Clark Richards, Lynn K. Shay, and Jodi K. Brewster
Biogeosciences, 17, 4119–4134, https://doi.org/10.5194/bg-17-4119-2020, https://doi.org/10.5194/bg-17-4119-2020, 2020
Short summary
Short summary
We describe a method for correcting errors in oxygen optode measurements on autonomous platforms in the ocean. The errors result from the relatively slow response time of the sensor. The correction method includes an in situ determination of the effective response time and requires the time stamps of the individual measurements. It is highly relevant for the BGC-Argo program and also applicable to gliders. We also explore if diurnal changes in oxygen can be obtained from profiling floats.
Bin Wang, Katja Fennel, Liuqian Yu, and Christopher Gordon
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, https://doi.org/10.5194/bg-17-4059-2020, 2020
Short summary
Short summary
We assess trade-offs between different types of biological observations, specifically satellite ocean color and BGC-Argo profiles and the benefits of combining both for optimizing a biogeochemical model of the Gulf of Mexico. Using all available observations leads to significant improvements in observed and unobserved variables (including primary production and C export). Our results highlight the significant benefits of BGC-Argo measurements for biogeochemical model optimization and validation.
Bruce L. Greaves, Andrew T. Davidson, Alexander D. Fraser, John P. McKinlay, Andrew Martin, Andrew McMinn, and Simon W. Wright
Biogeosciences, 17, 3815–3835, https://doi.org/10.5194/bg-17-3815-2020, https://doi.org/10.5194/bg-17-3815-2020, 2020
Short summary
Short summary
We observed that variation in the Southern Annular Mode (SAM) over 11 years showed a relationship with the species composition of hard-shelled phytoplankton in the seasonal ice zone (SIZ) of the Southern Ocean. Phytoplankton in the SIZ are productive during the southern spring and summer when the area is ice-free, with production feeding most Antarctic life. The SAM is known to be increasing with climate change, and changes in phytoplankton in the SIZ may have implications for higher life forms.
Vincent Taillandier, Louis Prieur, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, and Elvira Pulido-Villena
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, https://doi.org/10.5194/bg-17-3343-2020, 2020
Short summary
Short summary
This study addresses the role played by vertical diffusion in the nutrient enrichment of the Levantine intermediate waters, a process particularly relevant inside thermohaline staircases. Thanks to a high profiling frequency over a 4-year period, BGC-Argo float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and their impact on vertical and lateral transfers of nitrate between the deep reservoir and the surface productive zone.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Pieter Demuynck, Toby Tyrrell, Alberto Naveira Garabato, Mark Christopher Moore, and Adrian Peter Martin
Biogeosciences, 17, 2289–2314, https://doi.org/10.5194/bg-17-2289-2020, https://doi.org/10.5194/bg-17-2289-2020, 2020
Short summary
Short summary
The availability of macronutrients N and Si is of key importance to sustain life in the Southern Ocean. N and Si are available in abundance at the southern boundary of the Southern Ocean due to constant supply from the deep ocean. In the more northern regions of the Southern Ocean, a decline in macronutrient concentration is noticed, especially strong for Si rather than N. This paper uses a simplified biogeochemical model to investigate processes responsible for this decline in concentration.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-42, https://doi.org/10.5194/bg-2020-42, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper ocean trace metal cycling.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Lothar Stramma, Sunke Schmidtko, Steven J. Bograd, Tsuneo Ono, Tetjana Ross, Daisuke Sasano, and Frank A. Whitney
Biogeosciences, 17, 813–831, https://doi.org/10.5194/bg-17-813-2020, https://doi.org/10.5194/bg-17-813-2020, 2020
Short summary
Short summary
The influence of climate signals in the Pacific, especially the Pacific Decadal Oscillation and the North Pacific Gyre Oscillation, as well as El Niño–La Niña and an 18.6-year nodal tidal cycle on oxygen and nutrient trends is investigated. At different locations in the Pacific Ocean different climate signals dominate. Hence, not only trends related to warming but also the influence of climate signals need to be investigated to understand oxygen and nutrient changes in the ocean.
