Articles | Volume 19, issue 12
https://doi.org/10.5194/bg-19-3001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Siqi Li
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Wei Zhang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Xunhua Zheng
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
Yong Li
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Shenghui Han
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Rui Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Kai Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Zhisheng Yao
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Chunyan Liu
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Chong Zhang
College of Tropical Crops, Hainan University, Haikou 570228, China
Related authors
Wei Zhang, Xunhua Zheng, Siqi Li, Shenghui Han, Chunyan Liu, Zhisheng Yao, Rui Wang, Kai Wang, Xiao Chen, Guirui Yu, Zhi Chen, Jiabing Wu, Huimin Wang, Junhua Yan, and Yong Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-141, https://doi.org/10.5194/gmd-2024-141, 2024
Preprint under review for GMD
Short summary
Short summary
Process-oriented biogeochemical models are promising tools for estimating the carbon fluxes of forest ecosystems. In this study, the hydro-biogeochemical model of CNMM-DNDC was improved by incorporating a new forest growth module derived from the Biome-BGC. The updated model was validated using the multiple-year observed carbon fluxes and showed better performance in capturing the daily dynamics and annual variations. The sensitive eco-physiological parameters were also identified.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Wei Zhang, Xunhua Zheng, Siqi Li, Shenghui Han, Chunyan Liu, Zhisheng Yao, Rui Wang, Kai Wang, Xiao Chen, Guirui Yu, Zhi Chen, Jiabing Wu, Huimin Wang, Junhua Yan, and Yong Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-141, https://doi.org/10.5194/gmd-2024-141, 2024
Preprint under review for GMD
Short summary
Short summary
Process-oriented biogeochemical models are promising tools for estimating the carbon fluxes of forest ecosystems. In this study, the hydro-biogeochemical model of CNMM-DNDC was improved by incorporating a new forest growth module derived from the Biome-BGC. The updated model was validated using the multiple-year observed carbon fluxes and showed better performance in capturing the daily dynamics and annual variations. The sensitive eco-physiological parameters were also identified.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Wei Zhang, Chunyan Liu, Xunhua Zheng, Kai Wang, Feng Cui, Rui Wang, Siqi Li, Zhisheng Yao, and Jiang Zhu
Biogeosciences, 16, 2905–2922, https://doi.org/10.5194/bg-16-2905-2019, https://doi.org/10.5194/bg-16-2905-2019, 2019
Short summary
Short summary
A biogeochemical process model-based approach for screening the best management practices (BMPs) of a three-crop system was proposed. The BMPs are the management alternatives with the lowest negative impact potentials that still satisfy all given constraints. Three BMP alternatives with overlapping uncertainties of simulated NIPs were screened from 6000 scenarios using the modified DNDC95 model, which could sustain crop yields, enlarge SOC stock, mitigate GHG, and reduce other nitrogen losses.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
Z. Yao, Y. Wei, C. Liu, X. Zheng, and B. Xie
Biogeosciences, 12, 5915–5928, https://doi.org/10.5194/bg-12-5915-2015, https://doi.org/10.5194/bg-12-5915-2015, 2015
M. Liu, M. Dannenmann, S. Lin, G. Saiz, G. Yan, Z. Yao, D. E. Pelster, H. Tao, S. Sippel, Y. Tao, Y. Zhang, X. Zheng, Q. Zuo, and K. Butterbach-Bahl
Biogeosciences, 12, 4831–4840, https://doi.org/10.5194/bg-12-4831-2015, https://doi.org/10.5194/bg-12-4831-2015, 2015
Short summary
Short summary
We demonstrate for the first time that a ground cover rice production system (GCRPS) significantly increased soil organic C and total N stocks at spatially representative paired sites under varying edaphic conditions. Our results suggest that GCRPS is a stable and sustainable technique that maintains key soil functions, while increasing rice yield and expanding the cultivation into regions where it has been hampered by low seasonal temperatures and/or a lack of irrigation water.
