Articles | Volume 19, issue 12
https://doi.org/10.5194/bg-19-3001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Siqi Li
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Wei Zhang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Xunhua Zheng
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
Yong Li
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Shenghui Han
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Rui Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Kai Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Zhisheng Yao
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Chunyan Liu
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Chong Zhang
College of Tropical Crops, Hainan University, Haikou 570228, China
Related authors
Wei Zhang, Xunhua Zheng, Siqi Li, Shenghui Han, Chunyan Liu, Zhisheng Yao, Rui Wang, Kai Wang, Xiao Chen, Guirui Yu, Zhi Chen, Jiabing Wu, Huimin Wang, Junhua Yan, and Yong Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-141, https://doi.org/10.5194/gmd-2024-141, 2024
Revised manuscript not accepted
Short summary
Short summary
Process-oriented biogeochemical models are promising tools for estimating the carbon fluxes of forest ecosystems. In this study, the hydro-biogeochemical model of CNMM-DNDC was improved by incorporating a new forest growth module derived from the Biome-BGC. The updated model was validated using the multiple-year observed carbon fluxes and showed better performance in capturing the daily dynamics and annual variations. The sensitive eco-physiological parameters were also identified.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Xiao Bai, Tom Cripps, João Serra, Klaus Butterbach-Bahl, and Zhisheng Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5091, https://doi.org/10.5194/egusphere-2025-5091, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study examines the spatiotemporal variability of soil CH4, N2O and CO2 fluxes based on measurements across 56 spatial sites in an urban park. Our results show that soils in urban greenspaces function as sources of N2O and weak sinks of CH4. We developed random forest models to predict the probability of hot and cold spots of gas fluxes. Our study offers valuable insights into scaling gas fluxes in urban greenspaces, enabling a better assessment of how urbanization affects landscape fluxes.
Haoyuan Chen, Tao Song, Xiaodong Chen, Yinghong Wang, Mengtian Cheng, Kai Wang, Fuxin Liu, Baoxian Liu, Guiqian Tang, and Yuesi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3931, https://doi.org/10.5194/egusphere-2024-3931, 2025
Short summary
Short summary
The methane leakage from natural gas may offset the reduced CO2 emissions from its combustion, To quantify its effect, we established the flux observation platform in the urban area of Beijing, the results showed that natural gas has become a common source of both after the transformation of energy structure, the natural gas could escape during storage and use. Although the natural gas leakage rate is not high (1.12 %), the greenhouse effect caused by natural gas leakage can not be ignored.
Wei Zhang, Xunhua Zheng, Siqi Li, Shenghui Han, Chunyan Liu, Zhisheng Yao, Rui Wang, Kai Wang, Xiao Chen, Guirui Yu, Zhi Chen, Jiabing Wu, Huimin Wang, Junhua Yan, and Yong Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-141, https://doi.org/10.5194/gmd-2024-141, 2024
Revised manuscript not accepted
Short summary
Short summary
Process-oriented biogeochemical models are promising tools for estimating the carbon fluxes of forest ecosystems. In this study, the hydro-biogeochemical model of CNMM-DNDC was improved by incorporating a new forest growth module derived from the Biome-BGC. The updated model was validated using the multiple-year observed carbon fluxes and showed better performance in capturing the daily dynamics and annual variations. The sensitive eco-physiological parameters were also identified.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Cited articles
Abdalla, M., Song, X., Ju, X., Topp, C. F. E., and Smith, P.: Calibration and
validation of the DNDC model to estimate nitrous oxide emissions and crop
productivity for a summer maize-winter wheat double cropping system in
Hebei, China, Environ. Pollut., 262, 114199, https://doi.org/10.1016/j.envpol.2020.114199, 2020.
Alberty, R. A.: Physical chemistry, 6th edn., John Wiley & Sons, New York, ISBN 0-471-09284-3, 1983.
Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler,
C. J., Heil, C. A., Kudela, R. M., Parsons, M. L., Rensel, J. E. J.,
Townsend, D. W., Trainer, V. L., and Vargo, G. A.: Harmful algal blooms and
eutrophication: Examining linkages from selected coastal regions of the
United States, Harmful Algae, 8, 39–53, https://doi.org/10.1016/j.hal.2008.08.017,
2008.
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20, 8092–8131,
https://doi.org/10.1007/s11356-013-2051-9, 2013.
Bhagat, R. M., Bhuiyan, S. I., and Moody, K.: Water, tillage and weed
interactions in lowland tropical rice: a review, Agr. Water Manage., 31,
165–184, https://doi.org/10.1016/0378-3774(96)01242-5, 1996.
Bobbink, R., Hornung, M., and Roelofs, J. G. M.: The effects of air-borne
nitrogen pollutants on species diversity in natural and semi-natural
European vegetation, J. Ecol., 86, 717–738,
https://doi.org/10.1046/j.1365-2745.1998.8650717.x, 1998.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K.
W., and Olivier, J. G. J.: A global high-resolution emission inventory for
ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97gb02266, 1997.
Bowmer, K. H. and Muirhead, W. A.: Inhibition of algal photosynthesis to
control pH and reduce ammonia volatilization from rice floodwater, Fertil.
Res., 13, 13–29, https://doi.org/10.1007/BF01049799, 1987.
Buresh, R., Ramesh Reddy, K., and van Kessel, C.: Nitrogen Transformations in
Submerged Soils, in: Nitrogen in Agricultural Systems, edited by: Schepers, J. S. and Raun, W. R., John Wiley & Sons, Ltd., 401–436, https://doi.org/10.2134/agronmonogr49.c11, 2008.
Cai, G., Zhu, Z., Trevitt, A., Freney, J. R., and Simpson, J. R.: Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice,
Fertil. Res., 10, 203–215, https://doi.org/10.1007/BF01049350, 1986.
Cai, G., Peng, G., Wang, X., and Zhu, J.: Ammonia volatilization from urea
applied to acid paddy soil in southern china and its control, Pedosphere, 2,
345–354, 1992.
Cannavo, P., Recous, S., Parnaudeau, V., and Reau, R.: Modeling N dynamics to
assess environmental impacts of cropped soils, Advances in Agronomy, 97,
Academic Press, 131–174, https://doi.org/10.1016/S0065-2113(07)00004-1, 2008.
Cao, Y., Tian, Y., Yin, B., and Zhu, Z.: Proliferation of algae and effect of
its on fertilizer–N immobilization in flooded paddy field, J. Plant Nutr.
Fertil. Sc., 19, 111–116, https://doi.org/10.11674/zwyf.2013.0113, 2013.
Chien, S. H., Prochnow, L. I., and Cantarella, H.: Recent developments of fertilizer production and use to improve nutrient efficiency and minimize
environmental impacts, chap. 8, Advances in Agronomy, 102, Academic Press, 267–322, https://doi.org/10.1016/S0065-2113(09)01008-6, 2009.
De Datta, S. K.: Nitrogen transformations in wetland rice ecosystems,
Fertil. Res., 42, 193–203, https://doi.org/10.1007/bf00750514, 1995.
Duan, Z. and Xiao, H.: Effects of soil properties on ammonia volatilization,
Soil Sci. Plant Nutr., 46, 845–852, 2000.
Dubache, G., Li, S., Zheng, X., Zhang, W., and Deng, J.: Modeling ammonia
volatilization following urea application to winter cereal fields in the
United Kingdom by a revised biogeochemical model, Sci. Total Environ., 660,
1403–1418, https://doi.org/10.1016/j.scitotenv.2018.12.407, 2019.
Dutta, B., Congreves, K. A., Smith, W. N., Grant, B. B., Rochette, P.,
Chantigny, M. H., and Desjardins, R. L.: Improving DNDC model to estimate
ammonia loss from urea fertilizer application in temperate agroecosystems,
Nutr. Cycl. Agroecosys., 106, 275–292, https://doi.org/10.1007/s10705-016-9804-z, 2016.