Marie-Hélène Radenac, Julien Jouanno, Christine Carine Tchamabi, Mesmin Awo, Bernard Bourlès, Sabine Arnault, and Olivier Aumont
Biogeosciences, 17, 529–545, https://doi.org/10.5194/bg-17-529-2020, https://doi.org/10.5194/bg-17-529-2020, 2020
Short summary
Short summary
Satellite data and a remarkable set of in situ measurements show a main bloom of microscopic seaweed, the phytoplankton, in summer and a secondary bloom in December in the central equatorial Atlantic. They are driven by a strong vertical supply of nitrate in May–July and a shorter and moderate supply in November. In between, transport of low-nitrate water from the west explains most nitrate losses in the sunlit layer. Horizontal eddy-induced processes also contribute to seasonal nitrate removal.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Susana Agustí, Jeffrey W. Krause, Israel A. Marquez, Paul Wassmann, Svein Kristiansen, and Carlos M. Duarte
Biogeosciences, 17, 35–45, https://doi.org/10.5194/bg-17-35-2020, https://doi.org/10.5194/bg-17-35-2020, 2020
Short summary
Short summary
We found that 24 % of the total diatoms community in the Arctic water column (450 m depth) was located below the photic layer. Healthy diatom communities in active spring–bloom stages remained in the photic layer. Dying diatom communities exported a large fraction of the biomass to the aphotic zone, fuelling carbon sequestration and benthic ecosystems in the Arctic. The results of the study conform to a conceptual model where diatoms grow during the bloom until silicic acid stocks are depleted.
Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins
Biogeosciences, 16, 4393–4409, https://doi.org/10.5194/bg-16-4393-2019, https://doi.org/10.5194/bg-16-4393-2019, 2019
Short summary
Short summary
In this study, we examine the responses of E. huxleyi to a future warmer and more thermally variable ocean. Elevated temperatures and thermal variation have negative effects on growth rate and physiology that are especially pronounced at high temperatures, but high-frequency thermal variation may reduce the risk of extreme high-temperature events. These findings have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.
Federico Baltar and Gerhard J. Herndl
Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019, https://doi.org/10.5194/bg-16-3793-2019, 2019
Short summary
Short summary
Around half of the global primary production (PP) is produced in the ocean. Here we quantified how much oceanic PP estimates would increase if we included the dark DIC fixation rates (which are usually excluded in the carbon-14 method) into the PP estimation. We found that the inclusion of dark DIC fixation would increase PP estimates by 5–22 %. This represents ca. 1.2 to 11 Pg C yr−1 of newly synthesized organic carbon available for the marine food web.
Renaud Person, Olivier Aumont, Gurvan Madec, Martin Vancoppenolle, Laurent Bopp, and Nacho Merino
Biogeosciences, 16, 3583–3603, https://doi.org/10.5194/bg-16-3583-2019, https://doi.org/10.5194/bg-16-3583-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet is considered a possibly important but largely overlooked source of iron (Fe). Here we explore its fertilization capacity by evaluating the response of marine biogeochemistry to Fe release from icebergs and ice shelves in a global ocean model. Large regional impacts are simulated, leading to only modest primary production and carbon export increases at the scale of the Southern Ocean. Large uncertainties are due to low observational constraints on modeling choices.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Daniela Niemeyer, Iris Kriest, and Andreas Oschlies
Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019, https://doi.org/10.5194/bg-16-3095-2019, 2019
Short summary
Short summary
Recent studies suggest spatial variations of the marine particle flux length scale. Using a global biogeochemical ocean model, we investigate whether changes in particle size and size-dependent sinking can explain this variation. We address uncertainties by varying aggregate properties and circulation. Both aspects have an impact on the representation of nutrients, oxygen and oxygen minimum zones. The formation and sinking of large aggregates in productive areas lead to deeper flux penetration.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Natalie C. Harms, Niko Lahajnar, Birgit Gaye, Tim Rixen, Kirstin Dähnke, Markus Ankele, Ulrich Schwarz-Schampera, and Kay-Christian Emeis
Biogeosciences, 16, 2715–2732, https://doi.org/10.5194/bg-16-2715-2019, https://doi.org/10.5194/bg-16-2715-2019, 2019
Short summary
Short summary
The Indian Ocean subtropical gyre is a large oligotrophic area that is likely to adjust to continued warming by increasing stratification, reduced nutrient supply and decreasing biological production. In this study, we investigated concentrations of nutrients and stable isotopes of nitrate. We determine the lateral influence of water masses entering the gyre from the northern Indian Ocean and from the Southern Ocean and quantify the input of nitrogen by N2 fixation into the surface layer.
Yingxu Wu, Mathis P. Hain, Matthew P. Humphreys, Sue Hartman, and Toby Tyrrell
Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, https://doi.org/10.5194/bg-16-2661-2019, 2019
Short summary
Short summary
This study takes advantage of the GLODAPv2 database to investigate the processes driving the surface ocean dissolved inorganic carbon distribution, with the focus on its latitudinal gradient between the polar oceans and the low-latitude oceans. Based on our quantitative study, we find that temperature-driven CO2 gas exchange and high-latitude upwelling of DIC- and TA-rich deep waters are the two major drivers, with the importance of the latter not having been previously realized.
