Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-831-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-831-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns of plant rehydration and growth following pulses of soil moisture availability
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, 15 Vassar St., Cambridge, Massachusetts, 02139, USA
Daniel J. Short Gianotti
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, 15 Vassar St., Cambridge, Massachusetts, 02139, USA
Alexandra G. Konings
Department of Earth System Science, Stanford University, Stanford,
California, USA
Pierre Gentine
Department of Earth and Environmental Engineering, Columbia
University, New York, New York, USA
Dara Entekhabi
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, 15 Vassar St., Cambridge, Massachusetts, 02139, USA
Related authors
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-4082, https://doi.org/10.5194/egusphere-2025-4082, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used explainable machine learning that incorporates memory effects to study how plants respond to weather and drought. Using data from 90 sites worldwide, we show that memory plays a key role in regulating plant water stress. Forests and savannas rely on longer past conditions than grasslands, reflecting differences in rooting depth and water use. These insights improve our ability to anticipate ecosystem vulnerability as droughts intensify.
Meng Zhao, Erica L. McCormick, Geruo A, Alexandra G. Konings, and Bailing Li
Hydrol. Earth Syst. Sci., 29, 2293–2307, https://doi.org/10.5194/hess-29-2293-2025, https://doi.org/10.5194/hess-29-2293-2025, 2025
Short summary
Short summary
Root-zone water storage capacity (Sr) helps plants survive droughts and influences water and climate systems. Using GRACE (Gravity Recovery and Climate Experiment) satellite data, we estimated Sr globally and found that it exceeds 2 m soil storage in nearly half of the vegetated areas, far more than previously thought. Incorporating our Sr estimates into a global hydrological model improves evapotranspiration simulations, particularly during droughts, highlighting the value of our approach for advancing water resource and ecosystem modeling.
Mitra Cattry, Wenli Zhao, Juan Nathaniel, Jinghao Qiu, Yao Zhang, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2024-3726, https://doi.org/10.5194/egusphere-2024-3726, 2025
Short summary
Short summary
Climate change alters Mediterranean biota, affecting how they absorb and store carbon. These associated impacts arise from short- and long-term effects of rainfall, temperature, and other atmospheric forcings, which existing tools struggle to capture. This study presents a memory-integrated model combining high- and low-resolution data to track daily ecosystem responses. By analyzing past conditions, we show how earlier conditions shape plant carbon uptake and improve predictions.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365, https://doi.org/10.5194/egusphere-2025-365, 2025
Preprint archived
Short summary
Short summary
We developed a machine learning model that accounts for the memory effects of soil moisture and vegetation to predict Evaporative Fraction (EF) without relying on soil moisture as a direct input. The model accurately predicts EF during dry periods for the unseen sites, highlighting the key of meteorological memory effects. The learned memory effect related to rooting depth and soil water holding capacity could potentially serve as proxies for assessing the plant water stress.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A.,
Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K.,
Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P.,
Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid
ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–900, https://doi.org/10.1002/2015JA021022, 2015.
Angert, A. L., Huxman, T. E., Barron-Gafford, G. A., Gerst, K. L., and
Venable, D. L.: Linking growth strategies to long-term population dynamics
in a guild of desert annuals, J. Ecol., 95, 321–331,
https://doi.org/10.1111/j.1365-2745.2006.01203.x, 2007.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: Global distribution and covariation with climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010.
Blackman, C. J., Brodribb, T. J., and Jordan, G. J.: Leaf hydraulics and
drought stress: Response, recovery and survivorship in four woody temperate
plant species, Plant Cell Environ., 32, 1584–1595,
https://doi.org/10.1111/j.1365-3040.2009.02023.x, 2009.
Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, 2014.
Brandt, M., Wigneron, J. P., Chave, J., Tagesson, T., Penuelas, J., Ciais,
P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez,
N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C.,
Mialon, A., Rasmussen, L. V., Fan, L., and Fensholt, R.: Satellite passive
microwaves reveal recent climate-induced carbon losses in African drylands,
Nat. Ecol. Evol., 2, 827–835, https://doi.org/10.1038/s41559-018-0530-6, 2018.
