Articles | Volume 19, issue 1
https://doi.org/10.5194/bg-19-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
Jeff S. Bowman
Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92093, USA
Ya-Wei Luo
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
Hugh W. Ducklow
Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Oscar M. Schofield
Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
Deborah K. Steinberg
Department of Biological Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
Scott C. Doney
Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
Related authors
Adam V. Subhas, Jennie E. Rheuban, Zhaohui Aleck Wang, Daniel C. McCorkle, Anna P. M. Michel, Lukas Marx, Chloe L. Dean, Kate Morkeski, Matthew G. Hayden, Mary Burkitt-Gray, Francis Elder, Yiming Guo, Heather H. Kim, and Ke Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1348, https://doi.org/10.5194/egusphere-2025-1348, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are added to the marine environment, increasing the ocean's ability to store carbon dioxide. We conducted an open-water experiment releasing and tracking a fluorescent water tracer. Under the right conditions, in-water monitoring of OAE does appear to be possible. We conclude with a series of practical recommendations for open-water OAE monitoring.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Yong-Jae Baek, Bomina Kim, Seok-Hyun Youn, Sang-Heon Lee, Hyo-Keun Jang, Heejun Han, Hugh W. Ducklow, Sung-Han Kim, and Jung-Ho Hyun
EGUsphere, https://doi.org/10.5194/egusphere-2025-4211, https://doi.org/10.5194/egusphere-2025-4211, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change is driving more frequent and intense heavy rainfall worldwide. We show that the massive runoff from the Yangtze River strongly regulates microbial productivity by altering nutrient balance and the bioavailability of dissolved organic carbon, providing insights into how climate change may affect marine ecosystems. Our findings are applicable to other ocean basins (e.g., the Amazon River and the Arctic Ocean) that receive substantial freshwater input accompanied by heavy rainfall.
Adam V. Subhas, Jennie E. Rheuban, Zhaohui Aleck Wang, Daniel C. McCorkle, Anna P. M. Michel, Lukas Marx, Chloe L. Dean, Kate Morkeski, Matthew G. Hayden, Mary Burkitt-Gray, Francis Elder, Yiming Guo, Heather H. Kim, and Ke Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1348, https://doi.org/10.5194/egusphere-2025-1348, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are added to the marine environment, increasing the ocean's ability to store carbon dioxide. We conducted an open-water experiment releasing and tracking a fluorescent water tracer. Under the right conditions, in-water monitoring of OAE does appear to be possible. We conclude with a series of practical recommendations for open-water OAE monitoring.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025, https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change, the Southern Ocean will be warmer, more acidic and more productive and will have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters. We propose ways of reducing this uncertainty.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Cited articles
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F.:
The ecological role of water-column microbes in the sea,
Mar. Ecol. Prog. Ser.,
257–263, available at: https://www.jstor.org/stable/24814647 (last access: 3 January 2022), 1983.
Bouvier, T., del Giorgio, P. A., and Gasol, J. M.:
A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems,
Environ. Microbiol.,
9, 2050–2066, https://doi.org/10.1111/j.1462-2920.2007.01321.x, 2007.
Bowman, J. S. and Ducklow, H. W.:
Microbial communities can be described by metabolic structure: a general framework and application to a seasonally variable, depth-stratified
microbial community from the coastal West Antarctic Peninsula,
PloS one,
10, e0135868, https://doi.org/10.1371/journal.pone.0135868, 2015.
Bowman, J. S., Amaral-Zettler, L. A., Rich, J. J., Luria, C. M., and Ducklow, H. W.:
Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula,
ISME J.,
11, 1460–1471, https://doi.org/10.1038/ismej.2016.204, 2017.
Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D. A.:
Metrics that matter for assessing the ocean biological carbon pump, P. Natl. Acad. Sci. USA, 117, 9679–9687, 2020.
Cael, B. B. and Bisson, K.: Particle flux
parameterizations: Quantitative and mechanistic similarities and differences, Front. Mar. Sci., 5, 1–5, 2018.