Z. Yao, Y. Du, Y. Tao, X. Zheng, C. Liu, S. Lin, and K. Butterbach-Bahl
Biogeosciences, 11, 6221–6236, https://doi.org/10.5194/bg-11-6221-2014, https://doi.org/10.5194/bg-11-6221-2014, 2014
F. Cui, X. Zheng, C. Liu, K. Wang, Z. Zhou, and J. Deng
Biogeosciences, 11, 91–107, https://doi.org/10.5194/bg-11-91-2014, https://doi.org/10.5194/bg-11-91-2014, 2014
K. Wang, C. Liu, X. Zheng, M. Pihlatie, B. Li, S. Haapanala, T. Vesala, H. Liu, Y. Wang, G. Liu, and F. Hu
Biogeosciences, 10, 6865–6877, https://doi.org/10.5194/bg-10-6865-2013, https://doi.org/10.5194/bg-10-6865-2013, 2013
C. Liu, K. Wang, and X. Zheng
Biogeosciences, 10, 2427–2437, https://doi.org/10.5194/bg-10-2427-2013, https://doi.org/10.5194/bg-10-2427-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Related subject area
Biogeochemistry: Air - Land Exchange
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
Similar freezing spectra of particles on plant canopies as in air at a high-altitude site
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Anticorrelation of Net Uptake of Atmospheric CO2 by the World Ocean and Terrestrial Biosphere in Current Carbon Cycle Models
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil-pore water in environmental soil samples
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part I: Measuring temporal dynamics
Ideas and perspectives: Emerging contours of a dynamic exogenous kerogen cycle
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Annika Einbock and Franz Conen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2067, https://doi.org/10.5194/egusphere-2024-2067, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures ≥ -10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice nucleating particles in air above the Alps potentially affecting mixed-phase cloud development.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Stephen E. Schwartz
EGUsphere, https://doi.org/10.5194/egusphere-2024-748, https://doi.org/10.5194/egusphere-2024-748, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emissions reductions.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Matthew Gordon Davis, Kevin Yan, and Jennifer Grace Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-126, https://doi.org/10.5194/egusphere-2024-126, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere, this can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may over-estimate the quantity available for exchange by a factor of 5 – 12, suggesting that ammonia emissions from soil may be overestimated.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Thomas M. Blattmann
Biogeosciences, 19, 359–373, https://doi.org/10.5194/bg-19-359-2022, https://doi.org/10.5194/bg-19-359-2022, 2022
Short summary
Short summary
This work enunciates the possibility of kerogen oxidation contributing to atmospheric CO2 increase in the wake of glacial episodes. This hypothesis is substantiated by several lines of independent evidence synthesized in this contribution. The author hypothesizes that the deglaciation of kerogen-rich lithologies in western Canada contributed to the characteristic deglacial increase in atmospheric CO2.
Cited articles
Abdalla, M., Song, X., Ju, X., Topp, C. F. E., and Smith, P.: Calibration and
validation of the DNDC model to estimate nitrous oxide emissions and crop
productivity for a summer maize-winter wheat double cropping system in
Hebei, China, Environ. Pollut., 262, 114199, https://doi.org/10.1016/j.envpol.2020.114199, 2020.
Alberty, R. A.: Physical chemistry, 6th edn., John Wiley & Sons, New York, ISBN 0-471-09284-3, 1983.
Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler,
C. J., Heil, C. A., Kudela, R. M., Parsons, M. L., Rensel, J. E. J.,
Townsend, D. W., Trainer, V. L., and Vargo, G. A.: Harmful algal blooms and
eutrophication: Examining linkages from selected coastal regions of the
United States, Harmful Algae, 8, 39–53, https://doi.org/10.1016/j.hal.2008.08.017,
2008.
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20, 8092–8131,
https://doi.org/10.1007/s11356-013-2051-9, 2013.
