Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6115-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6115-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Emmanuel Devred
CORRESPONDING AUTHOR
Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
Andrea Hilborn
Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
Cornelia Elizabeth den Heyer
Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
Related authors
Montserrat Roca-Martí, Madeline Healey, Colleen E. McBride, Rachel Sipler, Emmanuel Devred, Carolina Cisternas-Novoa, Elisa Romanelli, Kyoko Ohashi, and Stephanie S. Kienast
EGUsphere, https://doi.org/10.5194/egusphere-2025-3671, https://doi.org/10.5194/egusphere-2025-3671, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied a historically large spring phytoplankton bloom in the Labrador Sea to quantify how much carbon reaches the deep ocean. Despite high productivity, only a small fraction of organic carbon sank below the ocean's productive layer, suggesting a limited role of the dominant phytoplankton species (Phaeocystis) in carbon export. Our findings highlight the need for long-term observations to better assess the ocean’s role in carbon sequestration.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Montserrat Roca-Martí, Madeline Healey, Colleen E. McBride, Rachel Sipler, Emmanuel Devred, Carolina Cisternas-Novoa, Elisa Romanelli, Kyoko Ohashi, and Stephanie S. Kienast
EGUsphere, https://doi.org/10.5194/egusphere-2025-3671, https://doi.org/10.5194/egusphere-2025-3671, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied a historically large spring phytoplankton bloom in the Labrador Sea to quantify how much carbon reaches the deep ocean. Despite high productivity, only a small fraction of organic carbon sank below the ocean's productive layer, suggesting a limited role of the dominant phytoplankton species (Phaeocystis) in carbon export. Our findings highlight the need for long-term observations to better assess the ocean’s role in carbon sequestration.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Cited articles
Ainsworth, E. J.:
Visualization of Ocean Colour and Temperature from multi-spectral imagery captured by the Japanese ADEOS satellite,
J. Visual.,
2, 195–204, https://doi.org/10.1007/BF03181523, 1999. a
Boden, B. P.:
Observations of the island mass effect in the Prince Edward archipelago,
Polar Biol.,
61–68, 260–265, https://doi.org/10.1007/BF00441765, 1988. a
Boss, E., Stramski, D., Bergmann, T., Pegau, W., and Marlon, L.:
Why Should We Measure the Optical Backscattering Coefficient?,
Oceanography,
17, 44–49, https://doi.org/10.5670/oceanog.2004.46, 2004. a
Bowen, W. D., McMillan, J. I., and Wade, B.:
Reduced population growth of gray seals at Sable Island: evidence from pup production and age of primiparity,
Mar Mammal Sci.,
23, 48–64, https://doi.org/10.1111/j.1748-7692.2006.00085.x, 2007. a, b
Breed, G. A., Bowen, D. W., McMillan, J., and Leonard, M. L.:
Sex segregation of seasonal foraging habitats in a non-migratory marine mammal,
P. R. Soc. B,
273, 2319–26, https://doi.org/10.1098/rspb.2006.3581, 2006. a
Breed, G. A., Bowen, D. W., and Leonard, M. L.:
Development of foraging strategies with age in a long-lived marine predator,
Mar. Ecol. Prog. Ser.,
431, 267–279, https://doi.org/10.3354/meps09134, 2011. a
Breed, G. A., Bowen, D. W., and Leonard, M. L.:
Behavioral signature of intraspecific competition and density dependence in colony-breeding marine predators,
Ecol. Evol.,
3, 3838–3854, https://doi.org/10.1002/ece3.754, 2013. a, b, c
Bukata, R., Jerome, J., Kondratyev, K., and Pozdnyakov, D.:
Optical properties and remote sensing of inland and coastal waters,
CRC Press, Boca Raton, Fl, 1995. a
Cochlan, W. P.:
Seasonal study of uptake and regeneration of nitrogen on the Scotian Shelf,
Cont. Shelf Res.,
5, 555–577, https://doi.org/10.1016/0278-4343(86)90076-2, 1986. a
Dandonneau, Y. and Charpy, L.:
An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations,
Deep-Sea Res. Pt. A,
32, 707–721, https://doi.org/10.1016/0198-0149(85)90074-3, 1985. a, b
den Heyer, N., Bowen, W., Dale, J., Gosselin, J. F., Hammill, M., Johnston, D., Lang, S., Murray, K., Stenson, G., and Wood, S.:
Contrasting trends in gray seal (Halichoerus grypus) pup production throughout the increasing northwest Atlantic metapopulation,
Mar Mammal Sci.,
37, 611–630, https://doi.org/10.1111/mms.12773, 2020. a, b, c, d, e
Denman, K. L. and Platt, T.:
The variance spectrum of phytoplankton in a turbulent ocean,
J. Mar. Res.,
34, 593–6016, 1976. a
Doty, M. S. and Oguri, M.:
The Island Mass Effect,
ICES J. Mar. Sci.,
22, 33–37, https://doi.org/10.1093/icesjms/22.1.33, 1956. a
ESA and PML: Ocean Coulour Climate Change initiative, available at: https://oceancolour.org/browser/, last access: 17 November 2021. a
Gilmartin, M. and Revelante, N.:
The “island mass” effect on the phytoplankton and primary production of the Hawaiian Islands,
J. Exp. Mar. Biol. Ecol.,
16, 181–204, https://doi.org/10.1016/0022-0981(74)90019-7, 1974. a
Gove, J. M., McManus, M. A., Neuheimer, A. B., Poloniva, J. J., Draven, J. C., Smith, C. R., Merrifield, M. A., Friedlander, A. M., Ehses, J. S., Young, C. W., Dillon, A. K., and Williams, G. J.:
Near-island biological hotspots in barren ocean basins,
Nat. Commun.,
7, 154–157, https://doi.org/10.1038/ncomms10581, 2016. a, b, c
Government of Canada: Daily climate data, available at: https://climate-change.canada.ca/climate-data/#/daily-climate-data, last access: 18 November 2021. a
Hammill, M. O., Stenson, G. B., Swain, D. P., and Benoît, H. P.:
Feeding by grey seals on endangered stocks of Atlantic cod and white hake,
ICES J. Mar. Sci.,
71, 1332–1341, https://doi.org/10.1093/icesjms/fsu123, 2014. a
Hardman-Mountford, N., Richardson, A., Boyer, D., Kreiner, A., and Boyer, H.:
Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach,
Prog. Oceanogr.,
59, 241–255, https://doi.org/10.1016/j.pocean.2003.07.005, 2003. a
Hebert, D., Layton, C., Brickman, D., and Galbraith, P.:
Physical Oceanographic Conditions on the Scotian Shelf and in the Gulf of Maine during 2019,
in: Can. Sci. Advis. Sec. Res. Doc., 2021/040, pp. iv + 58, DFO,
2021. a
Heywood, K., Barton, E. D., and Simpson, J.:
The effects of flow disturbance by an oceanic island,
J. Mar. Res.,
48, 55–73, https://doi.org/10.1357/002224090784984623, 1990. a
Jackson, T., Chuprin, A., Sathyendranath, S., Grant, M., Zühlke, M., Dingle, J., Storm, T., and ad N. Fomferra, M. B.:
Product User Guide, Tech. rep.,
European Space Agency, available at: https://docs.pml.space/share/s/okB2fOuPT7Cj2r4C5sppDg (last access: 16 November 2021), 2020. a
James, A. K., Washburne, L., Gotschalks, C., Maritorena, S., Alldredge, A., Nelson, C. E., Hench, J. L., Leichter, J. J., Wyat, A. S. J., and Carlson, C. A.:
An Island Mass Effect Resolved Near Mo'orea, French Polynesia,
Frontiers in Marine Science,
7, 16, https://doi.org/10.3389/fmars.2020.00016, 2020. a, b
Kanwisher, J. and Ridgway, S.:
The Physiological Ecology of Whales and Porpoises,
Sci. Am.,
248, 110–120, https://doi.org/10.1038/scientificamerican0683-110, 1983. a
Kennedy, G. W., Drage, J., and Hennigar, T. W.:
Groundwater Resources of Sable Island, Tech. rep.,
Open File Report ME 2014-001,
Nova Scotia Department of Natural Resources, Mineral Resources Branch, Government of Nova Scotia, available at:
https://novascotia.ca/natr/meb/data/pubs/14ofr01/14ofr01.pdf
(last access: 16 November 2021), 2014. a
Laver, T., Roudnew, B., Seymou, J., Mitchell, J., and Jeffries, T.:
High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces,
PloS one,
7, e36 478, https://doi.org/10.1371/journal.pone.0036478, 2012. a, b
Lee, Z. P., Du, K., Arnone, R., Liew, S. C., and Penta, P.:
Penetration of solar radiation in the upper ocean – A numerical model for oceanic and coastal waters,
J. Geophys. Res.,
110, C09019, https://doi.org/10.1029/2004JC002780, 2005. a