Calvo-Díaz, A. and Morán, X. A. G.:
Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay,
Aquat. Microb. Ecol.,
42, 159–174, https://doi.org/10.3354/ame042159, 2006.
Campbell, J. W.:
The lognormal distribution as a model for bio-optical variability in the sea,
J. Geophys. Res.-Oceans,
100, 13237–13254, https://doi.org/10.1029/95JC00458, 1995.
Clarke, A., Griffiths, H. J., Barnes, D. K., Meredith, M. P., and Grant, S. M.:
Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography,
J. Geophys. Res.-Biogeo.,
114, G03003, https://doi.org/10.1029/2008JG000886, 2009.
Coles, V. J., Stukel, M. R., Brooks, M. T., Burd, A., Crump, B. C., Moran, M. A., Paul, J. Hl., Satinsky, B. M., Yager, P. L., Zielinski, B. L., and Hood, R. R.:
Ocean biogeochemistry modeled with emergent trait-based genomics,
Science,
358, 1149–1154. https://doi.org/10.1126/science.aan5712, 2017.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.:
Retreating glacier fronts on the Antarctic Peninsula over the past half-century,
Science,
308, 541–544. https://doi.org/10.1126/science.1104235, 2005.
del Giorgio, P. A., and Cole, J. J.:
Bacterial growth efficiency in natural aquatic systems,
Annu. Rev. Ecol. Syst.,
29, 503–541, https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
del Giorgio, P. A., Gasol, J. M., Vaqué, D., Mura, P., Agustí, S., and Duarte, C. M.:
Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community,
Limnol. Oceanogr.,
41, 1169–1179, https://doi.org/10.4319/lo.1996.41.6.1169, 1996.
Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L., and Post, A. F.:
Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya,
Front Microbiol.,
5, 646, https://doi.org/10.3389/fmicb.2014.00646, 2014.
Doney, S. C., Glover, D. M., McCue, S. J., and Fuentes, M.:
Mesoscale variability of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color: Global patterns and spatial scales,
J. Geophys. Res.-Oceans,
108, 3024, https://doi.org/10.1029/2001JC000843, 2003.
Ducklow, H. W., Schofield, O., Vernet, M., Stammerjohn, S., and Erickson, M.:
Multiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula: a regional and decadal investigation,
J. Marine Syst.,
98, 26–39, https://doi.org/10.1016/j.jmarsys.2012.03.003, 2012a.
Ducklow, H., Clarke, A., Dickhut, R., Doney, S. C., Geisz, H., Huang, K., Martinson, D. G., Meredith, M. P., Moeller, H. V., Montes-Hugo, M., Schofield, O., Stammerjohn, S. E., Steinberg, D., and Fraser, W.:
The marine system of the Western Antarctic Peninsula,
in: Antarctic ecosystems: an extreme environment in a changing world,
edited by: Rogers, A. D., Johnston, N. M.,
Murphy, E. J., and Clarke, A.,
121–159, 2012b.
Ducklow, H. W.:
Bacterial Production and Biomass in the Ocean,
in: Microbial Ecology of the Oceans, second edn.,
John Wiley and Sons, Inc, 85–120, ISBN 978-0-470-28184-0, 2000.
Ducklow, H. W., Baker, K., Martinson, D. G., Quetin, L. B., Ross, R. M., Smith, R. C., Stammerjohn, S. E., Vernet, M., and Fraser, W.:
Marine pelagic ecosystems: the west Antarctic Peninsula,
Philos. T. R. Soc. B,
362, 67–94, https://doi.org/10.1098/rstb.2006.1955, 2007.
Ducklow, H. W., Myers, K. M., Erickson, M., Ghiglione, J. F., and Murray, A. E.:
Response of a summertime Antarctic marine bacterial community to glucose and ammonium enrichment,
Aquat. Microb. Ecol.,
64, 205–220. https://doi.org/10.3354/ame01519, 2011.
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020.
Fennel, K., Losch, M., Schröter, J., and Wenzel, M.:
Testing a marine ecosystem model: sensitivity analysis and parameter optimization,
J. Marine Syst.,
28, 45–63, https://doi.org/10.1016/S0924-7963(00)00083-X, 2001.