Bhagat, R. M., Bhuiyan, S. I., and Moody, K.: Water, tillage and weed
interactions in lowland tropical rice: a review, Agr. Water Manage., 31,
165–184, https://doi.org/10.1016/0378-3774(96)01242-5, 1996.
Bobbink, R., Hornung, M., and Roelofs, J. G. M.: The effects of air-borne
nitrogen pollutants on species diversity in natural and semi-natural
European vegetation, J. Ecol., 86, 717–738,
https://doi.org/10.1046/j.1365-2745.1998.8650717.x, 1998.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K.
W., and Olivier, J. G. J.: A global high-resolution emission inventory for
ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97gb02266, 1997.
Bowmer, K. H. and Muirhead, W. A.: Inhibition of algal photosynthesis to
control pH and reduce ammonia volatilization from rice floodwater, Fertil.
Res., 13, 13–29, https://doi.org/10.1007/BF01049799, 1987.
Buresh, R., Ramesh Reddy, K., and van Kessel, C.: Nitrogen Transformations in
Submerged Soils, in: Nitrogen in Agricultural Systems, edited by: Schepers, J. S. and Raun, W. R., John Wiley & Sons, Ltd., 401–436, https://doi.org/10.2134/agronmonogr49.c11, 2008.
Cai, G., Zhu, Z., Trevitt, A., Freney, J. R., and Simpson, J. R.: Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice,
Fertil. Res., 10, 203–215, https://doi.org/10.1007/BF01049350, 1986.
Cai, G., Peng, G., Wang, X., and Zhu, J.: Ammonia volatilization from urea
applied to acid paddy soil in southern china and its control, Pedosphere, 2,
345–354, 1992.
Cannavo, P., Recous, S., Parnaudeau, V., and Reau, R.: Modeling N dynamics to
assess environmental impacts of cropped soils, Advances in Agronomy, 97,
Academic Press, 131–174, https://doi.org/10.1016/S0065-2113(07)00004-1, 2008.
Cao, Y., Tian, Y., Yin, B., and Zhu, Z.: Proliferation of algae and effect of
its on fertilizer–N immobilization in flooded paddy field, J. Plant Nutr.
Fertil. Sc., 19, 111–116, https://doi.org/10.11674/zwyf.2013.0113, 2013.
Chien, S. H., Prochnow, L. I., and Cantarella, H.: Recent developments of fertilizer production and use to improve nutrient efficiency and minimize
environmental impacts, chap. 8, Advances in Agronomy, 102, Academic Press, 267–322, https://doi.org/10.1016/S0065-2113(09)01008-6, 2009.
De Datta, S. K.: Nitrogen transformations in wetland rice ecosystems,
Fertil. Res., 42, 193–203, https://doi.org/10.1007/bf00750514, 1995.
Duan, Z. and Xiao, H.: Effects of soil properties on ammonia volatilization,
Soil Sci. Plant Nutr., 46, 845–852, 2000.
Dubache, G., Li, S., Zheng, X., Zhang, W., and Deng, J.: Modeling ammonia
volatilization following urea application to winter cereal fields in the
United Kingdom by a revised biogeochemical model, Sci. Total Environ., 660,
1403–1418, https://doi.org/10.1016/j.scitotenv.2018.12.407, 2019.
Dutta, B., Congreves, K. A., Smith, W. N., Grant, B. B., Rochette, P.,
Chantigny, M. H., and Desjardins, R. L.: Improving DNDC model to estimate
ammonia loss from urea fertilizer application in temperate agroecosystems,
Nutr. Cycl. Agroecosys., 106, 275–292, https://doi.org/10.1007/s10705-016-9804-z, 2016.
Felix, J. D., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S. L.:
Characterizing the isotopic composition of atmospheric ammonia emission
sources using passive samplers and a combined oxidation-bacterial
denitrifier approach, Rapid Commun. Mass Sp., 27, 2239–2246,
https://doi.org/10.1002/rcm.6679, 2013.
