Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2671-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2671-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates
Centre de Recherche en Paléontologie – Paris (CR2P), CNRS,
Muséum national d'Histoire naturelle, Sorbonne Université, 57 rue
Cuvier, 75231 Paris CEDEX 05, France
Romain Amiot
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne,
France
Guillaume Suan
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne,
France
Christophe Lécuyer
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne,
France
Institut Universitaire de France, Paris, France
François Fourel
Laboratoire d'Ecologie des Hydrosystèmes Naturels et
Anthropisés, CNRS UMR 5023, Université Claude Bernard Lyon 1,
Villeurbanne, France
Fabien Demaret
Observatoire PELAGIS, UMS 3462 CNRS/Université de La Rochelle,
Pôle Analytique, 5 allée de l'Océan, 17000 La Rochelle, France
Arnauld Vinçon-Laugier
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, 69622, Villeurbanne,
France
Sylvain Charbonnier
Centre de Recherche en Paléontologie – Paris (CR2P), CNRS,
Muséum national d'Histoire naturelle, Sorbonne Université, 57 rue
Cuvier, 75231 Paris CEDEX 05, France
Peggy Vincent
Centre de Recherche en Paléontologie – Paris (CR2P), CNRS,
Muséum national d'Histoire naturelle, Sorbonne Université, 57 rue
Cuvier, 75231 Paris CEDEX 05, France
Related authors
No articles found.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Thomas Letulle, Danièle Gaspard, Mathieu Daëron, Florent Arnaud-Godet, Arnauld Vinçon-Laugier, Guillaume Suan, and Christophe Lécuyer
Biogeosciences, 20, 1381–1403, https://doi.org/10.5194/bg-20-1381-2023, https://doi.org/10.5194/bg-20-1381-2023, 2023
Short summary
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
Nagham Tabaja, David Amouroux, Lamis Chalak, François Fourel, Emmanuel Tessier, Ihab Jomaa, Milad El Riachy, and Ilham Bentaleb
Biogeosciences, 20, 619–633, https://doi.org/10.5194/bg-20-619-2023, https://doi.org/10.5194/bg-20-619-2023, 2023
Short summary
Short summary
This study investigates the seasonality of the mercury (Hg) concentration of olive trees. Hg concentrations of foliage, stems, soil surface, and litter were analyzed on a monthly basis in ancient olive trees growing in two groves in Lebanon. Our study draws an adequate baseline for the eastern Mediterranean and for the region with similar climatic inventories on Hg vegetation uptake in addition to being a baseline for new studies on olive trees in the Mediterranean.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Cited articles
Amiot, R., Göhlich, U. B., Lécuyer, C., De Muizon, C., Cappetta, H.,
Fourel, F., Héran, M.-A., and Martineau, F.: Oxygen isotope compositions
of phosphate from Middle Miocene–Early Pliocene marine vertebrates of Peru,
Palaeogeogr. Palaeocl., 264, 85–92, 2008.
Atkins, A., Dean, M. N., Habegger, M.-L., Motta, P. J., Ofer, L., Repp, F.,
Shipov, A., Weiner, S., Currey, J. D., and Shahar, R.: Remodeling in bone
without osteocytes: billfish challenge bone structure–function paradigms,
P. Natl. Acad. Sci. USA, 111, 16047–16052, 2014.
Barrick, R. E.: Isotope paleobiology of the vertebrates: ecology,
physiology, and diagenesis, Paleontol. Soc. Pap., 4, 101–137, 1998.
Barrick, R. E. and Showers, W. J.: Thermophysiology of Tyrannosaurus rex: evidence from
oxygen isotopes, Science, 265, 222–224, 1994.
Barrick, R. E. and Showers, W. J.: Oxygen isotope variability in juvenile
dinosaurs (Hypacrosaurus): evidence for thermoregulation, Paleobiology, 21, 552–560,
1995.
Barrick, R. E., Fischer, A. G., Kolodny, Y., Luz, B., and Bohaska, D.:
Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and
glaciation, Palaios, 7, 521–531, 1992.
Barrick, R. E., Showers, W. J., and Fischer, A. G.: Comparison of
thermoregulation of four ornithischian dinosaurs and a varanid lizard from
the Cretaceous Two Medicine Formation: evidence from oxygen isotopes,
Palaios, 11, 295–305, 1996.
Barrick, R. E., Stoskopf, M. K., Marcot, J. D., Russell, D. A., and Showers,
W. J.: The thermoregulatory functions of the Triceratops frill and horns: heat flow
measured with oxygen isotopes, J. Vertebr. Paleontol., 18, 746–750, 1998.