Felix, J. D., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S. L.:
Characterizing the isotopic composition of atmospheric ammonia emission
sources using passive samplers and a combined oxidation-bacterial
denitrifier approach, Rapid Commun. Mass Sp., 27, 2239–2246,
https://doi.org/10.1002/rcm.6679, 2013.
Fillery, I. R. P. and Vlek, P. L. G.: 4. Reappraisal of the significance of
ammonia volatilization as an N loss mechanism in flooded rice fields,
Fertil. Res., 9, 79–98, https://doi.org/10.1007/BF01048696, 1986.
Fillery, I. R. P., Simpson, J. R., and Dedatta, S. K.: Influence of field
environment and fertilizer management on ammonia loss from flooded rice,
Soil Sci. Soc. Am. J., 48, 914–920,
https://doi.org/10.2136/sssaj1984.03615995004800040043x, 1984.
Freney, J. R. and Simpson, J. R.: Gaseous loss of nitrogen from plant-soil
systems, Dev. Plant Soil Sci., 9, 1–32, https://doi.org/10.1007/978-94-017-1662-8, 1983.
Freney, J. R., Trevitt, A. C. F., Muirhead, W. A., Denmead, O. T., Simpson,
J. R., and Obcemea, W. N.: Effect of water depth on ammonia loss from lowland
rice, Fertil. Res., 16, 97–107, https://doi.org/10.1007/bf01049767, 1988.
Giltrap, D., Saggar, S., Rodriguez, J., and Bishop, P.: Modelling NH3
volatilisation within a urine patch using NZ-DNDC, Nutr. Cycl. Agroecosys.,
108, 267–277, https://doi.org/10.1007/s10705-017-9854-x, 2017.
Gong, W., Zhang, Y., Huang, X., and Luan, S.: High–resolution measurement of
ammonia emissions from fertilization of vegetable and rice crops in the
Pearl River Delta Region, China, Atmos. Environ., 65, 1–10,
https://doi.org/10.1016/j.atmosenv.2012.08.027, 2013.
Han, K., Zhou, C., and Wang, L.: Reducing ammonia volatilization from maize
fields with separation of nitrogen fertilizer and water in an alternating
furrow irrigation system, J. Integr. Agr., 13, 1099–1112,
https://doi.org/10.1016/s2095-3119(13)60493-1, 2014.
Hayashi, K., Nishimura, S., and Yagi, K.: Ammonia volatilization from the
surface of a Japanese paddy field during rice cultivation, Soil Sci. Plant
Nutr., 52, 545–555, https://doi.org/10.1111/j.1747-0765.2006.00053.x, 2006.
He, Y., Yang, S., Xu, J., Wang, Y., and Peng, S.: Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage
treatments, Sci. World J., 2014, 417605, https://doi.org/10.1155/2014/417605, 2014.
Holcomb III, J. C., Sullivan, D. M., Horneck, D. A., and Clough, G. H.: Effect of irrigation rate on ammonia volatilization, Soil Sci. Soc. Am. J., 75, 2341–2347, https://doi.org/10.2136/sssaj2010.0446, 2011.
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and
Zhang, H.: A high-resolution ammonia emission inventory in China, Global
Biogeochem. Cy., 26, GB1030, https://doi.org/10.1029/2011gb004161, 2012.
Jayaweera, G. R. and Mikkelsen, D. S.: Ammonia volatilization from flooded soil systems – a computer-model. I. Theoretical aspects, Soil Sci. Soc. Am. J., 54, 1447–1455, https://doi.org/10.2136/sssaj1990.03615995005400050039x, 1990a.
Jayaweera, G. R. and Mikkelsen, D. S.: Ammonia volatilization from flooded soil systems – a computer-model. II. Theory and model results, Soil Sci. Soc. Am. J., 54, 1456–1462, https://doi.org/10.2136/sssaj1990.03615995005400050040x, 1990b.