Friedrichs, M. A.:
Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the central equatorial Pacific Ocean,
Deep-Sea Res. Pt. II,
49, 289–319, https://doi.org/10.1016/S0967-0645(01)00104-7, 2001.
Friedrichs, M. A., Hood, R. R., and Wiggert, J. D.:
Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data,
Deep-Sea Res. Pt. II,
53, 576–600, https://doi.org/10.1016/j.dsr2.2006.01.026, 2006.
Friedrichs, M. A., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A., Chai, F., Christian, J. R., and Wiggert, J. D.:
Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups,
J. Geophys. Res.-Oceans,
112, C08001, https://doi.org/10.1029/2006JC003852, 2007.
Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H., and Amann, R.:
Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques,
Environ. Microbiol.,
2, 191–201, https://doi.org/10.1046/j.1462-2920.2000.00092.x, 2000.
Fukuda, R., Ogawa, H., Nagata, T., and Koike, I.:
Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments,
Appl. Environ. Microb.,
64, 3352–3358, https://doi.org/10.1128/AEM.64.9.3352-3358.1998, 1998.
Garzio, L. M. and Steinberg, D. K.:
Microzooplankton community composition along the Western Antarctic Peninsula,
Deep-Sea Res. Pt. I,
77, 36–49, https://doi.org/10.1016/j.dsr.2013.03.001, 2013.
Garzio, L. M., Steinberg, D. K., Erickson, M., and Ducklow, H. W.:
Microzooplankton grazing along the Western Antarctic Peninsula,
Aquat. Microb. Ecol.,
70, 215–232. https://doi.org/10.3354/ame01655, 2013.
Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A., and Hagström, Å.:
Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria,
Appl. Environ. Microb.,
65, 4475–4483, https://doi.org/10.1128/AEM.65.10.4475-4483.1999, 1999.
Giebel, H.-A., Kalhoefer, D., Gahl-Janssen, R., Choo, Y.-J., Lee, K., Cho, J.-C., Tindall, B. J., Rhiel, E., Beardsley, C., Aydogmus, O. O., Voget, S., Daniel, R., Simon, M., Brinkhoff, T.:
Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea,
Int. J. Syst. Evol. Micr.,
63, 4207–4217, https://doi.org/10.1099/ijs.0.053249-0, 2013.
Glover, D. M., Jenkins, W. J., and Doney, S. C.:
Modeling methods for marine science,
Cambridge University Press, https://doi.org/10.1017/CBO9780511975721, 2011.
Glover, D. M., Doney, S. C., Oestreich, W. K., and Tullo, A. W.:
Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua global ocean color data,
J. Geophys. Res.-Oceans,
123, 22–39, https://doi.org/10.1002/2017JC013023, 2018.
Gómez-Consarnau, L., González, J. M., Coll-Lladó, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C., and Pinhassi, J.:
Light stimulates growth of proteorhodopsin-containing marine Flavobacteria,
Nature,
445, 210–213, https://doi.org/10.1038/nature05381, 2007.
Gonzalez, J. M., Sherr, E. B., and Sherr, B. F.:
Size-Selective Grazing on Bacteria by Natural Assemblages of Estuarine Flagellates and Ciliates,
Appl. Environ. Microbiol.,
56, 583–589, https://doi.org/10.1128/aem.56.3.583-589.1990, 1990.
Günter, J., Zubkov, M. V., Yakushev, E., Labrenz, M., and Jürgens, K.:
High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea,
Limnol. Oceanogr.,
53, 14–22, https://doi.org/10.4319/lo.2008.53.1.0014, 2008.
Harmon, R., and Challenor, P.:
A Markov chain Monte Carlo method for estimation and assimilation into models,
Ecol. Model.,
101, 41–59, https://doi.org/10.1016/S0304-3800(97)01947-9, 1997.
Hellweger, F. L.:
Resonating circadian clocks enhance fitness in cyanobacteria in silico,
Ecol. Model.,
221, 1620–1629, https://doi.org/10.1016/j.ecolmodel.2010.03.015, 2010.