Briones, O., Montaña, C., and Ezcurra, E.: International Association for
Ecology Competition Intensity as a Function of Resource Availability in a
Semiarid Ecosystem, Oecologia, 116, 365–372, 1998.
Brodribb, T. J. and Cochard, H.: Hydraulic failure defines the recovery and
point of death in water-stressed conifers, Plant Physiol., 149, 575–584,
https://doi.org/10.1104/pp.108.129783, 2009.
Carlson, T. N. and Lynn, B.: The effects of plant water storage on
transpiration and radiometric surface temperature, Agric. For. Meteorol.,
57, 171–186, https://doi.org/10.1016/0168-1923(91)90085-5, 1991.
Carminati, A., Vetterlein, D., Weller, U., Vogel, H. J., and Oswald, S. E.:
When roots lose contact, Vadose Zone J., 8, 898–809,
https://doi.org/10.2136/vzj2008.0147, 2009.
Carminati, A., Benard, P., Ahmed, M. A., and Zarebanadkouki, M.: Liquid
bridges at the root-soil interface, Plant Soil, 417, 1–15,
https://doi.org/10.1007/s11104-017-3227-8, 2017.
Chaubell, J., Chan, S., Dunbar, R. S., Peng, J., and Yueh., S.: SMAP L1C enhanced brightness temperatures, available at: https://nsidc.org/data/SPL1CTB_E (last access: 5 September 2020), 2016.
Chan, S. K., Bindlish, R., O'Neill, P. E., Njoku, E., Jackson, T.,
Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S.,
Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A.,
Rowlandson, T., Pacheco, A., McNairn, H., Thibeault, M., Martinez-Fernandez,
J., Gonzalez-Zamora, A., Seyfried, M., Bosch, D., Starks, P., Goodrich, D.,
Prueger, J., Palecki, M., Small, E. E., Zreda, M., Calvet, J. C., Crow, W.
T., and Kerr, Y.: Assessment of the SMAP Passive Soil Moisture Product, IEEE
Trans. Geosci. Remote Sens., 54, 4994–5007,
https://doi.org/10.1109/TGRS.2016.2561938, 2016.
Charrier, G., Torres-Ruiz, J. M., Badel, E., Burlett, R., Choat, B.,
Cochard, H., Delmas, C. E. L., Domec, J. C., Jansen, S., King, A., Lenoir,
N., Martin-StPaul, N., Gambetta, G. A., and Delzon, S.: Evidence for
hydraulic vulnerability segmentation and lack of xylem refilling under
tension, Plant Physiol., 172, 1657–1668, https://doi.org/10.1104/pp.16.01079, 2016.
Chen, S., Lin, G., Huang, J., and Jenerette, D.: Dependence of carbon
sequestration on the differential responses of ecosystem photosynthesis and
respiration to rain pulses in a semiarid steppe, Glob. Change Biol., 15,
2450–2461, https://doi.org/10.1111/j.1365-2486.2009.01879.x, 2009.
Collins, S. L., Belnap, J., Grimm, N. B., Rudgers, J. A., Dahm, C. N.,
D'Odorico, P., Litvak, M., Natvig, D. O., Peters, D. C., Pockman, W. T.,
Sinsabaugh, R. L., and Wolf, B. O.: A Multiscale, Hierarchical Model of Pulse
Dynamics in Arid-Land Ecosystems, Annu. Rev. Ecol. Evol. Syst., 45,
397–419, https://doi.org/10.1146/annurev-ecolsys-120213-091650, 2014.
Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F., and Konings, A. G.:
Satellite soil moisture observations predict burned area in Southeast Asian
peatlands, Environ. Res. Lett., 14, 094014, https://doi.org/10.1088/1748-9326/ab3891,
2019.
Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D. H., Kelly, M., and
Townshend, J. R. G.: MOD44B MODIS/Terra Vegetation Continuous Fields Yearly
L3 Global 250m SIN Grid V006. 2015, NASA EOSDIS Land
Processes DAAC, https://doi.org/10.5067/MODIS/MOD44B.006, 2015.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.:
More extreme precipitation in the world's dry and wet regions, Nat. Clim.
Change, 6, 508–513, https://doi.org/10.1038/nclimate2941, 2016.
