Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate
Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
Andreas Lüscher
Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
Sara Ernst-Hasler
Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
Matthias Suter
Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
Ansgar Kahmen
CORRESPONDING AUTHOR
Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
Related authors
No articles found.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 18, 2075–2090, https://doi.org/10.5194/bg-18-2075-2021, https://doi.org/10.5194/bg-18-2075-2021, 2021
Short summary
Short summary
Grassland ecosystem services like forage production and greenhouse gas storage in the soil depend on plant growth.
In an experiment in the mountains with warming treatments, we found that despite dwindling soil water content, the grassland growth increased with up to +1.3 °C warming (annual mean) compared to present temperatures. Even at +2.4 °C the growth was still larger than at the reference site.
This suggests that plant growth will increase due to global warming in the near future.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
Cited articles
Arend, M., Sever, K., Pflug, E., Gessler, A., and Schaub, M.:
Seasonal photosynthetic response of European beech to severe summer drought: Limitation, recovery and post-drought stimulation,
Agr. Forest Meteorol.,
220, 83–89, https://doi.org/10.1016/j.agrformet.2016.01.011, 2016.
Bates, J. D., Svejcar, T., Miller, R. F., and Angell, R. A.:
The effects of precipitation timing on sagebrush steppe vegetation,
J. Arid Environ.,
64, 670–697, https://doi.org/10.1016/j.jaridenv.2005.06.026, 2006.
Bloor, J. M. G. and Bardgett, R. D.:
Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability,
Perspect. Plant Ecol.,
14, 193–204, https://doi.org/10.1016/j.ppees.2011.12.001, 2012.
Bollig, C. and Feller, U.:
Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes,
Agr. Ecosyst. Environ.,
188, 212–220, https://doi.org/10.1016/j.agee.2014.02.034, 2014.
Byrne, K. M., Lauenroth, W. K., and Adler, P. B.:
Contrasting Effects of Precipitation Manipulations on Production in Two Sites within the Central Grassland Region, USA,
Ecosystems,
16, 1039–1051, https://doi.org/10.1007/s10021-013-9666-z, 2013.
Craine, J. M., Nippert, J. B., Elmore, A. J., Skibbe, A. M., Hutchinson, S. L., and Brunsell, N. A.:
Timing of climate variability and grassland productivity,
P. Natl. Acad. Sci. USA,
109, 3401–3405, https://doi.org/10.1073/pnas.1118438109, 2012.
Davies, W. J. and Zhang, J.:
Root signals and the regulation of growth and development of plants in drying soil,
Annu. Rev. Plant Biol.,
42, 55–76, 1991.
De Boeck, H. J., Dreesen, F. E., Janssens, I. A., and Nijs, I.:
Whole-system responses of experimental plant communities to climate extremes imposed in different seasons,
New Phytol.,
189, 806–817, https://doi.org/10.1111/j.1469-8137.2010.03515.x, 2011.
De Boeck, H. J., Hiltbrunner, E., Verlinden, M., Bassin, S., and Zeiter, M.:
Legacy Effects of Climate Extremes in Alpine Grassland,
Front. Plant Sci.,
9, 1586, https://doi.org/10.3389/fpls.2018.01586, 2018.
Denton, E. M., Dietrich, J. D., Smith, M. D., and Knapp, A. K.:
Drought timing differentially affects above- and belowground productivity in a mesic grassland,
Plant Ecol.,
218, 317–328, https://doi.org/10.1007/s11258-016-0690-x, 2017.
Dietrich, J. D. and Smith, M. D.:
The effect of timing of growing season drought on flowering of a dominant C4 grass,
Oecologia,
181, 391–399, https://doi.org/10.1007/s00442-016-3579-4, 2016.
Dietrich, L., Zweifel, R., and Kahmen, A.:
Daily stem diameter variations can predict the canopy water status of mature temperate trees,
Tree Physiol.,
38, 941–952, https://doi.org/10.1093/treephys/tpy023, 2018.
El Hafid, R., Smith, D. H., Karrou, M., and Samir, K.:
Morphological attributes associated with early-season drought tolerance in spring durum wheat in a Mediterranean environment,
Euphytica,
101, 273–282, 1998.
Finn, J. A., Suter, M., Haughey, E., Hofer, D., and Lüscher, A.:
Greater gains in annual yields from increased plant diversity than losses from experimental drought in two temperate grasslands,
Agr. Ecosyst. Environ.,
258, 149–153, https://doi.org/10.1016/j.agee.2018.02.014, 2018.