Fillery, I. R. P. and Vlek, P. L. G.: 4. Reappraisal of the significance of
ammonia volatilization as an N loss mechanism in flooded rice fields,
Fertil. Res., 9, 79–98, https://doi.org/10.1007/BF01048696, 1986.
Fillery, I. R. P., Simpson, J. R., and Dedatta, S. K.: Influence of field
environment and fertilizer management on ammonia loss from flooded rice,
Soil Sci. Soc. Am. J., 48, 914–920,
https://doi.org/10.2136/sssaj1984.03615995004800040043x, 1984.
Freney, J. R. and Simpson, J. R.: Gaseous loss of nitrogen from plant-soil
systems, Dev. Plant Soil Sci., 9, 1–32, https://doi.org/10.1007/978-94-017-1662-8, 1983.
Freney, J. R., Trevitt, A. C. F., Muirhead, W. A., Denmead, O. T., Simpson,
J. R., and Obcemea, W. N.: Effect of water depth on ammonia loss from lowland
rice, Fertil. Res., 16, 97–107, https://doi.org/10.1007/bf01049767, 1988.
Giltrap, D., Saggar, S., Rodriguez, J., and Bishop, P.: Modelling NH3
volatilisation within a urine patch using NZ-DNDC, Nutr. Cycl. Agroecosys.,
108, 267–277, https://doi.org/10.1007/s10705-017-9854-x, 2017.
Gong, W., Zhang, Y., Huang, X., and Luan, S.: High–resolution measurement of
ammonia emissions from fertilization of vegetable and rice crops in the
Pearl River Delta Region, China, Atmos. Environ., 65, 1–10,
https://doi.org/10.1016/j.atmosenv.2012.08.027, 2013.
Han, K., Zhou, C., and Wang, L.: Reducing ammonia volatilization from maize
fields with separation of nitrogen fertilizer and water in an alternating
furrow irrigation system, J. Integr. Agr., 13, 1099–1112,
https://doi.org/10.1016/s2095-3119(13)60493-1, 2014.
Hayashi, K., Nishimura, S., and Yagi, K.: Ammonia volatilization from the
surface of a Japanese paddy field during rice cultivation, Soil Sci. Plant
Nutr., 52, 545–555, https://doi.org/10.1111/j.1747-0765.2006.00053.x, 2006.
He, Y., Yang, S., Xu, J., Wang, Y., and Peng, S.: Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage
treatments, Sci. World J., 2014, 417605, https://doi.org/10.1155/2014/417605, 2014.
Holcomb III, J. C., Sullivan, D. M., Horneck, D. A., and Clough, G. H.: Effect of irrigation rate on ammonia volatilization, Soil Sci. Soc. Am. J., 75, 2341–2347, https://doi.org/10.2136/sssaj2010.0446, 2011.
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and
Zhang, H.: A high-resolution ammonia emission inventory in China, Global
Biogeochem. Cy., 26, GB1030, https://doi.org/10.1029/2011gb004161, 2012.
Jayaweera, G. R. and Mikkelsen, D. S.: Ammonia volatilization from flooded soil systems – a computer-model. I. Theoretical aspects, Soil Sci. Soc. Am. J., 54, 1447–1455, https://doi.org/10.2136/sssaj1990.03615995005400050039x, 1990a.
Jayaweera, G. R. and Mikkelsen, D. S.: Ammonia volatilization from flooded soil systems – a computer-model. II. Theory and model results, Soil Sci. Soc. Am. J., 54, 1456–1462, https://doi.org/10.2136/sssaj1990.03615995005400050040x, 1990b.
Jayaweera, G. R. and Mikkelsen, D. S.: Assessment of ammonia volatilization
from flooded soil systems, Adv. Agron., 45, 303–356,
https://doi.org/10.1016/S0065-2113(08)60044-9, 1991.