Hellweger, F. L.:
Combining Molecular Observations and Microbial Ecosystem Modeling: A Practical Guide,
Annu. Rev. Mar. Sci.,
12, 267–289, https://doi.org/10.1146/annurev-marine-010419-010829, 2020.
Henley, S. F., Schofield, O. M., Hendry, K. R., Schloss, I. R.,
Steinberg, D. K., Moffat, C., Peck, L. S., Costa, D. P., Bakker, D. C., Hughes, C., and Rozema,
P. D.:
Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities,
Prog. Oceanogr.,
173, 208–237, https://doi.org/10.1016/j.pocean.2019.03.003, 2019.
Kim, H., and Ducklow, H. W.:
A decadal (2002–2014) analysis for dynamics of heterotrophic bacteria in an Antarctic coastal ecosystem: variability and physical and biogeochemical forcings,
Frontiers in Marine Science,
3, 214, https://doi.org/10.3389/fmars.2016.00214, 2016.
Kim, H., Doney, S. C., Iannuzzi, R. A., Meredith, M. P., Martinson, D. G., and Ducklow, H. W.:
Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: an interdecadal (1993–2013) analysis,
J. Geophys. Res.-Biogeo.,
121, 2369–2389, https://doi.org/10.1002/2015JG003311, 2016.
Kim, H. H., Luo, Y.-W., Ducklow, H. W., Schofield, O. M., Steinberg, D. K., and Doney, S. C.: WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula, Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, 2021.
Kimura, H., Young, C. R., Martinez, A., and DeLong, E. F.:
Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium,
ISME J.,
5, 1641–1651, https://doi.org/10.1038/ismej.2011.36, 2011.
King, J. C.:
Recent Climate Variability in the Vicinity of the Antarctic Peninsula,
Int. J. Climatol.,
14, 357–369, https://doi.org/10.1002/joc.3370140402, 1994.
Kirchman, David L., Xosé Anxelu G. Morán, and Hugh Ducklow:
Microbial Growth in the Polar Oceans – Role of Temperature and Potential Impact of Climate Change,
Nat. Rev. Microbiol.,
7, 451–459, https://doi.org/10.1038/nrmicro2115, 2009.
Kohonen T.:
Self-Organzing Maps, 3rd edn.,
Springer, Berlin, 2001.
Lawson, L. M., Spitz, Y. H., Hofmann, E. E., and Long, R. B.:
A Data Assimilation Technique Applied to a Predator-Prey Model,
B. Math. Biol.,
57, 593–617, https://doi.org/10.1007/BF02460785, 1995.
Li, W. K. W., Jellett, J. F., and Dickie, P. M.:
DNA Distributions in Planktonic Bacteria Stained with TOTO or TO-PRO,
Limnol. Oceanogr.,
40, 1485–1495, https://doi.org/10.4319/lo.1995.40.8.1485, 1995.
Longnecker, K., Sherr, B. F., and Sherr, E. B.:
Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem,
Appl. Environ. Microb.,
71, 7737–7749, https://doi.org/10.1128/AEM.71.12.7737-7749.2005, 2005.
Luo, Y. W., Friedrichs, M. A., Doney, S. C., Church, M. J., and Ducklow, H. W.:
Oceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling,
Aquat. Microb. Ecol.,
60, 273–287, https://doi.org/10.3354/ame01427, 2010.
Luo, Y. W., Ducklow, H. W., Friedrichs, M. A., Church, M. J., Karl, D. M., and Doney, S. C.:
Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre,
J. Geophys. Res.-Biogeo.,
117, G03019, https://doi.org/10.1029/2011JG001830, 2012.
Luria, C. M., Ducklow, H. W., and Amaral-Zettler, L. A.:
Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula,
Aquat. Microb. Ecol.,
73, 107–121, https://doi.org/10.3354/ame01703, 2014.
Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W., Repeta, D. J., Rhyne, A. L., and Rich, J. J.:
Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the Western Antarctic Peninsula,
Front Microbiol.,
8, 2117, https://doi.org/10.3389/fmicb.2017.02117, 2017.