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., and Richter, A.:
Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow,
New Phytol.,
201, 916–927, https://doi.org/10.1111/nph.12569, 2014.
Fuchslueger, L., Bahn, M., Hasibeder, R., Kienzl, S., Fritz, K., Schmitt, M., Watzka, M., and Richter, A.:
Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event, edited by A. Austin,
J. Ecol.,
104, 1453–1465, https://doi.org/10.1111/1365-2745.12593, 2016.
Gherardi, L. A. and Sala, O. E.:
Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity,
Ecol. Lett.,
18, 1293–1300, https://doi.org/10.1111/ele.12523, 2015.
Gherardi, L. A. and Sala, O. E.:
Effect of interannual precipitation variability on dryland productivity: A global synthesis,
Glob. Change Biol.,
25, 269–276, https://doi.org/10.1111/gcb.14480, 2019.
Gibson, D. J.:
Grasses and grassland ecology,
Oxford University Press, Oxford, 2009.
Gilgen, A. K. and Buchmann, N.: Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation, Biogeosciences, 6, 2525–2539, https://doi.org/10.5194/bg-6-2525-2009, 2009.
Gill, R. A., Kelly, R. H., Parton, W. J., Day, K. A., Jackson, R. B., Morgan, J. A., Scurlock, J. M. O., Tieszen, L. L., Castle, J. V., and Ojima, D. S.:
Using simple environmental variables to estimate below-ground productivity in grasslands,
Global Ecol. Biogeogr.,
11, 79–86, 2002.
Gordon, H., Haygarth, P. M., and Bardgett, R. D.:
Drying and rewetting effects on soil microbial community composition and nutrient leaching,
Soil Biol. Biochem.,
40, 302–311, https://doi.org/10.1016/j.soilbio.2007.08.008, 2008.
Grant, K., Kreyling, J., Dienstbach, L. F. H., Beierkuhnlein, C., and Jentsch, A.:
Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland,
Agr. Ecosyst. Environ.,
186, 11–22, https://doi.org/10.1016/j.agee.2014.01.013, 2014.
Griffin-Nolan, R. J., Carroll, C. J. W., Denton, E. M., Johnston, M. K., Collins, S. L., Smith, M. D., and Knapp, A. K.:
Legacy effects of a regional drought on aboveground net primary production in six central US grasslands,
Plant Ecol.,
219, 505–515, https://doi.org/10.1007/s11258-018-0813-7, 2018.
Hagedorn, F., Joseph, J., Peter, M., Luster, J., Pritsch, K., Geppert, U., Kerner, R., Molinier, V., Egli, S., Schaub, M., Liu, J.-F., Li, M., Sever, K., Weiler, M., Siegwolf, R. T. W., Gessler, A., and Arend, M.:
Recovery of trees from drought depends on belowground sink control,
Nat. Plants,
2, 16111, https://doi.org/10.1038/nplants.2016.111, 2016.
Hahn, C.: Timing of drought in the growing season, Zenodo, https://doi.org/10.5281/zenodo.4306840, 2020.
Haughey, E., Suter, M., Hofer, D., Hoekstra, N. J., McElwain, J. C., Lüscher, A., and Finn, J. A.:
Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance,
Sci. Rep.-UK,
8, 15047, https://doi.org/10.1038/s41598-018-33262-9, 2018.
Heitschmidt, R. K. and Vermeire, L. T.:
Can Abundant Summer Precipitation Counter Losses in Herbage Production Caused by Spring Drought?,
Rangeland Ecol. Manag.,
59, 392–399, https://doi.org/10.2111/05-164R2.1, 2006.
Hoekstra, N. J., Finn, J. A., Hofer, D., and Lüscher, A.: The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ18O natural abundance, Biogeosciences, 11, 4493–4506, https://doi.org/10.5194/bg-11-4493-2014, 2014.
Hofer, D., Suter, M., Haughey, E., Finn, J. A., Hoekstra, N. J., Buchmann, N., and Lüscher, A.:
Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought,
J. Appl. Ecol.,
53, 1023–1034, https://doi.org/10.1111/1365-2664.12694, 2016.
Hofer, D., Suter, M., Buchmann, N., and Lüscher, A.:
Nitrogen status of functionally different forage species explains resistance to severe drought and post-drought overcompensation,
Agr. Ecosyst. Environ.,
236, 312–322, https://doi.org/10.1016/j.agee.2016.11.022, 2017a.