Jayaweera, G. R., Paw U., K. T., and Mikkelsen, D. S.: Ammonia volatilization
from flooded soil systems: a computer model. III. Validation of the model,
Soil Sci. Soc. Am. J., 54, 1462–1468,
https://doi.org/10.2136/sssaj1990.03615995005400050041x, 1990.
Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He,
Y., Tian, S., Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.: Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter, Environ. Sci. Technol., 53, 12529–12538, https://doi.org/10.1021/acs.est.9b02701, 2019.
Lei, T., Guo, X., Ma, J., Sun, X., Feng, Y., and Wang, H.: Kinetic and
thermodynamic effects of moisture content and temperature on the ammonia
volatilization of soil fertilized with urea, Int. J. Agr. Biol. Eng., 10,
134–143, https://doi.org/10.25165/j.ijabe.20171006.3232, 2017.
Li, C.: Biogeochemistry: Scientific fundamentals and modelling approach,
Tsinghua University Press, Beijing, ISBN 978-7-302-41265-6, 2016.
Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous-oxide evolution
from soil driven by rainfall events. 1. Model structure and sensitivity, J.
Geophys. Res.-Atmos., 97, 9759–9776, https://doi.org/10.1029/92jd00509, 1992.
Li, H., Han, Y., and Cai, Z.: Modeling the ammonia volatilization from common
urea and controlled releasing urea fertilizers in paddy soil of Taihu region
of China by Jayaweera–Mikkelsen model, Environ. Sci., 29, 1045–1052,
https://doi.org/10.1007/BF01049507, 2008.
Li, S.: Code and executive program_data for bg_2022, figshare [code], https://doi.org/10.6084/m9.figshare.19388756.v3, 2022.
Li, S., Zheng, X., Zhang, W., Han, S., Deng, J., Wang, K., Wang, R., Yao,
Z., and Liu, C.: Modeling ammonia volatilization following the application of
synthetic fertilizers to cultivated uplands with calcareous soils using an
improved DNDC biogeochemistry model, Sci. Total Environ., 660, 931–946,
https://doi.org/10.1016/j.scitotenv.2018.12.379, 2019.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett Jr., J. L.: Increasing
importance of deposition of reduced nitrogen in the United States, P. Natl.
Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113, 2016.
Li, Y., Shen, J., Wang, Y., Gao, M., Liu, F., Zhou, P., Liu, X., Chen, D.,
Zou, G., Luo, Q., and Ma, Q.: CNMM: a grid-based spatially-distributed catchment simulation model, China Science Press, Beijing, ISBN 978-7-03-049714-7, 2017.
Liu, J., Ding, P., Zong, Z., Li, J., Tian, C., Chen, W., Chang, M., Salazar,
G., Shen, C., Cheng, Z., Chen, Y., Wang, X., Szidat, S., and Zhang, G.: Evidence of rural and suburban sources of urban haze formation in China: a case study from the Pearl River Delta region, J. Geophys. Res.-Atmos., 123,
4712–4726, https://doi.org/10.1029/2017jd027952, 2018.
Liu, T., Fan, D., Zhang, X., Chen, J., Li, C., and Cao, C.: Deep placement of
nitrogen fertilizers reduces ammonia volatilization and increases nitrogen
utilization efficiency in no-tillage paddy fields in central China, Field
Crops Res., 184, 80–90, https://doi.org/10.1016/j.fcr.2015.09.011, 2015.
Liu, X., Ju, X., Zhang, F., Pan, J., and Christie, P.: Nitrogen dynamics and
budgets in a winter wheat–maize cropping system in the North China Plain,
Field Crops Res., 83, 111–124, https://doi.org/10.1016/S0378-4290(03)00068-6, 2003.
Mariano, E., de Sant Ana Filho, C. R., Bortoletto-Santos, R., Bendassolli,
J. A., and Trivelin, P. C. O.: Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea, Atmos. Environ., 203,
242–251, https://doi.org/10.1016/j.atmosenv.2019.02.003, 2019.