Bernal, D., Dickson, K. A., Shadwick, R. E., and Graham, J. B.: Analysis of
the evolutionary convergence for high performance swimming in lamnid sharks
and tunas, Comp. Biochem. Physiol. A, 129, 695–726,
2001.
Blank, J. M., Morrissette, J. M., Farwell, C. J., Price, M., Schallert, R.
J., and Block, B. A.: Temperature effects on metabolic rate of juvenile
Pacific bluefin tuna Thunnus orientalis, J. Exp. Biol., 210, 4254–4261, 2007.
Bligh, J. and Johnson, K. G.: Glossary of terms for thermal physiology, J.
Appl. Physiol., 35, 941–961, 1973.
Block, B. A.: Structure of the brain and eye heater tissue in marlins,
sailfish, and spearfishes, J. Morphol., 190, 169–189, 1986.
Block, B. A.: Billfish brain and eye heater: a new look at nonshivering heat
production, Physiology, 2, 208–213, 1987.
Block, B. A.: Evolutionary novelties: how fish have built a heater out of
muscle, Am. Zool., 31, 726–742, 1991.
Block, B. A. and Finnerty, J. R.: Endothermy in fishes: a phylogenetic
analysis of constraints, predispositions, and selection pressures, Environ.
Biol. Fishes, 40, 283–302, 1994.
Bouwknecht, J. A., Olivier, B., and Paylor, R. E.: The stress-induced
hyperthermia paradigm as a physiological animal model for anxiety: a review
of pharmacological and genetic studies in the mouse, Neurosci. Biobehav.
Rev., 31, 41–59, 2007.
Browning, N. E., Dold, C., I-Fan, J., and Worthy, G. A.: Isotope turnover
rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins
(Tursiops truncatus), J. Exp. Biol., 217, 214–221, 2014.
Cannon, B. and Nedergaard, J. A. N.: Brown adipose tissue: function and
physiological significance, Physiol. Rev., 84, 277–359, 2004.
Carey, F. G.: A brain heater in the swordfish, Science, 216, 1327–1329,
1982.
Carey, F. G.: Further observations on the biology of the swordfish, Plan.
Future Billfishes Natl. Coalit. Mar. Conserv. Inc Savannah Ga., edited by: Stroud, R. H., 103–122,
1990.
Carey, F. G. and Lawson, K. D.: Temperature regulation in free-swimming
bluefin tuna, Comp. Biochem. Physiol. A Physiol., 44, 375–392, 1973.
Carey, F. G. and Teal, J. M.: Heat conservation in tuna fish muscle, P.
Natl. Acad. Sci. USA, 56, 1464, https://doi.org/10.1073/pnas.56.5.1464, 1966.
Carey, F. G., Teal, J. M., Kanwisher, J. W., Lawson, K. D., and Beckett, J.
S.: Warm-bodied fish, Am. Zool., 11, 137–143, 1971.
Carey, F. G., Kanwisher, J. W., and Stevens, E. D.: Bluefin tuna warm their
viscera during digestion, J. Exp. Biol., 109, 1–20, 1984.
Carey, F. G., Scharold, J. V., and Kalmijn, A. J.: Movements of blue sharks
(Prionace glauca) in depth and course, Mar. Biol., 106, 329–342, 1990.
Chenery, C., Müldner, G., Evans, J., Eckardt, H., and Lewis, M.:
Strontium and stable isotope evidence for diet and mobility in Roman
Gloucester, UK, J. Archaeol. Sci., 37, 150–163, 2010.
Ciner, B., Wang, Y., and Parker, W.: Oxygen isotopic variations in modern
cetacean teeth and bones: implications for ecological, paleoecological, and
paleoclimatic studies, Sci. Bull., 61, 92–104, 2016.
Clauzel, T., Richardin, P., Ricard, J., Le Béchennec, Y., Amiot, R.,
Fourel, F., Phouybanhdyt, B., Vinçon-Laugier, A., Flandrois, J.-P., and
Lécuyer, C.: The Gauls experienced the Roman Warm Period: Oxygen isotope
study of the Gallic site of Thézy-Glimont, Picardie, France, J.
Archaeol. Sci. Rep., 34, 102595, https://doi.org/10.1016/j.jasrep.2020.102595, 2020.
Coulson, A. B., Kohn, M. J., Shirley, M., Joyce, W. G., and Barrick, R. E.:
Phosphate–oxygen isotopes from marine turtle bones: Ecologic and
paleoclimatic applications, Palaeogeogr. Palaeocl., 264,
78–84, 2008.