Jayaweera, G. R. and Mikkelsen, D. S.: Assessment of ammonia volatilization
from flooded soil systems, Adv. Agron., 45, 303–356,
https://doi.org/10.1016/S0065-2113(08)60044-9, 1991.
Jayaweera, G. R., Paw U., K. T., and Mikkelsen, D. S.: Ammonia volatilization
from flooded soil systems: a computer model. III. Validation of the model,
Soil Sci. Soc. Am. J., 54, 1462–1468,
https://doi.org/10.2136/sssaj1990.03615995005400050041x, 1990.
Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He,
Y., Tian, S., Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.: Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter, Environ. Sci. Technol., 53, 12529–12538, https://doi.org/10.1021/acs.est.9b02701, 2019.
Lei, T., Guo, X., Ma, J., Sun, X., Feng, Y., and Wang, H.: Kinetic and
thermodynamic effects of moisture content and temperature on the ammonia
volatilization of soil fertilized with urea, Int. J. Agr. Biol. Eng., 10,
134–143, https://doi.org/10.25165/j.ijabe.20171006.3232, 2017.
Li, C.: Biogeochemistry: Scientific fundamentals and modelling approach,
Tsinghua University Press, Beijing, ISBN 978-7-302-41265-6, 2016.
Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous-oxide evolution
from soil driven by rainfall events. 1. Model structure and sensitivity, J.
Geophys. Res.-Atmos., 97, 9759–9776, https://doi.org/10.1029/92jd00509, 1992.
Li, H., Han, Y., and Cai, Z.: Modeling the ammonia volatilization from common
urea and controlled releasing urea fertilizers in paddy soil of Taihu region
of China by Jayaweera–Mikkelsen model, Environ. Sci., 29, 1045–1052,
https://doi.org/10.1007/BF01049507, 2008.
Li, S.: Code and executive program_data for bg_2022, figshare [code], https://doi.org/10.6084/m9.figshare.19388756.v3, 2022.
Li, S., Zheng, X., Zhang, W., Han, S., Deng, J., Wang, K., Wang, R., Yao,
Z., and Liu, C.: Modeling ammonia volatilization following the application of
synthetic fertilizers to cultivated uplands with calcareous soils using an
improved DNDC biogeochemistry model, Sci. Total Environ., 660, 931–946,
https://doi.org/10.1016/j.scitotenv.2018.12.379, 2019.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett Jr., J. L.: Increasing
importance of deposition of reduced nitrogen in the United States, P. Natl.
Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113, 2016.
Li, Y., Shen, J., Wang, Y., Gao, M., Liu, F., Zhou, P., Liu, X., Chen, D.,
Zou, G., Luo, Q., and Ma, Q.: CNMM: a grid-based spatially-distributed catchment simulation model, China Science Press, Beijing, ISBN 978-7-03-049714-7, 2017.
Liu, J., Ding, P., Zong, Z., Li, J., Tian, C., Chen, W., Chang, M., Salazar,
G., Shen, C., Cheng, Z., Chen, Y., Wang, X., Szidat, S., and Zhang, G.: Evidence of rural and suburban sources of urban haze formation in China: a case study from the Pearl River Delta region, J. Geophys. Res.-Atmos., 123,
4712–4726, https://doi.org/10.1029/2017jd027952, 2018.
Liu, T., Fan, D., Zhang, X., Chen, J., Li, C., and Cao, C.: Deep placement of
nitrogen fertilizers reduces ammonia volatilization and increases nitrogen
utilization efficiency in no-tillage paddy fields in central China, Field
Crops Res., 184, 80–90, https://doi.org/10.1016/j.fcr.2015.09.011, 2015.
Liu, X., Ju, X., Zhang, F., Pan, J., and Christie, P.: Nitrogen dynamics and
budgets in a winter wheat–maize cropping system in the North China Plain,
Field Crops Res., 83, 111–124, https://doi.org/10.1016/S0378-4290(03)00068-6, 2003.