Qixing Ji, Mark A. Altabet, Hermann W. Bange, Michelle I. Graco, Xiao Ma, Damian L. Arévalo-Martínez, and Damian S. Grundle
Biogeosciences, 16, 2079–2093, https://doi.org/10.5194/bg-16-2079-2019, https://doi.org/10.5194/bg-16-2079-2019, 2019
Short summary
Short summary
A strong El Niño event occurred in the Peruvian coastal region in 2015–2016, during which higher sea surface temperatures co-occurred with significantly lower sea-to-air fluxes of nitrous oxide, an important greenhouse gas and ozone depletion agent. Stratified water column during El Niño retained a larger amount of nitrous oxide that was produced via multiple microbial pathways; and intense nitrous oxide effluxes could occur when normal upwelling is resumed after El Niño.
Ulrike Löptien and Heiner Dietze
Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, https://doi.org/10.5194/bg-16-1865-2019, 2019
Short summary
Short summary
Anthropogenic greenhouse gas emissions trigger complex climate feedbacks. Output form Earth system models provides a basis for related political decision-making. One challenge is to arrive at reliable model parameter estimates for the ocean biogeochemistry module. We illustrate pitfalls through which flaws in the ocean module are masked by wrongly tuning the biogeochemistry and discuss ensuing uncertainties in climate projections.
Arthur Gourain, Hélène Planquette, Marie Cheize, Nolwenn Lemaitre, Jan-Lukas Menzel Barraqueta, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 16, 1563–1582, https://doi.org/10.5194/bg-16-1563-2019, https://doi.org/10.5194/bg-16-1563-2019, 2019
Short summary
Short summary
The GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe). Lithogenic sources appear to dominate the PFe cycle through margin and benthic inputs.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Karin F. Kvale, Katherine E. Turner, Angela Landolfi, and Katrin J. Meissner
Biogeosciences, 16, 1019–1034, https://doi.org/10.5194/bg-16-1019-2019, https://doi.org/10.5194/bg-16-1019-2019, 2019
Short summary
Short summary
Drivers motivating the evolution of calcifying phytoplankton are poorly understood. We explore differences in global ocean chemistry with and without calcifiers during rapid climate changes. We find the presence of phytoplankton calcifiers stabilizes the volume of low oxygen regions and consequently stabilizes the concentration of nitrate, which is an important nutrient required for photosynthesis. By stabilizing nitrate concentrations, calcifiers improve their growth conditions.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
Ludivine Conte, Sophie Szopa, Roland Séférian, and Laurent Bopp
Biogeosciences, 16, 881–902, https://doi.org/10.5194/bg-16-881-2019, https://doi.org/10.5194/bg-16-881-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric carbon monoxide, a key component for the oxidizing capacity of the atmosphere. We use a global ocean biogeochemistry model to dynamically assess the oceanic CO budget and its emission to the atmosphere at the global scale. The total emissions of CO to the atmosphere are 4.0 Tg C yr−1. The oceanic CO emission maps produced are relevant for use by atmospheric chemical models, especially to study the oxidizing capacity of the atmosphere above the remote ocean.
Yi Tang, Nolwenn Lemaitre, Maxi Castrillejo, Montserrat Roca-Martí, Pere Masqué, and Gillian Stewart
Biogeosciences, 16, 309–327, https://doi.org/10.5194/bg-16-309-2019, https://doi.org/10.5194/bg-16-309-2019, 2019
Short summary
Short summary
Oceanographers try to understand the ocean’s role in the global carbon cycle. Trace levels of natural radionuclides can inform this connection and their half-lives provide an estimate of the timing of processes. We used the 210Po and 210Pb pair to examine the export of carbon from the surface ocean to depth along the GEOVIDE GEOTRACES cruise track. We found that the flux was regionally variable, that upwelling was an important regional factor, and that both large and small particles drove flux.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Cited articles
Abbot, M. R. and Barksdale, B.: Phytoplankton Pigment Patterns and Wind
Forcing off Central California, J. Geophys. Res.-Oceans, 96,
14649–14667, https://doi.org/10.1029/91JC01207, 1991.
Alonso-González, I. J., Arístegui, J., Vilas, J. C., and
Hernández-Guerra, A.: Lateral POC transport and consumption in surface
and deep waters of the Canary Current region: A box model study,
Global Biogeochem. Cy., 23, GB2007, https://doi.org/10.1029/2008GB003185, 2009.
Bacon, M. P., Cochran, J. K., Hirschberg, D., Hammar, T. R., and Fleer, A.