Dougherty, R. L., Lauenroth, W. K., and Singh, J. S.: Response of a Grassland
Cactus to Frequency and Size of Rainfall Events in a North American
Shortgrass Steppe, J. Ecol., 84, 177, https://doi.org/10.2307/2261353, 1996.
Ehleringer, J. R., Phillips, S. L., Schuster, W. S. F., and Sandquist, D. R.:
Differential utilization of summer rains by desert plants, Oecologia, 88,
430–434, https://doi.org/10.1007/BF00317589, 1991.
Eissenstat, D. M., Whaley, E. L., Volder, A., and Wells, C. E.: Recovery of
citrus surface roots following prolonged exposure to dry soil, J. Exp. Bot.,
50, 1845–1854, https://doi.org/10.1093/jxb/50.341.1845, 1999.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP)
Mission, Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010.
Fay, P. A., Carlisle, J. D., Knapp, A. K., Blair, J. M., and Collins, S. L.:
Productivity responses to altered rainfall patterns in a C 4-dominated
grassland, Oecologia, 137, 245–251, https://doi.org/10.1007/s00442-003-1331-3, 2003.
Feldman, A. F.: Generated vegetation optical depth timescale datasets, available at: https://github.com/afeld24/VOD_Timescales (last access: 15 January 2021), 2020.
Feldman, A. F., Short Gianotti, D. J., Konings, A. G., McColl, K. A., Akbar,
R., Salvucci, G. D., and Entekhabi, D.: Moisture pulse-reserve in the
soil-plant continuum observed across biomes, Nat. Plants, 4, 1026–1033,
https://doi.org/10.1038/s41477-018-0304-9, 2018.
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Satellite-Based Assessment of Land Surface Energy
Partitioning-Soil Moisture Relationships and Effects of Confounding
Variables, Water Resour. Res., 55, 10657–10677,
https://doi.org/10.1029/2019WR025874, 2019.
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Land-atmosphere drivers of landscape-scale plant water
content loss, Geophys. Res. Lett., 47, e2020GL090331, https://doi.org/10.1029/2020GL090331, 2020.
Feldman, A. F., Chulakadabba, A., Short Gianotti, D. J., and Entekhabi, D.: Landscape-scale plant water content and carbon flux behavior following moisture pulses: From dryland to mesic environments, Water Res., 57, e2020WR027592, https://doi.org/10.1029/2020WR027592, 2021.
Fensholt, R., Sandholt, I., Stisen, S., and Tucker, C.: Analysing NDVI for
the African continent using the geostationary meteosat second generation
SEVIRI sensor, Remote Sens. Environ., 101, 212–229,
https://doi.org/10.1016/j.rse.2005.11.013, 2006.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Glob. Change Biol., 24,
35–54, https://doi.org/10.1111/gcb.13910, 2018.
Fravolini, A., Hultine, K. R., Brugnoli, E., Gazal, R., English, N. B., and
Williams, D. G.: Precipitation pulse use by an invasive woody legume: The
role of soil texture and pulse size, Oecologia, 144, 618–627,
https://doi.org/10.1007/s00442-005-0078-4, 2005.
García-Haro, F. J. and Camacho, F.: Algorithm Theoretical Basis
Document for Vegetation parameters (VEGA), Ref Number: SAF/LAND/UV/VR_VEGA/2.0, Issue: 2.0, 2014.
García-Haro, F. J., Camacho, F. and Meliá, J.: The EUMETSAT
Satellite Application Facility on Land Surface Analysis Product User Manual
Vegetation Parameters (VEGA), Ref Number: SAF/LAND/UV/VR_VEGA_MSG, Issue: 3.1, 2013.
Gebauer, R. L. E., Schwinning, S., and Ehleringer, J. R.: Interspecific
Competition and Resource Utilization between Bumblebees, Ecology, 83,
2602–2616, https://doi.org/10.2307/3672007, 2002.
Gentine, P., Green, J. K., Guérin, M., Humphrey, V., Seneviratne, S. I.,
Zhang, Y., and Zhou, S.: Coupling between the terrestrial carbon and water
cycles – a review, Environ. Res. Lett., 14, 083003,
https://doi.org/10.1088/1748-9326/ab22d6, 2019.