Martens, D. A. and Bremner, J. M.: Soil properties affecting volatilization of ammonia from soils treated with urea, Commun. Soil Sci. Plan., 20,
1645–1657, https://doi.org/10.1080/00103628909368173, 1989.
Martin, S. T., Hung, H.-M., Park, R. J., Jacob, D. J., Spurr, R. J. D., Chance, K. V., and Chin, M.: Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing, Atmos. Chem. Phys., 4, 183–214, https://doi.org/10.5194/acp-4-183-2004, 2004.
Michalczyk, A., Kersebaum, K.C., Heimann, L., Roelcke, M., Sun, Q. P., Chen,
X. P., and Zhang, F. S.: Simulating in situ ammonia volatilization losses in the North China Plain using a dynamic soil-crop model, J. Plant Nutr. Soil Sc., 179, 270–285, https://doi.org/10.1002/jpln.201400673, 2016.
Mikkelsen, D. S., Datta, S. K. D., and Obcemea, W. N.: Ammonia volatilization
losses from flooded rice soils, Soil Sci. Soc. Am. J., 42, 725–730,
https://doi.org/10.2136/sssaj1978.03615995004200050043x, 1978.
Park, K. D., Lee, D. W., Li, Y., Chen, D., Park, C. Y., Lee, Y. H., Lee, C.
H., Kang, U. G., Park, S. T., and Cho, Y. S.: Simulating ammonia volatilization from applications of different urea applied in rice field by WNMM, Korean J. Crop Sci., 53, 8–14, 2008.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res.-Atmos., 119,
4343–4364, https://doi.org/10.1002/2013jd021130, 2014.
Riddick, S., Ward, D., Hess, P., Mahowald, N., Massad, R., and Holland, E.: Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model, Biogeosciences, 13, 3397–3426, https://doi.org/10.5194/bg-13-3397-2016, 2016.
Roelcke, M., Li, S., Tian, X., Gao, Y., and Richter, J.: In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils, Nutr.
Cycl. Agroecosys., 62, 73–88, https://doi.org/10.1023/a:1015186605419, 2002.
Sanz-Cobena, A., Misselbrook, T., Camp, V., and Vallejo, A.: Effect of water
addition and the urease inhibitor NBPT on the abatement of ammonia emission
from surface applied urea, Atmos. Environ., 45, 1517–1524,
https://doi.org/10.1016/j.atmosenv.2010.12.051, 2011.
Savard, M. M., Cole, A., Smirnoff, A., and Vet, R.: ä15N values of
atmospheric N species simultaneously collected using sector – based samplers
distant from sources isotopic inheritance and fractionation, Atmos.
Environ., 162, 11–22, https://doi.org/10.1016/j.atmosenv.2017.05.010, 2017.
Schjørring, J. K.: Atmospheric ammonia and impacts of nitrogen
deposition: Uncertainties and challenges, New Phytol., 139, 59–60,
https://doi.org/10.1046/j.1469-8137.1998.00173.x, 1998.
Sommer, S. G., Schjoerring, J. K., and Denmead, O. T.: Ammonia emission from
mineral fertilizers and fertilized crops, in: Advances
in Agronomy, edited by: Sparks, D. L., Academic Press, 82, 557–622, https://doi.org/10.1016/S0065-2113(03)82008-4, 2004.
Song, Y., Fan, X., Lin, D., Yang, L., and Zhou, J.: Ammonia volatilization from paddy fields in the Taihu lake region and its influencing factors, Acta
Pedologica Sinica, 41, 265–269, https://doi.org/10.11766/trxb200306090216, 2004.
Tian, G., Cai, Z., Cao, J., and Li, X.: Factors affecting ammonia volatilization from a rice–wheat rotation system, Chemosphere, 42, 123–129, https://doi.org/10.1016/S0045-6535(00)00117-X, 2001.