Crowson, R. A., Showers, W. J., Wright, E. K., and Hoering, T. C.:
Preparation of phosphate samples for oxygen isotope analysis, Anal. Chem.,
63, 2397–2400, 1991.
Dickson, K. A. and Graham, J. B.: Evolution and consequences of endothermy
in fishes, Physiol. Biochem. Zool., 77, 998–1018, 2004.
Eichhorn, G., Groscolas, R., Le Glaunec, G., Parisel, C., Arnold, L.,
Medina, P., and Handrich, Y.: Heterothermy in growing king penguins, Nat.
Commun., 2, 1–7, 2011.
Fourel, F., Martineau, F., Lécuyer, C., Kupka, H.-J., Lange, L., Ojeimi,
C., and Seed, M.: 18O 16O ratio measurements of inorganic and
organic materials by elemental analysis–pyrolysis–isotope ratio mass
spectrometry continuous-flow techniques, Rapid Commun. Mass Spectrom., 25,
2691–2696, 2011.
Fritsches, K. A., Brill, R. W., and Warrant, E. J.: Warm eyes provide
superior vision in swordfishes, Curr. Biol., 15, 55–58, 2005.
Graham, J. B. and Dickson, K. A.: Anatomical and physiological
specializations for endothermy, Fish Physiol., 19, 121–165, 2001.
Graham, J. B. and Dickson, K. A.: Tuna comparative physiology, J. Exp.
Biol., 207, 4015–4024, 2004.
Guppy, M., Hulbert, W. C., and Hochachka, P. W.: Metabolic sources of heat
and power in tuna muscles: II. Enzyme and metabolite profiles, J. Exp.
Biol., 82, 303–320, 1979.
Halas, S. and Szaran, J.: Improved thermal decomposition of sulfates to
SO2 and mass spectrometric determination of δ34S of IAEA
SO-5, IAEA SO-6 and NBS-127 sulfate standards, Rapid Commun. Mass Spectrom.,
15, 1618–1620, 2001.
Halas, S., Skrzypek, G., Meier-Augenstein, W., Pelc, A., and Kemp, H. F.:
Inter-laboratory calibration of new silver orthophosphate comparison
materials for the stable oxygen isotope analysis of phosphates, Rapid
Commun. Mass Spectrom., 25, 579–584, 2011.
Hampton, I. F. G., Whittow, G. C., Szekerczes, J., and Rutherford, S.: Heat
transfer and body temperature in the Atlantic bottlenose dolphin, Tursiops truncatus, Int. J.
Biometeorol., 15, 247–253, 1971.
Hashimoto, O., Ohtsuki, H., Kakizaki, T., Amou, K., Sato, R., Doi, S.,
Kobayashi, S., Matsuda, A., Sugiyama, M., and Funaba, M.: Brown adipose
tissue in cetacean blubber, PLoS ONE, 10, e0116734, https://doi.org/10.1371/journal.pone.0116734, 2015.
Hui, C. A.: Seawater consumption and water flux in the common dolphin
Delphinus delphis, Physiol. Zool., 54, 430–440, 1981.
Hut, G.: Consultants' Group Meeting on Stable Isotope Reference Samples for
Geochemical and Hydrological Investigations, IAEA Vienna 16–18 Sept. 1985
Rep. Dir. Gen. Int. At. Energy Agency Int. At. Energy Agency Vienna, 42,
1987.
Irving, L. and Hart, J. S.: The metabolism and insulation of seals as
bare-skinned mammals in cold water, Can. J. Zool., 35, 497–511, 1957.
Irving, L. and Krog, J.: Temperature of skin in the Arctic as a regulator of
heat, J. Appl. Physiol., 7, 355–364, 1955.
Kastelein, R. A., Macdonald, G. J., and Wiepkema, P. R.: A note on food
consumption and growth of common dolphins (Delphinus delphis), J. Cetacean Res. Manag., 2,
69–74, 2000.
Kolodny, Y., Luz, B., and Navon, O.: Oxygen isotope variations in phosphate
of biogenic apatites, I. Fish bone apatite – rechecking the rules of the
game, Earth Planet. Sc. Lett., 64, 398–404, 1983.
Lécuyer, C., Grandjean, P., O'Neil, J. R., Cappetta, H., and Martineau,
F.: Thermal excursions in the ocean at the Cretaceous – Tertiary boundary
(northern Morocco): δ18O record of phosphatic fish debris,
Palaeogeogr. Palaeocl., 105, 235–243, 1993.