Gessner, U., Niklaus, M., Kuenzer, C., and Dech, S.: Intercomparison of leaf
area index products for a gradient of sub-humid to arid environments in west
africa, Remote Sens., 5, 1235–1257, https://doi.org/10.3390/rs5031235, 2013.
Giorgi, F., Raffaele, F., and Coppola, E.: The response of precipitation characteristics to global warming from climate projections, Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, 2019.
Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J. E., and Gentine, P.: Regionally strong feedbacks between
the atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410–414,
https://doi.org/10.1038/ngeo2957, 2017.
Guo, J. S. and Ogle, K.: Antecedent soil water content and vapor pressure
deficit interactively control water potential in Larrea tridentata, New
Phytol., 221, 218–232, https://doi.org/10.1111/nph.15374, 2019.
Hartzell, S., Bartlett, M. S., and Porporato, A.: The role of plant water
storage and hydraulic strategies in relation to soil moisture availability,
Plant Soil, 419, 503–521, https://doi.org/10.1007/s11104-017-3341-7, 2017.
Hermance, J. F., Augustine, D. J., and Derner, J. D.: Quantifying
characteristic growth dynamics in a semi-arid grassland ecosystem by
predicting short-term NDVI phenology from daily rainfall: a simple four
parameter coupled-reservoir model, Int. J. Remote Sens., 36, 5637–5663,
https://doi.org/10.1080/01431161.2015.1103916, 2015.
Huang, C. W., Domec, J. C., Ward, E. J., Duman, T., Manoli, G., Parolari, A.
J., and Katul, G. G.: The effect of plant water storage on water fluxes
within the coupled soil-plant system, New Phytol., 213, 1093–1106,
https://doi.org/10.1111/nph.14273, 2017.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, 166–171,
https://doi.org/10.1038/nclimate2837, 2016.
Huffman, G.: GPM Level 3 IMERG Final Run Half Hourly 0.1×0.1
Degree Precipitation, version 05, NASA Goddard Space Flight Center, Active Archive Center, GSFC DAAC, 2015.
Hunt, E. R. and Nobel, P. S.: Non-steady-state Water Flow for Three Desert
Perennials with Different Capacitances, Aust. J. Plant Physiol., 14,
363–375, 1987.
Hunt Jr., E. R., Running, S. W., and Federer, C. A.: Extrapolating plant water
flow resistances and capacitances to regional scales, Agric. For. Meteorol.,
54, 169–195
1991.
Huxman, T. E., Cable, J. M., Ignace, D. D., Eilts, J. A., English, N. B.,
Weltzin, J., and Williams, D. G.: Response of net ecosystem gas exchange to a
simulated precipitation pulse in a semi-arid grassland: The role of native
versus non-native grasses and soil texture, Oecologia, 141, 295–305,
https://doi.org/10.1007/s00442-003-1389-y, 2004.
Ignace, D. D., Huxman, T. E., Weltzin, J. F., and Williams, D. G.: Leaf gas
exchange and water status responses of a native and non-native grass to
precipitation across contrasting soil surfaces in the Sonoran Desert,
Oecologia, 152, 401–413, https://doi.org/10.1007/s00442-007-0670-x, 2007.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-D, 1991.
Jarque, C. M. and Bera, A. K.: Efficient test for normality,
homoscedasticity and serial independence of regression residuals, Econ.
Lett., 6, 255–259, 1980.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett,
P. J.: Terrestrial water fluxes dominated by transpiration, Nature,
496, 347–350, https://doi.org/10.1038/nature11983, 2013.
Jones, H. G.: Plants and Microclimate: A Quantitative Approach to
Environmental Plant Physiology, 3rd ed., Cambridge University Press,
Cambridge, UK, 2014.
Jones, H. G. and Higgs, K. H.: Water potential-water content relationships
in apple leaves, J. Exp. Bot., 30, 965–970, https://doi.org/10.1093/jxb/30.5.965,
1979.
Jones, M. O., Kimball, J. S., and Nemani, R. R.: Asynchronous Amazon forest
canopy phenology indicates adaptation to both water and light availability,
Environ. Res. Lett., 9, 124021, https://doi.org/10.1088/1748-9326/9/12/124021, 2014.