Hofer, D., Suter, M., Buchmann, N., and Lüscher, A.:
Severe water deficit restricts biomass production of Lolium perenne L. and Trifolium repens L. and causes foliar nitrogen but not carbohydrate limitation,
Plant Soil,
421, 367–380, https://doi.org/10.1007/s11104-017-3439-y, 2017b.
Hoover, D. L., Knapp, A. K., and Smith, M. D.:
Resistance and resilience of a grassland ecosystem to climate extremes,
Ecology,
95, 2646–2656, 2014.
Ingrisch, J. and Bahn, M.:
Towards a Comparable Quantification of Resilience,
Trends Ecol. Evol.,
33, 251–259, https://doi.org/10.1016/j.tree.2018.01.013, 2018.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., Meyer, S. T., Mori, A. S., Naeem, S., Niklaus, P. A., Polley, H. W., Reich, P. B., Roscher, C., Seabloom, E. W., Smith, M. D., Thakur, M. P., Tilman, D., Tracy, B. F., van der Putten, W. H., van Ruijven, J., Weigelt, A., Weisser, W. W., Wilsey, B., and Eisenhauer, N.:
Biodiversity increases the resistance of ecosystem productivity to climate extremes,
Nature,
526, 574–577, https://doi.org/10.1038/nature15374, 2015.
Jongen, M., Pereira, J. S., Aires, L. M. I., and Pio, C. A.:
The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland,
Agr. Forest Meteorol.,
151, 595–606, https://doi.org/10.1016/j.agrformet.2011.01.008, 2011.
Jupp, A. P. and Newman, E. I.:
Morphological and anatomical effects of severe drought on the roots of Lolium perenne L.,
New Phytol.,
105, 393–402, 1987.
Kahmen, A., Perner, J., and Buchmann, N.:
Diversity-dependent productivity in semi-natural grasslands following climate perturbations,
Funct. Ecol.,
19, 594–601, https://doi.org/10.1111/j.1365-2435.2005.01001.x, 2005.
Karlowsky, S., Augusti, A., Ingrisch, J., Hasibeder, R., Lange, M., Lavorel, S., Bahn, M., and Gleixner, G.:
Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions,
J. Ecol.,
106, 1230–1243, https://doi.org/10.1111/1365-2745.12910, 2018.
Kreyling, J., Dengler, J., Walter, J., Velev, N., Ugurlu, E., Sopotlieva, D., Ransijn, J., Picon-Cochard, C., Nijs, I., Hernandez, P., Güler, B., von Gillhaussen, P., De Boeck, H. J., Bloor, J. M. G., Berwaers, S., Beierkuhnlein, C., Arfin Khan, M. A. S., Apostolova, I., Altan, Y., Zeiter, M., Wellstein, C., Sternberg, M., Stampfli, A., Campetella, G., Bartha, S., Bahn, M., and Jentsch, A.:
Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment,
Ecol. Lett.,
20, 1405–1413, https://doi.org/10.1111/ele.12848, 2017.
La Pierre, K. J., Yuan, S., Chang, C. C., Avolio, M. L., Hallett, L. M., Schreck, T., and Smith, M. D.:
Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering: Flowering, seasonal climate drive ANPP variation,
J. Ecol.,
99, 1250–1262, https://doi.org/10.1111/j.1365-2745.2011.01844.x, 2011.
Mackie, K. A., Zeiter, M., Bloor, J. M. G., and Stampfli, A.:
Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment,
J. Ecol.,
107, https://doi.org/10.1111/1365-2745.13102, 2018.
Menzi, H., Blum, H., and Nösberger, J.:
Relationship between climatic factors and the dry matter production of swards of different composition at two altitudes,
Grass Forage Sci.,
46, 223–230, 1991.
Nakagawa, S. and Schielzeth, H.:
A general and simple method for obtaining R2 from generalized linear mixed-effects models,
Methods Ecol. Evol.,
4(2), 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
Nippert, J. B., Knapp, A. K., and Briggs, J. M.:
Intra-annual rainfall variability and grassland productivity: can the past predict the future?,
Plant Ecol.,
184, 65–74, https://doi.org/10.1007/s11258-005-9052-9, 2006.
O'Brien, M. J., Ong, R., and Reynolds, G.:
Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities,
Glob. Change Biol.,
23, 4235–4244, https://doi.org/10.1111/gcb.13658, 2017.