Liu, X., Devred, E., and Johnson, C.:
Remote Sensing of Phytoplankton Size Class in Northwest Atlantic from 1998 to 2016: Bio-Optical Algorithms Comparison and Application,
Remote. Sens.-Basel,
10, 1028, https://doi.org/10.3390/rs10071028, 2018. a
Loder, J., Han, G., Hannah, C. G., Greenberg, D. A., and Smith, P. C.:
Hydrography and baroclinic circulation in the Scotian Shelf region: winter versus summer,
Can. J. Fish. Aquat. Sci.,
54, 40–56, https://doi.org/10.1139/cjfas-54-S1-40, 1997. a, b
Lunne, T., Robertson, P. K., and Powell, J.: Cone-penetration testing in geotechnical practice, Soil Mech. Found. Eng., 46, 237, https://doi.org/10.1007/s11204-010-9072-x, 2009. a
Martinez, E. and Maamaatuaiahutapu, K.:
Island mass effect in the Marquesas Islands: Time variation,
Geophys. Res. Lett.,
31, L18307, https://doi.org/10.1029/2004GL020682, 2004. a
Martinez, E., Raapotoi, H., Maes, C., and Maamaatuaiahutapu, K.:
Influence of Tropical Instability Waves on Phytoplankton Biomass near the Marquesas Islands,
Remote Sens.-Bael,
10, 640, https://doi.org/10.3390/rs10040640, 2018. a
Matear, R.:
Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Station P,
J. Mar. Res.,
53, 571–607, https://doi.org/10.1357/0022240953213098, 1995. a, b, c
Mccauley, D., Desalle, P., Young, H., Dunbar, R., Dirzo, R., Mills, M., and Micheli, F.:
From wing to wing: The persistence of long ecological interaction chains in less-disturbed ecosystems,
Sci. Rep.-UK, 2, 409, https://doi.org/10.1038/srep00409, 2012. a, b
McLoughlin, P. D., Lysak, K., Debeffe, L., Perry, T., and Hobson, K. A.:
Density-dependent resource selection by a terrestrial herbivore in response to sea-to-land nutrient transfer by seals,
Ecology,
97, 1929–1937, https://doi.org/10.1002/ecy.1451, 2016. a
Messié, M., Petrenko, A., Doglioli, A., Aldebert, C., Martine, E., Koenig, G., and T. Moutin, S. B.:
The Delayed Island Mass Effect: How Islands can Remotely Trigger Blooms in the Oligotrophic Ocean,
Geophys. Res. Lett.,
47, e2019GL085282, https://doi.org/10.1029/2019GL085282, 2020. a, b
Moore, T., Dowell, M., and Franz, B.:
Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors,
Remote Sens. Environ.,
117, 249–263, https://doi.org/10.1016/j.rse.2011.10.001, 2012. a
Morel, A. and Prieur, L.:
Analysis of variation in ocean color,
Limnol. Oceanogr.,
22, 709–722, 1977. a
Neuenhoff, R. D., Swain, D. P., Cox, S. P., McAllister, M. K., Trites, A. W., Walters, C. J., and Hammill, M. O.:
Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects,
Can. J. Fish. Aquat. Sci.,
76, 168–184, https://doi.org/10.1139/cjfas-2017-0190, 2019. a
NOAA: ERDDAP, available at: https://coastwatch.pfeg.noaa.gov/erddap, last access: 17 November 2021. a
O'Boyle, R. and Sinclair, M.:
Seal–cod interactions on the Eastern Scotian Shelf: Reconsideration of modelling assumptions,
Fish. Res.,
115–116, 1–13, https://doi.org/10.1016/j.fishres.2011.10.006, 2012. a, b, c
Petrie, B. and Drinkwater, K.:
Temperature and salinity variability on the Scotian Shelf and in the Gulf of Maine 1945–1990,
J. Geophys. Res.,
982, 20 079–20 090, https://doi.org/10.1029/93JC02191, 1993. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 16 November 2021), 2020. a
Richardson, A. J., Risien, C., and Shillington, F. A.:
Using self-organizing maps to identify patterns in satellite imagery,
Prog. Oceanogr.,
59, 223–239, https://doi.org/10.1016/j.pocean.2003.07.006, 2003. a, b, c
Rossi, S., Cox, S., den Heyer, M. H. C. E., Mosnier, D. S. A., and Benoît, H.:
Forecasting the response of a recovered pinniped population to sustainable harvest strategies that reduce their impact as predators,
ICES J. Mar. Sci.,
78, 1804–1814, https://doi.org/10.1093/icesjms/fsab088, 2021. a, b, c, d
Sathyendranath, S., Brewin, B., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Cout, A., Dingle, J., R. Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., and Platt, T.:
An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI),
Sensors,
19, 4285, https://doi.org/10.3390/s19194285, 2019. a
Sathyendranath, S., Jackson, T., Brockmann, C., Brota, V., Calton, B., A.Chuprin, Clements, O., Cipollin, P., Danne, O., Dingle, J., Donlon, C., Grant, M., Groom, S., Krasemann, H., Lavende, S., Mazeran, C., Mélin, F., T. S. Moore, T., Mülle, D., Regner, P., Steinmetz, F., Steele, C., Swinton, J., Valente, A., Zühlke, M., Feldman, G., Franz, B., Frouin, R., Werdell, J., and Platt, T.:
ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Global chlorophyll-a data products gridded on a sinusoidal projection, Version 4.2,
available at: https://catalogue.ceda.ac.uk/uuid/99348189bd33459cbd597a58c30d8d10 (last access: 16 November 2021),
2020. a
Siegel, D. A., Doney, S. C., and Yoder, J. A.:
The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis,
Science,
296, 730–733, 2002. a
Signorini, S. R., McClain, C. R., and Dandonneau, Y.:
Mixing and phytoplankton bloom in the wake of the Marquesas Islands,
Geophys. Res. Lett.,
26, 3121–3124, https://doi.org/10.1029/1999GL010470, 1999. a, b
Slade, W. H. and Boss, E.:
Spectral attenuation and backscattering as indicators of average particle size,
Appl. Optics,
54, 7264–7277, https://doi.org/10.1364/AO.54.007264, 2015. a
Smith, P. C. and Schwing, F. B.:
Mean circulation and variability on the eastern Canadian continental shelf,
Cont. Shelf Res.,
11, 977–1012, https://doi.org/10.1016/0278-4343(91)90088-N, 1991. a
Song, H., Ji, R., Stoc, C., and Wang, Z.:
Phenology of phytoplankton blooms in the Nova Scotian Shelf-Gulf of Maine region: Remote sensing and modeling analysis,
J. Plankton Res.,
32, 1485–1499, https://doi.org/10.1093/plankt/fbq086, 2010.
a
Sparling, C. E., Fedak, M. A., and Thompson, D.:
Eat now, pay later? Evidence of deferred food-processing costs in diving seals,
Biol. Letters,
3, 95–99, https://doi.org/10.1098/rsbl.2006.0566, 2007. a
Steinmetz, F., Deschamps, P., and Ramon, D.:
Atmospheric correction in presence of sun glint: application to MERIS,
Opt. Express,
19, 9783–9800, https://doi.org/10.1364/OE.19.009783, 2011. a
Theobald, M. R., Crittenden, P. D., Hunt, A. P., Tang, Y. S., Dragosits, U., and Sutton, M. A.:
Ammonia emissions from a Cape fur seal colony, Cape Cross, Namibia,
Geophys. Res. Lett.,
33, L03812, https://doi.org/10.1029/2005GL024384, 2006. a
Trzcinski, M. K., Mohn, R., and Bowen, W. D.:
Continued decline of an atlantic cod population: how important is gray seal predation?,
Ecol. Appl.,
16, 2276–2292, https://doi.org/10.1890/1051-0761(2006)016[2276:CDOAAC]2.0.CO;2, 2006. a
Ward-Paige, C. A. and Bundy, A.:
Mapping Biodiversity on the Scotian Shelf and in the Bay of Fundy, Tech. Rep. 2016/006. v + 90 p., DFO Can. Sci. Advis. Sec. Res. Doc.,
2016. a
Wehrens, R. and Buydens, L. M. C.:
Self- and Super-organizing Maps in R: The kohonen Package,
J. Stat. Softw.,
21, 1–19, https://doi.org/10.18637/jss.v021.i05, 2007. a
Wehrens, R. and Kruisselbrink, J.:
Flexible Self-Organizing Maps in kohonen 3.0,
J. Stat. Softw.,
87, 1–18, https://doi.org/10.18637/jss.v087.i07, 2018. a
William, K. W. L., Lewis, M. R., and Harrison, W. G.:
Multiscalarity of the Nutrient–Chlorophyll Relationship in Coastal Phytoplankton,
Estuar. Coast.,
33, 440–447, 2010. a
Wing, S., Jack, L., Shatova, O., Leichter, J., Barr, D., R. Frew, R., and Gault-Ringold, M.:
Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean,
Mar. Ecol. Prog. Ser.,
510, 1–13, https://doi.org/10.3354/meps10923, 2014. a, b
Yentsch, C. S. and Vaccaro, R. F.:
Phytoplankton Nitrogen in the Oceans,
Limnol. Oceanogr.,
3, 443–448, https://doi.org/10.4319/lo.1958.3.4.0443, 1958. a, b
Zhai, L., Platt, T., Tang, C., Sathyendranath, S., and Hernández-Walls, R.:
Phytoplankton phenology on the Scotian Shelf,
ICES J. Mar. Sci.,
68, 781–791, https://doi.org/10.1093/icesjms/fsq175, 2011. a, b, c, d
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with...
Altmetrics
Final-revised paper
Preprint