P.: Export flux of carbon at the equator during the eqpac time-series
cruises estimated from 234Th measurements, Deep-Sea Res. Pt. II, 43, 1133–1153, https://doi.org/10.1016/0967-0645(96)00016-1, 1996.
Banse, K.: Reflections About Chance in My Career, and on the Top-Down
Regulated World, Annu. Rev. Mar. Sci., 5, 1–19, https://doi.org/10.1146/annurev-marine-121211-172359, 2013.
Bathmann, U. V., Noji, T. T., Voss, M., and Peinert, R.: Copepod fecal pellet:
abundance, sedimentation and content at a permanent station in the Norwegian
Sea in May/June 1986, Mar. Ecol. Prog. Ser., 38, 45–51, https://doi.org/10.3354/meps038045, 1987.
Beaumont, K. L., Nash, and G. V., Davidson, A. T.: Ultrastructure, morphology
and flux of microzoo- plankton faecal pellets in an east Antarctic fjord,
Mar. Ecol. Prog. Ser., 245, 133–148, https://doi.org/10.3354/meps245133, 2002.
Berline, O., Stemmann, L., Lombard, F., and Gorsky, G.: Impact of
appendicularians on detritus and export fluxes: a model approach at DyFAMed
site, J. Plankton Res., 33, 855–872, https://doi.org/10.1093/plankt/fbq163, 2011.
Bishop, J. K. B.: Regional extremes in particulate matter composition and
flux: effects on the chemistry of the ocean interior, in: Productivity of the ocean present and past, edited by: Berger, W. H.,
Smetacek, V. S., and Wefer, G., Dahlem Konferenzen, John Wiley and Sons Ltd., Chichester, UK, 117–137, 1989.
Bishop, J. K. B.: Transmissometer Measurement of POC, Deep-Sea Res. Pt. I, 46, 353–369, https://doi.org/10.1016/S0967-0637(98)00069-7, 1999.
Bishop, J. K. B., Stepien, J. C., and Wiebe, P. H.: Particulate matter distributions, chemistry, and flux in the Panama Basin: Response to environmental forcing, Prog. Oceanogr., 17, 1–59, https://doi.org/10.1016/0079-6611(86)90024-8, 1986.
Bishop, J. K. B.: Original transmitted-light imagery and processed attenuance
images of sinking particles observed by autonomous Carbon Flux Explorers
deployed 100–500 m in the California Current Regime, during the CCE-LTER
process study (P1706) between 2 June and 1 July 2017 [dataset], Version 1, Biological and Chemical Oceanography Data Management Office (BCO-DMO), available at: http://lod.bco-dmo.org/id/dataset/825076 (last access: 17 September 2020) or https://doi.org/10.26008/1912/bco-dmo.825076.1, 2020a.
Bishop, J. K. B.: Size fractionated Particulate Carbon Flux 100–500 m measured
by autonomous Carbon Flux Explorers deployed during the CCE-LTER process
study (P1706) between 2 June and 1 July 2017 in the California Current
Regime [dataset], Version 1, Biological and Chemical Oceanography Data Management Office
(BCO-DMO), available at: http://lod.bco-dmo.org/id/dataset/823408 (last access: 16 September 2020) or https://doi.org/10.26008/1912/bco-dmo.823408.1, 2020b.
Bishop, J. K. B.: CTD profile data from Carbon Flux Explorers deployed 100–500 m in the California Current Regime, during the CCE-LTER process study (P1706) between 2 June and 1 July 2017 [dataset], Biological and Chemical Oceanography Data Management Office
(BCO-DMO), available at: http://lod.bco-dmo.org/id/dataset/825602 (last access: 30 September 2020) or https://doi.org/10.26008/1912/bco-dmo.825602.1, 2020c.
Bishop, J. K. B. and Wood, T. J.: Particulate matter chemistry and dynamics
in the twilightzone at VERTIGO ALOHA and K2 sites, Deep-Sea Res. Pt. I, 55, 1684–1706, https://doi.org/10.1016/j.dsr.2008.07.012, 2008.
Bishop, J. K. B. and Wood, T. J.: Year-round observations of carbon biomass
and flux variability in the Southern Ocean, Global Biogeochem. Cy.,
23, GB2019, https://doi.org/10.1029/2008GB003206, 2009.
Bishop, J. K. B., Ketten D. R., and Edmond, J. M.: The chemistry, biology and
vertical flux of particulate matter from the upper 400 m of the Cape Basin
in the S. E. Atlantic Ocean, Deep-Sea Res., 25, 1121–1161, https://doi.org/10.1016/0146-6291(78)90010-3, 1978.