Kennedy, D., Swenson, S., Oleson, K. W., Fisher, R. A., Lawrence, D. M., da
Costa, A. C. L., and Gentine, P.: Implementing plant hydraulics in the
Community Land Model, version 5, J. Adv. Model. Earth Syst., 1–29,
https://doi.org/10.1029/2018ms001500, 2019.
Kerr, Y., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin,
J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S. E.,
Drinkwater, M. R., Achim Hreul, N., Boutin, J., Gruhier, C., Juglea, S. E.,
Hahne, A., Neira, M. M., and Mecklenburg, S.: The SMOS
Mission: New Tool for Monitoring Key Elements of the Global Water Cycle,
Proc. IEEE, 98, 666–687, 2010.
Kim, S.: Ancillary Data Report: Landcover Classification, California Institute of Technology,
SMAP Science Document no. 042, D-53057, 2013.
Knapp, A. K., Fay, P. A., Blair, J. M., Collins, S. L., Smith, M. D.,
Carlisle, J. D., Harper, C. W., Danner, B. T., Lett, M. S., and McCarron, J.
K.: Rainfall variability, carbon cycling, and plant species diversity in a
mesic grassland, Science, 298, 2202–2205,
https://doi.org/10.1126/science.1076347, 2002.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Glob. Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389,
2017.
Konings, A. G., McColl, K. A., Piles, M., and Entekhabi, D.: How many
parameters can be maximally estimated from a set of measurements?, IEEE
Geosci. Remote Sens. Lett., 12, 1081–1085,
https://doi.org/10.1109/LGRS.2014.2381641, 2015.
Konings, A. G., Piles, M., Rotzer, K., McColl, K. A., Chan, S. K., and
Entekhabi, D.: Vegetation optical depth and scattering albedo retrieval
using time series of dual-polarized L-band radiometer observations, Remote
Sens. Environ., 172, 178–189, https://doi.org/10.1016/j.rse.2015.11.009, 2016.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote
Sens. Environ., 198, 460–470, https://doi.org/10.1016/j.rse.2017.06.037, 2017.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, https://doi.org/10.1111/nph.15808, 2019.
Kramer, P. J. and Boyer, J. S.: Water Relations of Plants and Soils,
Academic Press, San Diego, CA, USA, 1995.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., Badel, E., Brodribb, T. J.,
Burlett, R., Charrier, G., Choat, B., Cochard, H., Gambetta, G. A., Jansen,
S., King, A., Lenoir, N., Martin-StPaul, N., Steppe, K., Van den Bulcke, J.,
Zhang, Y., and Delzon, S.: An inconvenient truth about xylem resistance to
embolism in the model species for refilling Laurus nobilis L, Ann. For.
Sci., 75, 88, https://doi.org/10.1007/s13595-018-0768-9, 2018.
Lhomme, J. P., Rocheteau, A., Ourcival, J. M., and Rambal, S.:
Non-steady-state modelling of water transfer in a Mediterranean evergreen
canopy, Agric. For. Meteorol., 108, 67–83, 2001.
Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., and Li, X.:
Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem
fluxes, Agric. For. Meteorol., 278, 107642,
https://doi.org/10.1016/j.agrformet.2019.107642, 2019.
Mackay, D. S., Roberts, D. E., Ewers, B. E., Sperry, J. S., McDowell, N. G.,
and Pockman, W. T.: Interdependence of chronic hydraulic dysfunction and
canopy processes can improve integrated models of tree response to drought,
Water Resour. Res., 51, 6156–6176, https://doi.org/10.1002/2015WR017200.A, 2015.
Manzoni, S., Vico, G., Porporato, A., and Katul, G.: Biological constraints
on water transport in the soil-plant-atmosphere system, Adv. Water Resour.,
51, 292–304, https://doi.org/10.1016/j.advwatres.2012.03.016, 2013.
Martínez-Vilalta, J., Anderegg, W. R. L., Sapes, G., and Sala, A.:
Greater focus on water pools may improve our ability to understand and
anticipate drought-induced mortality in plants, New Phytol., 223, 22–32, https://doi.org/10.1111/nph.15644, 2019.
