Articles | Volume 18, issue 20
https://doi.org/10.5194/bg-18-5789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Michael Siccha
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Maike Kaffenberger
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Jelle Bijma
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Michal Kucera
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Straße 8, 28359 Bremen, Germany
Related authors
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Cited articles
Almogi-Labin, A.: Population dynamics of planktic Foraminifera and
Pteropoda Gulf of Aqaba, Red Sea, Proceedings of the Koninklke Nederlandse
Akademie van Wetenschappen. Series B. Palaeontology, geology, physics and
chemistry, 87, 481–511, 1984.
Anderson, O. R. and Bé, A. W.: A cytochemical fine structure study of
phagotrophy in a planktonic foraminifer, Hastigerina pelagica (d'Orbigny),
Biol. Bull., 151, 437–449, 1976.
Babcock, R., Bull, G., Harrison, P. L., Heyward, A., Oliver, J., Wallace,
C., and Willis, B.: Synchronous spawnings of 105 scleractinian coral species
on the Great Barrier Reef, Mar. Biol., 90, 379–394, 1986.
Bé, A., Hemleben, C., Anderson, O., and Spindler, M.: Pore structures in
planktonic foraminifera, J. Foramin. Res., 10, 117–128,
1980.
Bé, A. W.: Quantitative multiple opening-and-closing plankton samplers,
Deep Sea Research and Oceanographic Abstracts, 9, 144–151, 1962.
Bé, A. W. and Hemleben, C.: Calcification in a living planktonic
foraminifer, Globigerinoides sacculifer (Brady), Neues Jahrb. Geol.
Paläontol., 134, 221–234, 1970.
Bé, A. W., Hemleben, C., Anderson, O. R., Spindler, M., Hacunda, J., and
Tuntivate-Choy, S.: Laboratory and field observations of living planktonic
foraminifera, Micropaleontol., 23, 155–179, 1977.
Berger, W., Killingley, J., and Vincent, E.: Sable isotopes in deep-sea
carbonates-box core erdc-92, west equatorial pacific, Oceanol. Acta, 1,
203–216, 1978.
Bijma, J. and Hemleben, C.: Population dynamics of the planktic foraminifer
Globigerinoides sacculifer (Brady) from the central Red Sea, Deep-Sea
Res. Pt. I, 41, 485–510, 1994.
Bijma, J., Erez, J., and Hemleben, C.: Lunar and semi-lunar reproductive
cycles in some spinose planktonic foraminifers, J. Foramin.
Res., 20, 117–127, 1990.
Boyd, C. and Gradmann, D.: Impact of osmolytes on buoyancy of marine
phytoplankton, Mar. Biol., 141, 605–618, 2002.
Brawley, S. H. and Johnson, L. E.: Gametogenesis, gametes and zygotes: an
ecological perspective on sexual reproduction in the algae, Brit.
Phycol. J., 27, 233–252, 1992.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Planktonic foraminiferal
ontogeny and new perspectives for micropalaeontology, Nature, 319, 50–52,
1986.
Brummer, G. J. A. and Kroon, D.: Planktonic foraminifers as tracers of
ocean-climate history: Ontogeny, relationships and preservation of modern
species and stable isotopes, phenotypes and assemblage distribution in
different water masses, Free University Press, Amsterdam,
1988.
Caron, D. A., Faber, W. W., and Bé, A. W.: Growth of the spinose
planktonic foraminifer Orbulina universa in laboratory culture and the
effect of temperature on life processes, J. Mar. Biol.
Assoc. UK, 67, 343–358, 1987.
Chernihovsky, N., Almogi-Labin, A., Kienast, S., and Torfstein, A.: The
daily resolved temperature dependence and structure of planktonic
foraminifera blooms, Sci. Rep.-UK, 10, 1–12, 2020.
Clifton, K. E.: Mass spawning by green algae on coral reefs, Science, 275,
1116–1118, 1997.