Bishop, J. K. B., Wood, T. J., Davis, R. E., and Sherman, J. T.: Robotic
observations of enhanced carbon biomass and export at 55∘ during
SOFeX, Science, 304, 417–420, https://doi.org/10.1126/science.1087717, 2004.
Bishop, J. K. B., Fong, M. B., and Wood, T. J.: Robotic observations of high wintertime carbon export in California coastal waters, Biogeosciences, 13, 3109–3129, https://doi.org/10.5194/bg-13-3109-2016, 2016.
Bourne, H. L.: Marine Biogeochemical Cycling of Carbon and Cadmium, Ph.D.
dissertation, University of California, Berkeley, California, USA, 121 pp., 2018.
Bourne, H. L., Bishop, J. K. B., Wood, T. J., Loew, T. J., and Liu, Y.: Carbon Flux Explorer optical assessment of C, N and P fluxes, Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, 2019.
Boss, E., Guidi, L., Richardson, M. J., Stemman, L., Gardner, W. D., Bishop,
J. K. B., Anderson, R. F., and Sherrell, R.: Optical techniques for in-situ
characterization of particles pertinent to GEOTRACES, Prog. Oceanogr., 133, 43–54, https://doi.org/10.1016/j.pocean.2014.09.007, 2015.
Boyd, P. W. and Trull, T. W.: Understanding the export of biogenic
particles in oceanic waters: Is there consensus?, Prog. Oceanogr.,
72, 276–312, https://doi.org/10.1016/j.pocean.2006.10.007, 2007.
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W.,
Bidigare, R. R., Bishop, J. K., Casciotti, K. L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Siegel, D. A., Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., and Wilson. S.: Revisiting carbon flux through the ocean's twilight
zone, Science, 316, 567–571, https://doi.org/10.1126/science.1137959, 2007.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R.,
Arístegui, J., Baltar, F., Eaupré, S. R., Buesseler, K. O.,
DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S.,
Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and
Tanaka, T.: Assessing the apparent imbalance between geochemical and
biochemical indicators of meso- and bathypelagic biological activity: What
the @$♯! is wrong with present calculations of carbon budgets?,
Deep-Sea Res. Pt. II, 57, 1557–1571, https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
Chase, Z., Strutton, P. G., and Hales, B.: Iron links river runoff and shelf
width to phytoplankton biomass along the U.S. West Coast, Geophys. Res. Lett., 316, 567–571, https://doi.org/10.1029/2006GL028069, 2007.
Chung, S. P., Gardner, W. D., Richardson, M. J., Walsh, I. D., and Landry, M. R.:
Beam attenuation and micro-organisms: spatial and temporal variations in
small particles along 140∘ W during the 1992 JGOFS EqPac
transects, Deep-Sea Res. Pt. II, 43, 1205–1226, https://doi.org/10.1016/0967-0645(96)00030-6, 1996.
Collier, R. and Edmond, J. M.: The trace element geochemistry of marine
biogenic particulate matter, Prog. Oceanogr., 13, 113–199, https://doi.org/10.1016/0079-6611(84)90008-9, 1984.
Connors, E. J., Bourne, H. L., and Bishop J. K. B.: Depth and Temporal Variation of Aggregate Export from the Biological Carbon Pump in Upwelling California Coastal Waters, in: AGU/ASLO Ocean Sciences Meeting, Portland, Oregon, USA, 11–16 February 2018, Poster BN14D-1059123, 2018.
Conte, M. H., Ralph, N., and Ross, E. H.: Seasonal and interannual variability
in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda
Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda,
Deep-Sea Res. Pt. II, 48, 1471–1505, https://doi.org/10.1016/S0967-0645(00)00150-8, 2001.
Deutsch, C., Frenzel, H., McWilliams, J. C., Renault, L., Kessouri, F., Howard, E., Liang, J.-H., Bianchi, D., and Yang, S.: Biogeochemical variability in the California Current System, Prog. Oceanogr., https://doi.org/10.1016/j.pocean.2021.102565, online first, 2021.
Ebersbach, F., Trull, T. W., Davies, D. M., and Bray, S. G.: Controls on
mesopelagic particle fluxes in the Sub-Antarctic and Polar Frontal Zones in
the Southern Ocean south of Australia in summer-Perspectives from
free-drifting sediment traps, Deep-Sea Res. Pt. II, 58, 2260–2276, https://doi.org/10.1016/j.dsr2.2011.05.025, 2011.
Eppley, R. and Peterson, B.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, https://doi.org/10.1038/282677a0, 1979.