Martín-Figueroa, E., Navarro, F., and Florencio, F. J.:
The GS-GOGAT pathway is not operative in the heterocysts, Cloning and expression of glsF gene from the cyanobacterium Anabaena sp, PCC 7120,
FEBS Lett.,
476, 282–286, https://doi.org/10.1016/S0014-5793(00)01722-1, 2000.
Matear, R. J.:
Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Station P,
J. Mar. Res.,
53, 571–607, https://doi.org/10.1357/0022240953213098, 1995.
Meredith, M. P., Brandon, M. A., Wallace, M. I., Clarke, A.,
Leng, M. J., Renfrew, I. A., Van Lipzig, N. P., and King, J. C.:
Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O,
Deep-Sea Res. Pt. II,
55, 309–322, https://doi.org/10.1016/j.dsr2.2007.11.005, 2008.
Meredith, M. P., Venables, H. J., Clarke, A., Ducklow,
H. W., Erickson, M., Leng, M. J., Lenaerts, J. T., and van den Broeke, M. R.:
The freshwater system west of the Antarctic Peninsula: spatial and temporal changes,
J. Climate,
26, 1669–1684, https://doi.org/10.1175/JCLI-D-12-00246.1, 2013.
Miller, T. R., Beversdorf, L., Chaston, S. D., and McMahon, K. D.:
Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactions,
PloS one,
8, e74933, https://doi.org/10.1371/journal.pone.0074933, 2013.
Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O., and Vernet, M.:
Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend,
Glob. Change Biol.,
10, 1973–1980, https://doi.org/10.1111/j.1365-2486.2004.00825.x, 2004.
Morán, X. A. G., Bode, A., Suárez, L. Á., and Nogueira, E.:
Assessing the relevance of nucleic acid content as an indicator of marine bacterial activity,
Aquat. Microb. Ecol.,
46, 141–152, https://doi.org/10.3354/ame046141, 2007.
Morán, X. A. G., Ducklow, H. W., and Erickson, M.:
Single-cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts),
Limnol. Oceanogr.,
56, 37–48, https://doi.org/10.4319/lo.2011.56.1.0037, 2011.
Prunet, P., Minster, J. F., Ruiz-Pino, D., and Dadou, I.:
Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 1. Method and preliminary results,
Global Biogeochem. Cy.,
10, 111–138, https://doi.org/10.1029/95GB03436, 1996a.
Prunet, P., Minster, J. F., Echevin, V., and Dadou, I.:
Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO2 data,
Global Biogeochem. Cy.,
10, 139–158, https://doi.org/10.1029/95GB03435, 1996b.
Ruckstuhl, C., and Norris, J. R.:
How do aerosol histories affect solar “dimming” and “brightening” over Europe?: IPCC-AR4 models versus observations,
J. Geophys. Res.-Atmos.,
114, D00D04, https://doi.org/10.1029/2008JD011066, 2009.
Saba, G. K., Fraser, W. R., Saba, V. S., Iannuzzi, R. A.,
Coleman, K. E., Doney, S. C., Ducklow, H. W., Martinson, D. G., Miles, T. N., Patterson-Fraser, D. L., and Stammerjohn, S. E.:
Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula,
Nature Commun.,
5, 1–8, https://doi.org/10.1038/ncomms5318, 2014.
Sailley, S. F., Ducklow, H. W., Moeller, H. V., Fraser, W. R.,
Schofield, O. M., Steinberg, D. K., Garzio, L. M., and Doney, S. C.:
Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: an inverse model approach,
Mar. Ecol. Prog. Ser.,
492, 253–272, https://doi.org/10.3354/meps10534, 2013.
Scharek, R. and Latasa, M.:
Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep chlorophyll maximum layers in the NW Mediterranean Sea,
Aquat. Microb. Ecol.,
46, 153–161, https://doi.org/10.3354/ame046153, 2007.
