Articles | Volume 19, issue 7
https://doi.org/10.5194/bg-19-1933-2022
https://doi.org/10.5194/bg-19-1933-2022
Research article
 | 
05 Apr 2022
Research article |  | 05 Apr 2022

The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions

Svenja Dobbert, Roland Pape, and Jörg Löffler

Related authors

10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019,https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
The biological and preformed carbon pumps in perpetually slower and warmer oceans
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024,https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024,https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024,https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary

Cited articles

Aartsma, P., Asplund, J., Odland, A., Reinhardt, S., and Renssen, H.: Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season, Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, 2021. 
Ackerman, D., Griffin, D., Hobbie, S. E., and Finlay, J. C.: Arctic shrub growth trajectories differ across soil moisture levels, Glob. Change Biol., 23, 4294–4302, https://doi.org/10.1111/gcb.13677, 2017. 
Addis, C. E. and Bret-Harte, M. S.: The importance of secondary growth to plant responses to snow in the arctic, Funct. Ecol., 33, 1050–1066, https://doi.org/10.1111/1365-2435.13323, 2019. 
AMAP: Arctic Climate Change Update 2021: Key Trends and Impacts, Summary for Policy-makers, Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, 1–16, https://oaarchive.arctic-council.org/handle/11374/2621 (last access: 8 March 2022), 2021. 
Aune, B. (Ed.): National atlas of Norway: climate, Norwegian Mapping Authority, Hønefoss, Norway, ISBN 829-0408-145, 978-8-2904-081-40, 1993. 
Download
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Altmetrics
Final-revised paper
Preprint