Lécuyer, C., Amiot, R., Touzeau, A., and Trotter, J.: Calibration of the
phosphate δ18O thermometer with carbonate–water oxygen isotope
fractionation equations, Chem. Geol., 347, 217–226, 2013.
Legendre, L. J. and Davesne, D.: The evolution of mechanisms involved in
vertebrate endothermy, Philos. Trans. R. Soc. B, 375, 20190136, https://doi.org/10.1098/rstb.2019.0136, 2020.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011, 2006.
Linnæus, C.: Systema naturæ per regna tria naturæ, secundum
classes, ordines, genera, species, cum characteribus, differentiis,
synonymis, locis, Tomus Ed. Decima Reformata 1–41–824 HolmiæSalvius,
1758.
Lockyer, C.: Body fat condition in Northeast Atlantic fin whales,
Balaenoptera physalus, and its relationship with reproduction and food resource, Can. J. Fish.
Aquat. Sci., 43, 142–147, 1986.
Longinelli, A.: Oxygen isotopes in mammal bone phosphate: a new tool for
paleohydrological and paleoclimatological research?, Geochim. Cosmochim.
Ac., 48, 385–390, 1984.
Longinelli, A. and Nuti, S.: Revised phosphate-water isotopic temperature
scale, Earth Planet. Sc. Lett., 19, 373–376, 1973.
Luz, B., Kolodny, Y., and Horowitz, M.: Fractionation of oxygen isotopes
between mammalian bone-phosphate and environmental drinking water, Geochim.
Cosmochim. Ac., 48, 1689–1693, 1984.
McMaster, M. K. and Downs, C. T.: Thermal variability in body temperature in
an ectotherm: Are cloacal temperatures good indicators of tortoise body
temperature?, J. Therm. Biol., 38, 163–168, 2013.
Meunier, F. J. and Huysseune, A.: The concept of bone tissue in
Osteichthyes, Neth. J. Zool., 42, 445–458, https://doi.org/10.1163/156854291X00441, 1992.
Missell, C. A.: Thermoregulatory adaptations of Acrocanthosaurus atokensis – evidence from oxygen
isotopes, North Carolina State University, 82 pp., 2004.
Morrison, P.: Body temperatures in some Australian mammals. III. Cetacea
(Megaptera), Biol. Bull., 123, 154–169, 1962.
Myrick, A. C.: Some new potential uses of dental layers
in studying delphinid populations, in: Dolphin societies, edited by: Pryor, K. and Norris, K. S., University of California Press,
Berkeley, CA, 251–279, 1991.
Ortiz, R. M.: Osmoregulation in marine mammals, J. Exp. Biol., 204,
1831–1844, 2001.
Picard, S., Garcia, J.-P., Lécuyer, C., Sheppard, S. M., Cappetta, H.,
and Emig, C. C.: δ18O values of coexisting brachiopods and
fish: Temperature differences and estimates of paleo–water depths, Geology,
26, 975–978, 1998.
Ponganis, P. J., Van Dam, R. P., Levenson, D. H., Knower, T., Ponganis, K.
V., and Marshall, G.: Regional heterothermy and conservation of core
temperature in emperor penguins diving under sea ice, Comp. Biochem.
Physiol. A. Mol. Integr. Physiol., 135, 477–487, 2003.
Ponganis, P. J., Kreutzer, U., Stockard, T. K., Lin, P.-C., Sailasuta, N.,
Tran, T.-K., Hurd, R., and Jue, T.: Blood flow and metabolic regulation in
seal muscle during apnea, J. Exp. Biol., 211, 3323–3332, 2008.
Pucéat, E., Lécuyer, C., Sheppard, S. M., Dromart, G., Reboulet, S.,
and Grandjean, P.: Thermal evolution of Cretaceous Tethyan marine waters
inferred from oxygen isotope composition of fish tooth enamels,
Paleoceanography, 18, 1–12, 2003.
R Core Team: R: A language and environment for statistical computing,
Vienna, Austria, R Foundation for Statistical Computing, 2017.
Riccialdelli, L., Newsome, S. D., Fogel, M. L., and Goodall, R. N. P.:
Isotopic assessment of prey and habitat preferences of a cetacean community
in the southwestern South Atlantic Ocean, Mar. Ecol. Prog. Ser., 418,
235–248, 2010.