Davis, C. V., Livsey, C. M., Palmer, H. M., Hull, P. M., Thomas, E., Hill,
T. M., and Benitez-Nelson, C. R.: Extensive morphological variability in
asexually produced planktic foraminifera, Sci. Adv., 6, eabb8930, https://doi.org/10.1126/sciadv.abb8930,
2020.
Erez, J.: The source of ions for biomineralization in foraminifera and their
implications for paleoceanographic proxies, Rev. Mineral.
Geochem., 54, 115–149, 2003.
Erez, J., Almogi-Labin, A., and Avraham, S.: On the life history of
planktonic foraminifera: lunar reproduction cycle in Globigerinoides
sacculifer (Brady), Paleoceanography, 6, 295–306, 1991.
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Bé, A. W.:
Vertical distribution and isotopic fractionation of living planktonic
foraminifera from the Panama Basin, Nature, 298, 841–844, 1982.
Fieux, M.: 4 Surface and subsurface circulation, in: The planetary ocean,
EDP Sciences, Les Ulis, 219–252, 2021.
Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., and Kucera, M.: Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations, Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, 2019.
Groeneveld, J., Ho, S. L., Mackensen, A., Mohtadi, M., and Laepple, T.:
Deciphering the variability in Mg/Ca and stable oxygen isotopes of
individual foraminifera, Paleoceanogr. Paleocl., 34, 755–773,
2019.
Haarmann, T., Hathorne, E. C., Mohtadi, M., Groeneveld, J., Kölling, M.,
and Bickert, T.: ratios of single planktonic foraminifer shells and
the potential to reconstruct the thermal seasonality of the water column,
Paleoceanography, 26, PA3218, https://doi.org/10.1029/2010PA002091, 2011.
Hemleben, C. and Bijma, J.: Foraminiferal population dynamics and stable
carbon isotopes, in: Carbon cycling in the glacial ocean: Constraints on the
ocean's role in global change, Springer, Berlin, Heidelberg, 145–166, 1994.
Hemleben, C., Spindler, M., Breitinger, I., and Deuser, W. G.: Field and
laboratory studies on the ontogeny and ecology of some globorotaliid species
from the Sargasso Sea off Bermuda, J. Foramin. Res.,
15, 254–272, 1985.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic Foraminifera, Springer, Berlin, 1989.
Iwasaki, S., Kimoto, K., Kuroyanagi, A., and Kawahata, H.: Horizontal and
vertical distributions of planktic foraminifera in the subarctic Pacific,
Mar. Micropaleontol., 130, 1–14, 2017.
Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., and Uchida, H.: Sensitivity
of planktic foraminiferal test bulk density to ocean acidification,
Sci. Rep.-UK, 9, 1–9, 2019.
Jentzen, A., Schönfeld, J., Weiner, A. K. M., Weinkauf, M. F. G., Nürnberg, D., and Kučera, M.: Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea), J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, 2019.
Jonkers, L., Reynolds, C. E., Richey, J., and Hall, I. R.: Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico, Biogeosciences, 12, 3061–3070, https://doi.org/10.5194/bg-12-3061-2015, 2015.
Kawahata, H., Nishimura, A., and Gagan, M. K.: Seasonal change in
foraminiferal production in the western equatorial Pacific warm pool:
evidence from sediment trap experiments, Deep-Sea Res. Pt. II, 49, 2783–2800, 2002.
Kučera, M., Siccha, M., Morard, R., Jonkers, L., Schmidt, C., Munz, P.,
Groeneveld, J., Fischer, G., Ruhland, G., and Klann, M.: Scales of
Population Dynamics, Ecology and Diversity of Planktonic Foraminifera and
their Relationship to Particle Flux in the Eastern Tropical Atlantic: Cruise
No. M140, 11.8. 2017–5.9. 2017, Mindelo (Cabo Verde) – Las Palmas
(Spain) – FORAMFLUX, DFG-Senatskommission für Ozeanographie, Bremen, 2019.