Martorell, S., Diaz-Espejo, A., Medrano, H., Ball, M. C., and Choat, B.:
Rapid hydraulic recovery in Eucalyptus pauciflora after drought: Linkages
between stem hydraulics and leaf gas exchange, Plant Cell Environ., 37,
617–626, https://doi.org/10.1111/pce.12182, 2014.
McColl, K. A., Wang, W., Peng, B., Akbar, R., Short Gianotti, D. J., Lu, H.,
Pan, M., and Entekhabi, D.: Global characterization of surface soil moisture
drydowns, Geophys. Res. Lett., 44, 3682–3690, https://doi.org/10.1002/2017GL072819,
2017.
Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., and Jackson, T. J.: A
model for microwave emission from vegetation-covered fields, J. Geophys.
Res., 87, 11229, https://doi.org/10.1029/JC087iC13p11229, 1982.
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell,
N. G., and Konings, A. G.: Interacting Effects of Leaf Water Potential and
Biomass on Vegetation Optical Depth, J. Geophys. Res.-Biogeo.,
122, 3031–3046, https://doi.org/10.1002/2017JG004145, 2017.
Nobel, P. S. and Jordan, P. W.: Transpiration stream of desert species:
Resistances and capacitances for a c3, a c4, and a cam plant, J. Exp. Bot.,
34, 1379–1391, https://doi.org/10.1093/jxb/34.10.1379, 1983.
North, G. B. and Nobel, P. S.: Hydraulic conductivity of concentric root
tissues of Agave deserti Engelm. under wet and drying conditions, New
Phytol., 130, 47–57, https://doi.org/10.1111/j.1469-8137.1995.tb01813.x, 1995.
North, G. B. and Nobel, P. S.: Root-soil contact for the desert succulent
Agave deserti in wet and drying soil, New Phytol., 135, 21–29,
https://doi.org/10.1046/j.1469-8137.1997.00620.x, 1997.
Novoplansky, A. and Goldberg, D. E.: Effects of water pulsing on individual
performance and competitive hierarchies in plants, J. Veg. Sci., 12,
199–208, https://doi.org/10.2307/3236604, 2001.
Noy-Meir, I.: Desert Ecosystems: Environment and Producers, Annu. Rev. Ecol.
Syst., 4, 25–52, 1973.
Ogle, K. and Reynolds, J. F.: Plant responses to precipitation in desert
ecosystems: Integrating functional types, pulses, thresholds, and delays,
Oecologia, 141, 282–294, https://doi.org/10.1007/s00442-004-1507-5, 2004.
Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J.
M., Huxman, T. E., Loik, M. E., and Tissue, D. T.: Quantifying ecological
memory in plant and ecosystem processes, Ecol. Lett., 18, 221–235,
https://doi.org/10.1111/ele.12399, 2015.
Phillips, N., Nagchaudhuri, A., Oren, R., and Katul, G.: Time constant for
water transport in loblolly pine trees estiamted from time series of
evaporative demand and stem sapflow, Trees, 11, 412–419, 1997.
Phillips, N. G., Oren, R., Licata, J., and Linder, S.: Time series diagnosis
of tree hydraulic characteristics, Tree Physiol., 24, 879–890,
https://doi.org/10.1093/treephys/24.8.879, 2004.
Piepmeier, J. R., Focardi, P., Horgan, K. A., Knuble, J., Ehsan, N., Lucey,
J., Brambora, C., Brown, P. R., Hoffman, P. J., French, R. T., Mikhaylov, R.
L., Kwack, E. Y., Slimko, E. M., Dawson, D. E., Hudson, D., Peng, J.,
Mohammed, P. N., De Amici, G., Freedman, A. P., Medeiros, J., Sacks, F.,
Estep, R., Spencer, M. W., Chen, C. W., Wheeler, K. B., Edelstein, W. N.,
O'Neill, P. E., and Njoku, E. G.: SMAP L-Band Microwave Radiometer:
Instrument Design and First Year on Orbit, IEEE Trans. Geosci. Remote Sens.,
55, 1954–1966, https://doi.org/10.1109/TGRS.2016.2631978, 2017.