Mariano, E., de Sant Ana Filho, C. R., Bortoletto-Santos, R., Bendassolli,
J. A., and Trivelin, P. C. O.: Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea, Atmos. Environ., 203,
242–251, https://doi.org/10.1016/j.atmosenv.2019.02.003, 2019.
Martens, D. A. and Bremner, J. M.: Soil properties affecting volatilization of ammonia from soils treated with urea, Commun. Soil Sci. Plan., 20,
1645–1657, https://doi.org/10.1080/00103628909368173, 1989.
Martin, S. T., Hung, H.-M., Park, R. J., Jacob, D. J., Spurr, R. J. D., Chance, K. V., and Chin, M.: Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing, Atmos. Chem. Phys., 4, 183–214, https://doi.org/10.5194/acp-4-183-2004, 2004.
Michalczyk, A., Kersebaum, K.C., Heimann, L., Roelcke, M., Sun, Q. P., Chen,
X. P., and Zhang, F. S.: Simulating in situ ammonia volatilization losses in the North China Plain using a dynamic soil-crop model, J. Plant Nutr. Soil Sc., 179, 270–285, https://doi.org/10.1002/jpln.201400673, 2016.
Mikkelsen, D. S., Datta, S. K. D., and Obcemea, W. N.: Ammonia volatilization
losses from flooded rice soils, Soil Sci. Soc. Am. J., 42, 725–730,
https://doi.org/10.2136/sssaj1978.03615995004200050043x, 1978.
Park, K. D., Lee, D. W., Li, Y., Chen, D., Park, C. Y., Lee, Y. H., Lee, C.
H., Kang, U. G., Park, S. T., and Cho, Y. S.: Simulating ammonia volatilization from applications of different urea applied in rice field by WNMM, Korean J. Crop Sci., 53, 8–14, 2008.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res.-Atmos., 119,
4343–4364, https://doi.org/10.1002/2013jd021130, 2014.
Riddick, S., Ward, D., Hess, P., Mahowald, N., Massad, R., and Holland, E.: Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model, Biogeosciences, 13, 3397–3426, https://doi.org/10.5194/bg-13-3397-2016, 2016.
Roelcke, M., Li, S., Tian, X., Gao, Y., and Richter, J.: In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils, Nutr.
Cycl. Agroecosys., 62, 73–88, https://doi.org/10.1023/a:1015186605419, 2002.
Sanz-Cobena, A., Misselbrook, T., Camp, V., and Vallejo, A.: Effect of water
addition and the urease inhibitor NBPT on the abatement of ammonia emission
from surface applied urea, Atmos. Environ., 45, 1517–1524,
https://doi.org/10.1016/j.atmosenv.2010.12.051, 2011.
Savard, M. M., Cole, A., Smirnoff, A., and Vet, R.: ä15N values of
atmospheric N species simultaneously collected using sector – based samplers
distant from sources isotopic inheritance and fractionation, Atmos.
Environ., 162, 11–22, https://doi.org/10.1016/j.atmosenv.2017.05.010, 2017.
Schjørring, J. K.: Atmospheric ammonia and impacts of nitrogen
deposition: Uncertainties and challenges, New Phytol., 139, 59–60,
https://doi.org/10.1046/j.1469-8137.1998.00173.x, 1998.
Sommer, S. G., Schjoerring, J. K., and Denmead, O. T.: Ammonia emission from
mineral fertilizers and fertilized crops, in: Advances
in Agronomy, edited by: Sparks, D. L., Academic Press, 82, 557–622, https://doi.org/10.1016/S0065-2113(03)82008-4, 2004.
Song, Y., Fan, X., Lin, D., Yang, L., and Zhou, J.: Ammonia volatilization from paddy fields in the Taihu lake region and its influencing factors, Acta
Pedologica Sinica, 41, 265–269, https://doi.org/10.11766/trxb200306090216, 2004.
Tian, G., Cai, Z., Cao, J., and Li, X.: Factors affecting ammonia volatilization from a rice–wheat rotation system, Chemosphere, 42, 123–129, https://doi.org/10.1016/S0045-6535(00)00117-X, 2001.