Orth, R., Zscheischler, J., and Seneviratne, S. I.:
Record dry summer in 2015 challenges precipitation projections in Central Europe,
Sci. Rep.-UK,
6, 28334, https://doi.org/10.1038/srep28334, 2016.
O'Toole, J. C.:
Adaptation of Rice to Drought-prone Environments,
in: Drought Resistance in Crops With Emphasis on Rice,
Paddyfield, Manila, Philippines, 195, 1982.
O'Toole, J. C. and Cruz, R. T.:
Response of leaf water potential, stomatal resistance, and leaf rolling to water stress,
Plant Physiol.,
65, 428–432, 1980.
Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S., Luo, Y., Meir, P., Nabel, J. E. M. S., Ogaya, R., Parolari, A. J., Peng, C., Peñuelas, J., Pongratz, J., Rambal, S., Schmidt, I. K., Shi, H., Sternberg, M., Tian, H., Tschumi, E., Ukkola, A., Vicca, S., Viovy, N., Wang, Y., Wang, Z., Williams, K., Wu, D. and Zhu, Q.:
Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?,
Glob. Change Biol.,
26, 3336–3355, https://doi.org/10.1111/gcb.15024, 2020.
Petrie, M. D., Peters, D. P. C., Yao, J., Blair, J. M., Burruss, N. D., Collins, S. L., Derner, J. D., Gherardi, L. A., Hendrickson, J. R., Sala, O. E., Starks, P. J., and Steiner, J. L.:
Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods,
Glob. Change Biol.,
24, 1935–1951, https://doi.org/10.1111/gcb.14024, 2018.
Pinheiro, J. C. and Bates, D. M.:
Linear mixed-effects models: basic concepts and examples,
in: Mixed-Effects Models in S and S-PLUS,
Springer Science & Business Media, New York, 3–56, 2000.
Reichmann, L. G., Sala, O. E., and Peters, D. P.:
Precipitation legacies in desert grassland primary production occur through previous-year tiller density,
Ecology,
94, 435–443, 2013.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.:
Climate extremes and the carbon cycle,
Nature,
500, 287–295, https://doi.org/10.1038/nature12350, 2013.
Robertson, T. R., Bell, C. W., Zak, J. C., and Tissue, D. T.:
Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland,
New Phytol.,
181, 230–242, https://doi.org/10.1111/j.1469-8137.2008.02643.x, 2009.
Saab, I. N., Sharp, R. E., Pritchard, J., and Voetberg, G. S.:
Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials,
Plant Physiol.,
93, 1329–1336, 1990.
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., and Peters, D.:
Legacies of precipitation fluctuations on primary production: theory and data synthesis,
Philos. T. R. Soc. B,
367, 3135–3144, https://doi.org/10.1098/rstb.2011.0347, 2012.
Sala, O. E., Gherardi, L. A., and Peters, D. P. C.:
Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions,
Climatic Change,
131, 213–227, https://doi.org/10.1007/s10584-015-1389-z, 2015.
Sánchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L., and Ayerbe, L.:
Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress,
Field Crop. Res.,
59, 225–235, 1998.
Sanders, G. J. and Arndt, S. K.:
Osmotic adjustment under drought conditions,
in: Plant Responses to Drought Stress,
edited by: Ricardo, A.,
199–229, Springer, Berlin, Heidelberg, 2012.
Santamaria, J. M., Ludlow, M. M., and Fukai, S.:
Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. I. Water stress before anthesis,
Aust. J. Agr. Res.,
41, 51–65, 1990.
Schiermeier, Q.:
The real holes in climate science: like any other field, research on climate change has some
fundamental gaps, although not the ones typically claimed by sceptics, Quirin Schiermeier takes a hard look at some of the
biggest problem areas, Nature,
463, 284–287, 2010.
Schimel, J. P. and Bennett, J.:
Nitrogen mineralization: challenges of a changing paradigm,
Ecology,
85, 591–602, 2004.
Seastedt, T. R. and Knapp, A. K.:
Consequences of Nonequilibrium Resource Availability Across Multiple Time Scales: The Transient Maxima Hypothesis,
Am. Nat.,
141, 621–633, https://doi.org/10.1086/285494, 1993.
Shen, W., Jenerette, G. D., Hui, D., and Scott, R. L.: Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers, Biogeosciences, 13, 425–439, https://doi.org/10.5194/bg-13-425-2016, 2016.