Estapa, M. L., Siegel, D. A., Buesseler, K. O., Stanley, R. H. R., Lomas, M.
W., and Nelson, N. B.: Decoupling of net community and export production on
submesoscales in the Sargasso Sea, Global Biogeochem. Cy., 29,
1266–1282, https://doi.org/10.1002/2014GB004913, 2015.
Gangopadhyay, A., Lermusiaux, P. F. J., Rosenfeld, L., Robinson, A. R., Calado,
L., Kim, H. S., Leslie, W. G., and Hawley, P. J.: The California Current
System: A multiscale overview and the development of a feature-oriented
regional modeling system (FORMS), Dynam. Atmos. Oceans, 52,
131–169, https://doi.org/10.1016/j.dynatmoce.2011.04.003, 2011.
Giering, S. L. C., Sanders, R., Martin, A. P., Henson, S. A., Riley, J. S.,
Marsay, C. M., and Johns, D. G.: Particle flux in the oceans: Challenging
the steady state assumption, Global Biogeochem. Cy., 31, 159–171, https://doi.org/10.1002/2016GB005424, 2017.
González, H. E.: Distribution and abundance of minipellets around the
Antarctic peninsula, Implications for protistan feeding behaviour,
Mar. Ecol. Prog. Ser., 90, 223–236, https://doi.org/10.3354/meps090223, 1992.
González, H. E., Ortiz, V. C., and Sobarzo, M.: The role of faecal
material in the particulate organic carbon flux in the northern Humboldt
Current, Chile (23∘ S), before and during the 1997–1998 El
Niño, J. Plankton Res., 22, 499–529, https://doi.org/10.1093/plankt/22.3.499, 2000.
Gorsky, G. and Fenaux, R.: The role of appendicularia in marine food webs,
in: The Biology of Pelagic Tunicates, Oxford University Press, Oxford, UK, 161–169, 1998.
Gowing, M. M.: Abundance and feeding ecology of Antarctic phaeodarian
radiolarians, Mar. Biol., 103, 107–118, https://doi.org/10.1007/BF00391069, 1989.
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat. Geosci., 4, 787–792, https://doi.org/10.1038/ngeo1273, 2011.
Hansen, J. L. S., Kiorboe, T., and Alldredge, A. L.: Marine snow derived from abandoned larvacean houses: sinking rates, particle content and mechanisms of aggregate formation, Mar. Ecol.-Prog. Ser., 141, 205–215, https://doi.org/10.3354/meps141205, 1996.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, 10–14, https://doi.org/10.1029/2011GL046735, 2011.
Johnson, K., Chavez, F., and Friederich, G.: Continental-shelf sediment as a primary source of iron for coastal phytoplankton, Nature, 398, 697–700, https://doi.org/10.1038/19511, 1999.
Johnson, K. S., Plant, J. N., Dunne, J. P., Talley, L. D., and Sarmiento, J.
L.: Annual nitrate drawdown observed by SOCCOM profiling floats and the
relationship to annual net community production, J. Geophys. Res.-Oceans, 122, 6668–6683, https://doi.org/10.1002/2017JC012839, 2017.
Kelly, T. B., Goericke, R., Kahru, M., Song, M., and Stukel, M. R.: CCE II:
Spatial and interannual variability in export efficiency and the biological
pump in an eastern boundary current upwelling system with substantial
lateral advection, Deep-Sea Res. Pt. I, 140, 14–25, https://doi.org/10.1016/j.dsr.2018.08.007, 2018.
Komar, P. O., Morse, A. P., Small, L. F., and Fowler, S. W.: An analysis of the sinking rates of copepod and euphausiid fecal
pellets, Limnol. Oceanogr., 26, 172–180, https://doi.org/10.4319/lo.1981.26.1.0172, 1981.
Kranz, S. A., Wang, S., Kelly, T. B., Stukel, M. R., Goericke, R., Landry,
M. R., and Cassar, N.: Lagrangian studies of marine production: A multimethod
assessment of productivity relationships in the California Current Ecosystem
upwelling region, J. Geophys. Res.-Oceans, 125,
e2019JC015984, https://doi.org/10.1029/2019JC015984, 2020.
Krause, M.: Vertical distributions of fecal pellets during
FLEX'76, Helgolander Meeresun., 34, 313–327, https://doi.org/10.1007/BF02074125, 1981.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air-sea carbon balance, Nat. Geosci., 2,
630–635, https://doi.org/10.1038/ngeo612, 2009.
Lam, P. J. and Bishop, J. K. B.: High biomass, low export regimes in the
Southern Ocean, Deep-Sea Res. Pt. II,
54, 601–638, https://doi.org/10.1016/j.dsr2.2007.01.013, 2007.