Robineau, D., Goodall, R. N. P., Pichler, F., and Baker, C. S.: Description
of a new subspecies of Commerson's dolphin, Cephalorhynchus commersonii (Lacépède, 1804),
inhabiting the coastal waters of the Kerguelen Islands, Mammalia, 71, 172–180,
https://doi.org/10.1515/MAMM.2007.034, 2007.
Rommel, S. A., Pabst, D. A., McLellan, W. A., Mead, J. G., and Potter, C.
W.: Anatomical evidence for a countercurrent heat exchanger associated with
dolphin testes, Anat. Rec., 232, 150–156, 1992.
Rosen, D. A. and Worthy, G. A.: Nutrition and energetics, in: CRC handbook
of marine mammal medicine, CRC Press, 695–738, 3rd Edn., ISBN 978-1-31514-4-931, 2018.
Rosenthal, H. L.: Uptake, turnover and transport of bone seeking elements in
fishes, Ann. N. Y. Acad. Sci. US, 109, 278–293, https://doi.org/10.1111/j.1749-6632.1963.tb13472.x, 1963.
Scholander, P. F. and Schevill, W. E.: Counter-current vascular heat
exchange in the fins of whales, J. Appl. Physiol., 8, 279–282, 1955.
Schwab, I. R.: These eyes are hot…, Br. J. Ophthalmol., 86, 266–266,
2002.
Stoehr, A., St. Martin, J., Aalbers, S., Sepulveda, C., and Bernal, D.:
Free-swimming swordfish, Xiphias gladius, alter the rate of whole body heat transfer:
morphological and physiological specializations for thermoregulation, ICES
J. Mar. Sci., 75, 858–870, 2018.
Stoskopf, M. K., Barrick, R. E., and Showers, W. J.: Oxygen isotope
variability in bones of wild caught and constant temperature reared
sub-adult American alligators, J. Therm. Biol., 26, 183–191, 2001.
Tattersall, G. J., Andrade, D. V., and Abe, A. S.: Heat exchange from the
toucan bill reveals a controllable vascular thermal radiator, Science, 325,
468–470, 2009.
Telfer, N., Cornell, L. H., and Prescott, J. H.: Do dolphins drink water?,
J. Am. Vet. Med. Assoc., 157, 555–558, 1970.
Tomilin, A. G.: Notes on Siberian white-sided dolphin, Rybn. Khozaistvo, 26,
50–53, 1950.
Tucker, A. S. and Fraser, G. J.: Evolution and developmental diversity of
tooth regeneration, Seminars in Cell & Developmental Biology, 25–26, 71–80, https://doi.org/10.1016/j.semcdb.2013.12.013,
2014.
Ungar, P. S.: Mammal teeth: origin, evolution, and diversity, John Hopkins
University Press, https://doi.org/10.1353/book.485, 2010.
Vennemann, T. W., Hegner, E., Cliff, G., and Benz, G. W.: Isotopic
composition of recent shark teeth as a proxy for environmental conditions,
Geochim. Cosmochim. Ac., 65, 1583–1599, 2001.
Watanabe, Y. Y., Goldman, K. J., Caselle, J. E., Chapman, D. D., and
Papastamatiou, Y. P.: Comparative analyses of animal-tracking data reveal
ecological significance of endothermy in fishes, P. Natl. Acad. Sci. USA,
112, 6104–6109, 2015.
Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A., and Kohin, S.: A
killer appetite: metabolic consequences of carnivory in marine mammals,
Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 129, 785–796, 2001.
Witten, P. E. and Huysseune, A.: A comparative view on mechanisms and
functions of skeletal remodelling in teleost fish, with special emphasis on
osteoclasts and their function, Biol. Rev., 84, 315–346, 2009.
Wright, L. E. and Schwarcz, H. P.: Stable carbon and oxygen isotopes in
human tooth enamel: identifying breastfeeding and weaning in prehistory, Am.
J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol., 106, 1–18,
1998.
Yeates, L. C. and Houser, D. S.: Thermal tolerance in bottlenose dolphins
(Tursiops truncatus), J. Exp. Biol., 211, 3249–3257, 2008.
Yoshida, N. and Miyazaki, N.: Oxygen isotope correlation of cetacean bone
phosphate with environmental water, J. Geophys. Res. Oceans, 96, 815–820,
1991.
Young, D. D. and Cockcroft, V. G.: Diet of common dolphins (Delphinus delphis) off the
south-east coast of southern Africa: opportunism or specialization?, J.
Zool., 234, 41–53, 1994.
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing...
Altmetrics
Final-revised paper
Preprint