Vira, J., Hess, P., Melkonian, J., and Wieder, W. R.: An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen version 2 (FANv2), Geosci. Model Dev., 13, 4459–4490, https://doi.org/10.5194/gmd-13-4459-2020, 2020.
Wang, H., Hu, Z., Lu, J., Liu, X., Wen, G., and Blaylock, A.: Estimation of
ammonia volatilization from a paddy field after application of
controlled-release urea based on the modified Jayaweera-Mikkelsen model
combined with the Sherlock-Goh model, Commun. Soil Sci. Plan., 47,
1630–1643, https://doi.org/10.1080/00103624.2016.1206120, 2016.
Xu, R., Tian, H., Pan, S., Prior, S. A., Feng, Y., Batchelor, W. D., Chen,
J., and Yang, J.: Global ammonia emissions from synthetic nitrogen fertilizer
applications in agricultural systems: Empirical and process-based estimates
and uncertainty, Global Change Biol., 25, 314–326, https://doi.org/10.1111/gcb.14499,
2019.
Zhan, X., Chen, C., Wang, Q., Zhou, F., Hayashi, K., Ju, X., Lam, S. K.,
Wang, Y., Wu, Y., Fu, J., Zhang, L., Gao, S., Hou, X., Bo, Y., Zhang, D.,
Liu, K., Wu, Q., Su, R., Zhu, J., Yang, C., Dai, C., and Liu, H.: Improved
Jayaweera-Mikkelsen model to quantify ammonia volatilization from rice paddy
fields in China, Environ. Sci. Pollut. R., 26, 8136-8147,
https://doi.org/10.1007/s11356-019-04275-2, 2019.
Zhang, S., Cai, G., Wang, X., Xu, Y., Zhu, Z., and Freney, J. R.: Losses of
urea-nitrogen applied to maize grown on a calcareous Fluvo-Aquic soil in
North China Plain, Pedosphere, 2, 171–178, https://doi.org/10.1109/34.142909, 1992.
Zhang, W., Li, Y., Zhu, B., Zheng, X., Liu, C., Tang, J., Su, F., Zhang, C.,
Ju, X., and Deng, J.: A process-oriented hydro-biogeochemical model enabling
simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen
losses from a subtropical catchment, Sci. Total Environ., 616, 305–317,
https://doi.org/10.1016/j.scitotenv.2017.09.261, 2018.
Zhang, W., Yao, Z., Zheng, X., Liu, C., Wang, R., Wang, K., Li, S., Han, S., Zuo, Q., and Shi, J.: Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model, Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, 2020.
Zhang, W., Li, S., Han, S., Xie, H., Lu, C., Sui, Y., Rui, W., Liu, C., Yao,
Z., and Zheng, X.: Less intensive nitrate leaching from Phaeozems cultivated
with maize generally occurs in northeastern China, Agr. Ecosyst. Environ., 310, 107303, https://doi.org/10.1016/j.agee.2021.107303, 2021.
Zhao, X., Xie, Y., Xiong, Z., Yan, X., Xing, G., and Zhu, Z.: Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the
taihu lake region, China, Plant Soil, 319, 225–234, https://doi.org/10.1007/s11104-008-9865-0, 2009.
Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D. G., Yang, C., Li,
S., Liu, B., Shang, Z., and Gao, S.: Re-estimating NH3 emissions from
Chinese cropland by a new nonlinear model, Environ. Sci. Technol., 50,
564–572, https://doi.org/10.1021/acs.est.5b03156, 2016.
Zhu, Z., Cai, G., Simpson, J. R., Zhang, S., Chen, D., Jackson, A. V., and
Freney, J. R.: Processes of nitrogen loss from fertilizers applied to
flooded rice fields on a calcareous soil in north–central China, Nutr.
Cycl. Agroecosys., 18, 101–115, https://doi.org/10.1007/BF01049507, 1989.
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from...
Altmetrics
Final-revised paper
Preprint