Simane, B., Peacock, J. M., and Struik, P. C.:
Differences in developmental plasticity and growth rate among drought-resistant and susceptible cultivars of durum wheat (Triticum turgidum L. var. durum),
Plant Soil,
157, 155–166, 1993.
Smith, N. G., Rodgers, V. L., Brzostek, E. R., Kulmatiski, A., Avolio, M. L., Hoover, D. L., Koerner, S. E., Grant, K., Jentsch, A., Fatichi, S., and Niyogi, D.:
Toward a better integration of biological data from precipitation manipulation experiments into Earth system models,
Rev. Geophys.,
52, 412–434, https://doi.org/10.1002/2014RG000458, 2014.
Van Sundert, K., Brune, V., Bahn, M., Deutschmann, M., Hasibeder, R., Nijs, I., and Vicca, S.:
Post-drought rewetting triggers substantial K release and shifts in leaf stoichiometry in managed and abandoned mountain grasslands,
Plant Soil,
448, 353–368, https://doi.org/10.1007/s11104-020-04432-4, 2020.
Vicca, S., Gilgen, A. K., Camino Serrano, M., Dreesen, F. E., Dukes, J. S., Estiarte, M., Gray, S. B., Guidolotti, G., Hoeppner, S. S., Leakey, A. D. B., Ogaya, R., Ort, D.R., Ostrogovic, M. Z., Rambal, S., Sardans, J., Schmitt, M., Siebers, M., van der Linden,
L., van Straaten, O., and Granier, A.:
Urgent need for a common metric to make precipitation manipulation experiments comparable,
New Phytol.,
195, 518–522, 2012.
Vogel, A., Scherer-Lorenzen, M., and Weigelt, A.:
Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness,
PLoS ONE,
7, e36992, https://doi.org/10.1371/journal.pone.0036992, 2012.
Voigtländer, G. and Boeker, P.:
Grünlandwirtschaft und Futterbau,
Ulmer, Stuttgart, 1987.
Voisin, A.:
Grass productivity,
Island Press, Washington, DC, 1988.
Wagg, C., O'Brien, M. J., Vogel, A., Scherer-Lorenzen, M., Eisenhauer, N., Schmid, B., and Weigelt, A.:
Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation,
Ecology,
98, 2952–2961, https://doi.org/10.1002/ecy.2003, 2017.
Walter, J., Grant, K., Beierkuhnlein, C., Kreyling, J., Weber, M., and Jentsch, A.:
Increased rainfall variability reduces biomass and forage quality of temperate grassland largely independent of mowing frequency,
Agr. Ecosyst. Environ.,
148, 1–10, https://doi.org/10.1016/j.agee.2011.11.015, 2012.
Wang, Y., Yu, S., and Wang, J.:
Biomass-dependent susceptibility to drought in experimental grassland communities,
Ecol. Lett.,
10, 401–410, https://doi.org/10.1111/j.1461-0248.2007.01031.x, 2007.
Wilcox, K. R., Shi, Z., Gherardi, L. A., Lemoine, N. P., Koerner, S. E., Hoover, D. L., Bork, E., Byrne, K. M., Cahill, J., Collins, S. L., Evans, S., Gilgen, A. K., Holub, P., Jiang, L., Knapp, A. K., LeCain, D., Liang, J., Garcia-Palacios, P., Peñuelas, J., Pockman, W. T., Smith, M. D., Sun, S., White, S. R., Yahdjian, L., Zhu, K., and Luo, Y.:
Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments,
Glob. Change Biol.,
23, 4376–4385, https://doi.org/10.1111/gcb.13706, 2017.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation: meta-analysis of experimental manipulation,
Glob. Change Biol.,
17, 927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Yahdjian, L. and Sala, O. E.:
Vegetation structure constrains primary production response to water availability in the Patagonian steppe,
Ecology,
87, 952–962, 2006.
Short summary
While existing studies focus on the immediate effects of drought events on grassland productivity, long-term effects are mostly neglected. But, to conclude universal outcomes, studies must consider comprehensive ecosystem mechanisms. In our study, we found that the resistance of growth rates to drought in grasses varies across seasons, and positive legacy effects of drought indicate a high resilience. The high resilience compensates for immediate drought effects on grasses to a large extent.
While existing studies focus on the immediate effects of drought events on grassland...
Altmetrics
Final-revised paper
Preprint