Plaut, J. A., Wadsworth, W. D., Pangle, R., Yepez, E. A., Mcdowell, N. G.,
and Pockman, W. T.: Reduced transpiration response to precipitation pulses
precedes mortality in a piñon-juniper woodland subject to prolonged
drought, New Phytol., 200, 375–387, https://doi.org/10.1111/nph.12392, 2013.
Post, A. K. and Knapp, A. K.: Plant growth and aboveground production
respond differently to late-season deluges in a semi-arid grassland,
Oecologia, 191, 673–683, https://doi.org/10.1007/s00442-019-04515-9, 2019.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Sitch, S., and Van der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509,
600–603, https://doi.org/10.1038/nature13376, 2014.
Rao, K., Anderegg, W. R. L., Sala, A., Martínez-Vilalta, J., and
Konings, A. G.: Satellite-based vegetation optical depth as an indicator of
drought-driven tree mortality, Remote Sens. Environ., 227,
125–136, https://doi.org/10.1016/j.rse.2019.03.026, 2019.
Reynolds, J. F., Virginia, R. A., Kemp, P. R., De Soyza, A. G., and Tremmel,
D. C.: Impact of drought on desert shrubs: Effects of seasonality and degree
of resource island development, Ecol. Monogr., 69, 69–106,
https://doi.org/10.1890/0012-9615(1999)069[0069:IODODS]2.0.CO;2, 1999.
Reynolds, J. F., Kemp, P. R., Ogle, K., and Fernández, R. J.: Modifying
the “pulse-reserve” paradigm for deserts of North America: Precipitation
pulses, soil water, and plant responses, Oecologia, 141, 194–210,
https://doi.org/10.1007/s00442-004-1524-4, 2004.
Richards, A. E., Wright, I. J., Lenz, T. I., and Zanne, A. E.: Sapwood
capacitance is greater in evergreen sclerophyll species growing in high
compared to low-rainfall environments, Funct. Ecol., 28, 734–744,
https://doi.org/10.1111/1365-2435.12193, 2014.
Rodriguez-Dominguez, C. M. and Brodribb, T. J.: Declining root water
transport drives stomatal closure in olive under moderate water stress, New
Phytol., 225, 126–134, https://doi.org/10.1111/nph.16177, 2020.
Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C., and Goldstein,
G.: Size- and Age-Related Changes in Tree Structure and Function, in Size-
and Age-Related Changes in Tree Structure and Function, vol. 4, 2011.
Schwinning, S. and Sala, O. E.: Hierarchy of responses to resource pulses in
arid and semi-arid ecosystems, Oecologia, 141, 211–220,
https://doi.org/10.1007/s00442-004-1520-8, 2004.
Shellito, P. J., Small, E. E., and Livneh, B.: Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model, Hydrol. Earth Syst. Sci., 22, 1649–1663, https://doi.org/10.5194/hess-22-1649-2018, 2018.
Sher, A. A., Goldberg, D. E., and Novoplansky, A.: The effect of mean and
variance in resource supply on survival of annuals from Mediterranean and
desert environments, Oecologia, 141, 353–362,
https://doi.org/10.1007/s00442-003-1435-9, 2004.
Sperry, J. S., Adler, F. R., Campbell, G. S., and Comstock, J. P.: Limitation
of plant water use by rhizosphere and xylem conductance: Results from a
model, Plant Cell Environ., 21, 347–359,
https://doi.org/10.1046/j.1365-3040.1998.00287.x, 1998.
Sperry, J. S., Wang, Y., Wolfe, B. T., Mackay, D. S., Anderegg, W. R. L.,
McDowell, N. G., and Pockman, W. T.: Pragmatic hydraulic theory predicts
stomatal responses to climatic water deficits, New Phytol., 212,
577–589, https://doi.org/10.1111/nph.14059, 2016.
Tai, X., Mackay, D. S., Anderegg, W. R. L., Sperry, J. S., and Brooks, P. D.:
Plant hydraulics improves and topography mediates prediction of aspen
mortality in southwestern USA, New Phytol., 213, 113–127,
https://doi.org/10.1111/nph.14098, 2017.