Lankton, S.: Sparse field methods-technical report, Georgia institute of
technology, Atlanta, 2009.
Lessa, D., Morard, R., Jonkers, L., Venancio, I. M., Reuter, R., Baumeister, A., Albuquerque, A. L., and Kucera, M.: Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors, Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, 2020.
Lin, H.-L.: The seasonal succession of modern planktonic foraminifera:
Sediment traps observations from southwest Taiwan waters, Cont. Shelf
Res., 84, 13–22, 2014.
Lončarić, N., Brummer, G.-J. A., and Kroon, D.: Lunar cycles and
seasonal variations in deposition fluxes of planktic foraminiferal shell
carbonate to the deep South Atlantic (central Walvis Ridge), Deep-Sea
Res. Pt. I, 52, 1178–1188, 2005.
MATLAB: MATLAB. 9.3.0.713579 (R2017b), Natick, Massachusetts, The MathWorks Inc., 2017.
Meilland, J., Siccha, M., Weinkauf, M. F., Jonkers, L., Morard, R.,
Baranowski, U., Baumeister, A., Bertlich, J., Brummer, G.-J., and Debray,
P.: Highly replicated sampling reveals no diurnal vertical migration but
stable species-specific vertical habitats in planktonic foraminifera,
J. Plankton Res., 41, 127–141, 2019.
Mohiuddin, M. M., Nishimura, A., Tanaka, Y., and Shimamoto, A.: Seasonality
of biogenic particle and planktonic foraminifera fluxes: response to
hydrographic variability in the Kuroshio Extension, northwestern Pacific
Ocean, Deep-Sea Res. Pt. I, 51,
1659–1683, 2004.
Morard, R., Füllberg, A., Brummer, G.-J. A., Greco, M., Jonkers, L.,
Wizemann, A., Weiner, A. K., Darling, K., Siccha, M., and Ledevin, R.:
Genetic and morphological divergence in the warm-water planktonic
foraminifera genus Globigerinoides, PloS one, 14, e0225246, https://doi.org/10.1371/journal.pone.0225246, 2019.
Murray, J.: Ecology and paleoecology ofbenthic Foraminifera, Longman
Scientific & Technical, Essex, 1991.
Ofstad, S., Zamelczyk, K., Kimoto, K., Chierici, M., Fransson, A., and
Rasmussen, T. L.: Shell density of planktonic foraminifera and pteropod
species Limacina helicina in the Barents Sea: Relation to ontogeny and water
chemistry, PloS One, 16, e0249178, https://doi.org/10.1371/journal.pone.0249178, 2021.
Peeters, F. J. and Brummer, G.-J. A.: The seasonal and vertical
distribution of living planktic foraminifera in the NW Arabian Sea,
Geol. Soc. Lond. Spec. Publ., 195, 463–497, 2002.
Pracht, H., Metcalfe, B., and Peeters, F. J. C.: Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth, Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, 2019.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Rhumbler, L.: Die Foraminiferen (Thalamophoren) der Plankton Expedition, Pt.
1, Die Allgemeinen Organizationsverhaltnisse der Foraminifera, Lipsius &
Tischer, Kiel und Leipzig, 331 pp., 1911.
Salmon, K. H., Anand, P., Sexton, P. F., and Conte, M.: Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic, Biogeosciences, 12, 223–235, https://doi.org/10.5194/bg-12-223-2015, 2015.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget, Global Biogeochem. Cy., 16, 3-1–3-21, 2002.
Schiebel, R. and Hemleben, C.: Modern planktic foraminifera,
Paläontol. Z., 79, 135–148, 2005.
Schiebel, R. and Hemleben, C.: Planktic foraminifers in the modern ocean,
Springer, Berlin, Heidelberg, 2017.
Schiebel, R., Bijma, J., and Hemleben, C.: Population dynamics of the
planktic foraminifer Globigerina bulloides from the eastern North Atlantic,
Deep-Sea Res. Pt. I, 44, 1701–1713,
1997.