Lam, P. J., Bishop, J. K. B., Henning, C. C., Marcus, M. A., Waychunas, G. A., and Fung, I. Y.: Wintertime phytoplankton bloom in the Subarctic Pacific
supported by Continental Shelf Iron, Global Biogeochem. Cy., 20, GB1006, https://doi.org/10.1029/2005GB002557, 2006.
Lerman, A., Lal, D., and Dacey, M. F.: Stokes' settling and chemical
reactivity of suspended particles in natural waters, in: Suspended solids in
water, edited by: Gibbs, R. J., Plenum Press, New York, https://doi.org/10.1007/978-1-4684-8529-5, 17–47, 1975.
Li, Z. and Cassar, N.: Satellite estimates of net community production
based on observations and comparisons to other estimates, Global Biogeochem. Cy., 30, 735–752, https://doi.org/10.1002/2015GB005314, 2016.
Lutz, M., Caldeira, K., Dunbar, R., and Behrenfeld, M.: Seasonal rhythms of
net primary production and particulate organic carbon flux to depth describe
the efficiency of biological pump in the global ocean, J. Geophys. Res.-Oceans, 112, C10011, https://doi.org/10.1029/2006JC003706, 2007.
Lynn, R. J. and Simpson, J. J.: The California Current System: The Seasonal
Variability of its Physical Characteristics, J. Geophys. Res.-Oceans, 92, 12947–12966, https://doi.org/10.1029/JC092iC12p12947, 1987.
Madin, L. P. and Purcell, J. E.: Feeding, metabolism and growth of Cyclosapa
Bakeri in the subarctic Pacific, Limnol. Oceanogr., 37, 1236–1251, https://doi.org/10.4319/lo.1992.37.6.1236, 1992.
Marsay, C. M., Sanders, R. J., Henson, S., Pabortsava, K., and Achterberg,
E. P.: Attenuation of sinking particulate organic carbon flux through the
mesopelagic ocean, P. Natl. Acad. Sci. USA, 112, 1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
Ohman, M., Barbeau, K., Franks, P., Goericke, R., Landry, M., and Miller,
A.: Ecological Transitions in a Coastal Upwelling Ecosystem, Oceanography,
26, 210–219, https://doi.org/10.5670/oceanog.2013.65, 2013.
Omand, M. M., Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic
carbon from the spring bloom, Science, 348, 222–225, https://doi.org/10.1126/science.1260062, 2015.
Pak, H., Zaneveld, R. V., and Kitchen J.: Intermediate Nepheloid Layers
Observed off Oregon and Washington, J. Geophys. Res.-Oceans,
85, 6697–6708, https://doi.org/10.1029/JC085iC11p06697, 1980.
Passow, U. and Carlson, C. A.: The biological pump in a high CO2
world, Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985, 2012.
Pomeroy, L. R., Hanson, R. B., McGillivary, P. A., Sherr, B. F., Kirchman, D., and Deibel, D.: Microbiology and chemistry of fecal products of pelagic
turnicates: rates and fates, B. Mar. Sci., 35, 426–439, 1984.
Saba, G. K. and Steinberg, D. K.: Abundance, composition, and sinking rates
of fish fecal pellets in the santa barbara channel, Sci. Rep.-UK, 2, 716, https://doi.org/10.1038/srep00716, 2012.
Sasaki, H., Hattori, H., and Nishizawa, S.: Downward flux of particulate
organic matter and vertical distribution of calanoid copepods in the Oyasio
Waters in the summer, Deep-Sea Res., 35, 505–515, https://doi.org/10.1016/0198-0149(88)90128-8, 1988.
Sato, R., Tanaka, Y., and Ishimaru, T.: House Production by Oikopleura
dioica (Tunicata, Appendicularia) Under Laboratory Conditions, J. Plankton Res., 23, 415–423, https://doi.org/10.1093/plankt/23.4.415, 2001.
Schneider, N., Lorenzo, E. D., and Niler, P. P.: Salinity Variations in the
Southern California Current, J. Phys. Oceanogr., 35, 1421–1436, https://doi.org/10.1175/JPO2759.1, 2005.
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld,
M. J., and Boyd, P. W.: Global assessment of ocean carbon export by
combining satellite observations and food-web models, Global Biogeochem. Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014.
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R.,
Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., D'Asaro, E. A.,
Doney, S. C., Perry, M. J., Stanley, R. H. R., and Steinberg, D. K.:
Prediction of the Export and Fate of Global Ocean Net Primary Production:
The EXPORTS Science Plan, Frontiers in Marine Science, 3, 22, https://doi.org/10.3389/fmars.2016.00022, 2016.