Tian, F., Wigneron, J.-P., Ciais, P., Chave, J., Ogée, J., Peñuelas,
J., Ræbild, A., Domec, J.-C., Tong, X., Brandt, M., Mialon, A.,
Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C.,
Myneni, R. B., Zhang, W., Ardö, J., and Fensholt, R.: Coupling of
ecosystem-scale plant water storage and leaf phenology observed by
satellite, Nat. Ecol. Evol., 2, 1428–1435, https://doi.org/10.1038/s41559-018-0630-3,
2018.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Trifilò, P., Raimondo, F., Nardini, A., Lo Gullo, M. A., and Salleo, S.:
Drought resistance of Ailanthus altissima: Root hydraulics and water
relations, Tree Physiol., 24, 107–114, https://doi.org/10.1093/treephys/24.1.107,
2004.
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J., Olesen, F.,
Barroso, C., Camacho-de-coca, F., Freitas, S. C., García-haro, J.,
Geiger, B., Ghilain, N., Meliá, J., Pessanha, L., and Arboleda, A.: The
Satellite Application Facility for Land Surface Analysis, Int. J. Remote
Sens., 1161, 2725–2744, https://doi.org/10.1080/01431161003743199, 2011a.
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J., Olesen, F., Barroso, C.,
Camacho-de-coca, F., Freitas, S. C., García-haro, J., Geiger, B., Ghilain, N., Meliá, J., Pessanha, L., and Arboleda, A.: LandSAF leaf area index, available at: https://landsaf.ipma.pt/en/products/vegetation/lai/ (last access: 15 November 2020), 2011b.
Venturas, M. D., Sperry, J. S., and Hacke, U. G.: Plant xylem hydraulics:
What we understand, current research, and future challenges, J. Integr.
Plant Biol., 59, 356–389, https://doi.org/10.1111/jipb.12534, 2017.
Ward, E. J., Bell, D. M., Clark, J. S., and Oren, R.: Hydraulic time
constants for transpiration of loblolly pine at a free-air carbon dioxide
enrichment site, Tree Physiol., 33, 123–134,
https://doi.org/10.1093/treephys/tps114, 2013.
West, A. G., Hultine, K. R., Jackson, T. L., and Ehleringer, J. R.:
Differential summer water use by Pinus edulis and Juniperus osteosperma
reflects contrasting hydraulic characteristics, Tree Physiol., 27,
1711–1720, https://doi.org/10.1093/treephys/27.12.1711, 2007.
Wigneron, J. P., Jackson, T. J., O'Neill, P., De Lannoy, G., de Rosnay, P.,
Walker, J. P., Ferrazzoli, P., Mironov, V., Bircher, S., Grant, J. P.,
Kurum, M., Schwank, M., Munoz-Sabater, J., Das, N., Royer, A., Al-Yaari, A.,
Al Bitar, A., Fernandez-Moran, R., Lawrence, H., Mialon, A., Parrens, M.,
Richaume, P., Delwart, S., and Kerr, Y.: Modelling the passive microwave
signature from land surfaces: A review of recent results and application to
the L-band SMOS & SMAP soil moisture retrieval algorithms, Remote Sens.
Environ., 192, 238–262, https://doi.org/10.1016/j.rse.2017.01.024, 2017.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity
in plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol.,
212, 80–95, https://doi.org/10.1111/nph.14009, 2016.
Zhang, Y., Zhou, S., Gentine, P., and Xiao, X.: Can vegetation optical depth
reflect changes in leaf water potential during soil moisture dry-down
events?, Remote Sens. Environ., 234, 111451, https://doi.org/10.1016/j.rse.2019.111451, 2019.
Zhuang, J., Yu, G.-R., and Nakayama, K.: A Series RCL Circuit Theory for
Analyzing Non-Steady-State Water Uptake of Maize Plants, Sci. Rep., 4, 6720,
https://doi.org/10.1038/srep06720, 2014.
Zwieback, S., Bosch, D. D., Cosh, M. H., Starks, P. J., and Berg, A.:
Vegetation-soil moisture coupling metrics from dual-polarization microwave
radiometry using regularization, Remote Sens. Environ., 231, 111257,
https://doi.org/10.1016/j.rse.2019.111257, 2019.
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
We quantify global plant water uptake durations after rainfall using satellite-based plant water...
Altmetrics
Final-revised paper
Preprint