Schiffelbein, P. and Hills, S.: Direct assessment of stable isotope
variability in planktonic foraminifera populations, Palaeogeogr.
Palaeocl., 48, 197–213, 1984.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 22 October 2021), 2015.
Siccha, M., Schiebel, R., Schmidt, S., and Howa, H.: Short-term and
small-scale variability in planktic foraminifera test flux in the Bay of
Biscay, Deep-Sea Res. Pt. I, 64,
146–156, 2012.
Spero, H. J., Eggins, S. M., Russell, A. D., Vetter, L., Kilburn, M. R., and
Hönisch, B.: Timing and mechanism for intratest variability in a
living planktic foraminifer, Earth Planet. Sc. Lett., 409,
32–42, 2015.
Spindler, M., Anderson, O., Hemleben, C., and Bé, A.: Light and electron
microscopic observations of gametogenesis in Hastigerina pelagica
(Foraminifera), J. Protozool., 25, 427–433, 1978.
Spindler, M., Hemleben, C., Bayer, U., Bé, A., and Anderson, O.: Lunar
periodicity of reproduction in the planktonic foraminifer Hastigerina
pelagica, Mar. Ecol.-Prog. Ser., 1, 61–64, 1979.
Stangeew, E.: Distribution and Isotopic Composition of Living Planktonic
Foraminifera N. pachyderma (sinistral) and T. quinqueloba in the High
Latitude North Atlantic, Christian-Albrechts Universität Kiel, 2001.
Steinhardt, J., de Nooijer, L. L., Brummer, G. J., and Reichart, G. J.:
Profiling planktonic foraminiferal crust formation, Geochem.
Geophy. Geosy., 16, 2409–2430, 2015.
Stuut, J.-B., Brummer, G.-J., Korte, L., and van der Does, M.: Present-day
Saharan dust deposition in the Atlantic Ocean and its marine-environmental
consequences, Geophys. Res. Abstr.,
EGU2019-12545, EGU General Assembly 2019, Vienna, Austria, 2019.
Takagi, H., Moriya, K., Ishimura, T., Suzuki, A., Kawahata, H., and Hirano,
H.: Individual migration pathways of modern planktic foraminifers:
Chamber-by-chamber assessment of stable isotopes, Paleontol. Res.,
20, 268–284, 2016.
Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., and Moriya, K.: Characterizing photosymbiosis in modern planktonic foraminifera, Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, 2019.
Takagi, H., Kurasawa, A., and Kimoto, K.: Observation of asexual
reproduction with symbiont transmission in planktonic foraminifera, J. Plankton Res., 42, 403–410, 2020.
Takahashi, K. and Bé, A. W. H.: Planktonic foraminifera: factors
controlling sinking speeds, Deep-Sea Res. Pt. A, 31, 1477–1500, 1984.
Venancio, I. M., Franco, D., Belem, A. L., Mulitza, S., Siccha, M.,
Albuquerque, A. L. S., Schulz, M., and Kucera, M.: Planktonic foraminifera
shell fluxes from a weekly resolved sediment trap record in the southwestern
Atlantic: Evidence for synchronized reproduction, Mar. Micropaleontol.,
125, 25–35, 2016.
Volkmann, R.: Planktic foraminifers in the outer Laptev Sea and the Fram
Strait – Modern distribution and ecology, J. Foramin.
Res., 30, 157–176, 2000.
Weinkauf, M. F., Siccha, M., and Weiner, A. K.: Reproduction of a marine
planktonic protist: Individual success versus population survival, bioRxiv, https://doi.org/10.1101/2020.11.04.368100,
2020.
Žuljević, A. and Antolić, B.: Synchronous release of male
gametes of Caulerpa taxifolia (Caulerpales, Chlorophyta) in the
Mediterranean Sea, Phycologia, 39, 157–159, 2000.
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Planktonic foraminifera population dynamics has long been assumed to be controlled by...
Altmetrics
Final-revised paper
Preprint