Siegelman-Charbit, L., Koslow, J. A., Jacox, M. G., Hazen, E. L., Bograd, S.
J., and Miller, E. F.: Physical forcing on fish abundance in the southern
California Current System, Fish. Oceanogr., 27, 475–488, https://doi.org/10.1111/fog.12267, 2018.
Silver, M. W., Coale, S. L., Pilskaln, C. H., and Steinberg, D. R.: Giant
aggregates: Importance as microbial centers and agents of material flux in
the mesopelagic zone, Limnol. Oceanogr., 43, 498–507, https://doi.org/10.4319/lo.1998.43.3.0498, 1998.
Smetacek, V. S.: Zooplankton standing stock, copepod faecal pellets and
particulate detritus in Kiel bight, Estuar. Coast. Mar. Sci.,
11, 477–490, https://doi.org/10.1016/S0302-3524(80)80001-6, 1980.
Stanley, R. H. R., Doney, S. C., Jenkins, W. J., and Lott, III, D. E.: Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site, Biogeosciences, 9, 1969–1983, https://doi.org/10.5194/bg-9-1969-2012, 2012.
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari, T., and Karl, D. M.: Bacterial vs. zooplankton control of sinking particle flux
in the ocean's twilight zone, Limnol. Oceanogr., 53, 1327–1338, https://doi.org/10.4319/lo.2008.53.4.1327, 2008.
Stemmann, L., Prieur, L., Legendre, L., Taupier-Letage, I., Picheral, M.,
Guidi, L., and Gorsky, G.: Effects of frontal processes on marine aggregate
dynamics and fluxes: an interannual study in a permanent geostrophic front
(NW Mediterranean), J. Marine Syst., 70, 1–20, https://doi.org/10.1016/j.jmarsys.2007.02.014, 2008.
Stukel, M. and Landry, M.: California Current Ecosystem LTER: Exported
particulate carbon and nitrogen measurements from 4-day sediment trap
deployments in the CCE region, 2007–2017 (ongoing), version 6,
Environmental Data Initiative, available at:
https://doi.org/10.6073/pasta/de679918c44266dcebbc5f85a37dcd36, 2020.
Stukel, M. R., Asher, E., Couto, N., Schofield, O., Strebel, S., Tortell,
P., and Ducklow, H. W.: The imbalance of new and export production in the
western Antarctic Peninsula, a potentially “leaky” ecosystem, Global Biogeochem. Cy., 29, 1400–1420, https://doi.org/10.1002/2015GB005211, 2015.
Stukel, M. R., Song, H., Goericke, R., and Miller, A. J.: The role of
subduction and gravitational sinking in particle export, carbon
sequestration, and the remineralization length scale in the California
Current Ecosystem, Limnol. Oceanogr., 63, 363–383, https://doi.org/10.1002/lno.10636, 2018.
Turner, J. T.: Progress in Oceanography Zooplankton fecal pellets, marine
snow, phytodetritus and the ocean's biological pump, Prog. Oceanogr., 130, 205–248, https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Whitmore, B. M., Nickels, C. F., and Ohman, M. D.: A comparison between
Zooglider and shipboard net and acoustic mesozooplankton sensing systems,
J. Plankton Res., 41, 521–533 https://doi.org/10.1093/plankt/fbz033, 2019.
Wong, C. S., Whitney, F. A., Crawford, D. W., Iseki, K., Matear, R. J.,
Johnson, W. K., Page, J. S., and Timothy, D.: Seasonal and interannual
variability in particle fluxes of carbon, nitrogen and silicon from time
series of sediment traps at Ocean Station P, 1982–1993: relationship
to changes in subarctic primary productivity, Deep-Sea Res. Pt. II, 46, 2735–2760, https://doi.org/10.1016/S0967-0645(99)00082-X, 1999.
Yao, X. and Schlitzer, R.: Assimilating water column and satellite data for marine export production estimation, Geosci. Model Dev., 6, 1575–1590, https://doi.org/10.5194/gmd-6-1575-2013, 2013.
Short summary
To learn how the biological carbon pump works in productive coastal upwelling systems, four autonomous carbon flux explorers measured carbon flux through the twilight zone beneath an offshore-flowing filament of biologically productive water. Strikingly different particle classes dominated the carbon fluxes during successive stages of the filament evolution over 30 d. Both flux and transfer efficiency were far greater than expected, suggesting an outsized filament impact in California waters.
To learn how the biological carbon pump works in productive coastal upwelling systems, four...
Altmetrics
Final-revised paper
Preprint