Vira, J., Hess, P., Melkonian, J., and Wieder, W. R.: An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen version 2 (FANv2), Geosci. Model Dev., 13, 4459–4490, https://doi.org/10.5194/gmd-13-4459-2020, 2020.
Wang, H., Hu, Z., Lu, J., Liu, X., Wen, G., and Blaylock, A.: Estimation of
ammonia volatilization from a paddy field after application of
controlled-release urea based on the modified Jayaweera-Mikkelsen model
combined with the Sherlock-Goh model, Commun. Soil Sci. Plan., 47,
1630–1643, https://doi.org/10.1080/00103624.2016.1206120, 2016.
Xu, R., Tian, H., Pan, S., Prior, S. A., Feng, Y., Batchelor, W. D., Chen,
J., and Yang, J.: Global ammonia emissions from synthetic nitrogen fertilizer
applications in agricultural systems: Empirical and process-based estimates
and uncertainty, Global Change Biol., 25, 314–326, https://doi.org/10.1111/gcb.14499,
2019.
Zhan, X., Chen, C., Wang, Q., Zhou, F., Hayashi, K., Ju, X., Lam, S. K.,
Wang, Y., Wu, Y., Fu, J., Zhang, L., Gao, S., Hou, X., Bo, Y., Zhang, D.,
Liu, K., Wu, Q., Su, R., Zhu, J., Yang, C., Dai, C., and Liu, H.: Improved
Jayaweera-Mikkelsen model to quantify ammonia volatilization from rice paddy
fields in China, Environ. Sci. Pollut. R., 26, 8136-8147,
https://doi.org/10.1007/s11356-019-04275-2, 2019.
Zhang, S., Cai, G., Wang, X., Xu, Y., Zhu, Z., and Freney, J. R.: Losses of
urea-nitrogen applied to maize grown on a calcareous Fluvo-Aquic soil in
North China Plain, Pedosphere, 2, 171–178, https://doi.org/10.1109/34.142909, 1992.
Zhang, W., Li, Y., Zhu, B., Zheng, X., Liu, C., Tang, J., Su, F., Zhang, C.,
Ju, X., and Deng, J.: A process-oriented hydro-biogeochemical model enabling
simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen
losses from a subtropical catchment, Sci. Total Environ., 616, 305–317,
https://doi.org/10.1016/j.scitotenv.2017.09.261, 2018.
Zhang, W., Yao, Z., Zheng, X., Liu, C., Wang, R., Wang, K., Li, S., Han, S., Zuo, Q., and Shi, J.: Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model, Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, 2020.
Zhang, W., Li, S., Han, S., Xie, H., Lu, C., Sui, Y., Rui, W., Liu, C., Yao,
Z., and Zheng, X.: Less intensive nitrate leaching from Phaeozems cultivated
with maize generally occurs in northeastern China, Agr. Ecosyst. Environ., 310, 107303, https://doi.org/10.1016/j.agee.2021.107303, 2021.
Zhao, X., Xie, Y., Xiong, Z., Yan, X., Xing, G., and Zhu, Z.: Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the
taihu lake region, China, Plant Soil, 319, 225–234, https://doi.org/10.1007/s11104-008-9865-0, 2009.
Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D. G., Yang, C., Li,
S., Liu, B., Shang, Z., and Gao, S.: Re-estimating NH3 emissions from
Chinese cropland by a new nonlinear model, Environ. Sci. Technol., 50,
564–572, https://doi.org/10.1021/acs.est.5b03156, 2016.
Zhu, Z., Cai, G., Simpson, J. R., Zhang, S., Chen, D., Jackson, A. V., and
Freney, J. R.: Processes of nitrogen loss from fertilizers applied to
flooded rice fields on a calcareous soil in north–central China, Nutr.
Cycl. Agroecosys., 18, 101–115, https://doi.org/10.1007/BF01049507, 1989.
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from...
Altmetrics
Final-revised paper
Preprint