Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3131-2022
https://doi.org/10.5194/bg-19-3131-2022
Research article
 | 
04 Jul 2022
Research article |  | 04 Jul 2022

The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data

Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller

Related authors

Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Johnathan D. Maxey, Neil D. Hartstein, Hermann W. Bange, and Mortiz Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1731,https://doi.org/10.5194/egusphere-2024-1731, 2024
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024,https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Direct foliar phosphorus uptake from wildfire ash
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024,https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024,https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary

Cited articles

Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature, 437, 349–355, 2005. 
Augustinus, P., Barton, C. E., Zawadzki, A., and Harle, K.: Lithological and geochemical record of mining-induced changes in sediments from Macquarie Harbour, southwest Tasmania, Australia, Environ. Earth Sci., 61, 625–639, 2010. 
Austin, W. E. and Inall, M. E.: Deep-water renewal in a Scottish fjord: temperature, salinity and oxygen isotopes, Polar Res., 21, 251–257, 2002. 
Baker, W. E. and Ahmad, N.: Re-examination of the fjord theory of Port Davey, Tasmania, Papers and Proceedings of the Royal Society of Tasmania, 93, 113–116, 1959. 
Bennett, J. C., Ling, F. L. N., Graham, B., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Post, D. A., Gaynor, S. M., and Bindoff, N. L.: Climate Futures for Tasmania: water and catchments technical report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Antarctic Climate and Ecosystems Cooperative Research Centre, ISBN 978-1-921197-06-8, 2010. 
Download
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Altmetrics
Final-revised paper
Preprint