Schattenhofer, M., Wulf, J., Kostadinov, I., Glöckner, F. O., Zubkov, M. V., and Fuchs, B. M.:
Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean,
Syst. Appl. Microbiol.,
34, 470–475, https://doi.org/10.1016/j.syapm.2011.01.008, 2011.
Schofield, O., Saba, G., Coleman, K., Carvalho, F., Couto, N.,
Ducklow, H., Finkel, Z., Irwin, A., Kahl, A., Miles, T., and Montes-Hugo, M.:
Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula,
Deep-Sea Res. Pt. I,
124, 42–54, https://doi.org/10.1016/j.dsr.2017.04.014, 2017.
Sherr, B. F., Sherr, E. B., and McDaniel, J.:
Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages,
Appl. Environ. Microb.,
58, 2381–2385, https://doi.org/10.1128/aem.58.8.2381-2385.1992, 1992.
Spitz, Y. H., Moisan, J. R., and Abbott, M. R.:
Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS).
Deep-Sea Res. Pt. II,
48, 1733–1768, https://doi.org/10.1016/S0967-0645(00)00159-4, 2001.
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., and Rind, D.:
Trends in Antarctic annual sea ice retreat and advance and their relation to El Ni no–Southern Oscillation and Southern Annular Mode variability,
J. Geophys. Res.-Oceans,
113, C03S90, https://doi.org/10.1029/2007JC004269, 2008.
Steinberg, D. K., Ruck, K. E., Gleiber, M. R., Garzio, L. M.,
Cope, J. S., Bernard, K. S., Stammerjohn, S. E., Schofield, O. M., Quetin, L. B., and Ross, R. M.:
Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula,
Deep-Sea Res. Pt. I,
101, 54–70, https://doi.org/10.1016/j.dsr.2015.02.009, 2015.
Teira, E., Martínez-García, S., Lønborg, C., and Álvarez-Salgado, X. A.:
Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system,
Env. Microbiol. Rep.,
1, 545–554, https://doi.org/10.1111/j.1758-2229.2009.00079.x, 2009.
Thibodeau, P. S., Steinberg, D. K., Stammerjohn, S. E., and Hauri, C.:
Environmental controls on pteropod biogeography along the Western Antarctic Peninsula,
Limnol. Oceanogr.,
64, S240–S256, https://doi.org/10.1002/lno.11041, 2019.
Vaughan, D. G.:
Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level,
Arct. Antarct. Alp. Res,
38, 147–152, https://doi.org/10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2, 2006.
Vaughan, D. G., Marshall, G. J., Connolley, W. M.,
Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.:
Recent rapid regional climate warming on the Antarctic Peninsula,
Climatic Change,
60, 243–274, https://doi.org/10.1023/A:1026021217991, 2003.
Vila-Costa, M., Gasol, J. M., Sharma, S., and Moran, M. A.:
Community analysis of high-and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing,
Environ. Microb.,
14, 1390–1402, https://doi.org/10.1111/j.1462-2920.2012.02720.x, 2012.
Ward, B. A., Friedrichs, M. A., Anderson, T. R., and Oschlies, A.:
Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models,
J. Marine Syst.,
81, 34–43, https://doi.org/10.1016/j.jmarsys.2009.12.005, 2010.
White, P. A., Kalff, J., Rasmussen, J. B., and Gasol, J. M.:
The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats,
Microb. Ecol.,
21, 99–118, https://doi.org/10.1007/BF02539147, 1991.
Whitehouse, M. J., Meredith, M. P., Rothery, P., Atkinson, A., Ward, P., and Korb, R. E.:
Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: forcings, characteristics and implications for lower trophic levels,
Deep-Sea Res. Pt. I,
55, 1218–1228, https://doi.org/10.1016/j.dsr.2008.06.002, 2008.
Yokokawa, T., Nagata, T., Cottrell, M. T., and Kirchman, D. L.:
Growth rate of the major phylogenetic bacterial groups in the Delaware estuary,
Limnol. Oceanogr.,
49, 1620–1629, https://doi.org/10.4319/lo.2004.49.5.1620, 2004.
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the...
Altmetrics
Final-revised paper
Preprint