Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3247-2022
https://doi.org/10.5194/bg-19-3247-2022
Research article
 | 
11 Jul 2022
Research article |  | 11 Jul 2022

Tracing the source of nitrate in a forested stream showing elevated concentrations during storm events

Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi

Related authors

Triple oxygen isotope evidence for the pathway of nitrous oxide production in a forested soil with increased emission on rainy days
Weitian Ding, Urumu Tsunogai, Tianzheng Huang, Takashi Sambuichi, Wenhua Ruan, Masanori Ito, Hao Xu, Yongwon Kim, and Fumiko Nakagawa
EGUsphere, https://doi.org/10.21203/rs.3.rs-4264720/v2,https://doi.org/10.21203/rs.3.rs-4264720/v2, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Bias in calculating gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ17O) of stream nitrate
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences, 21, 4717–4722, https://doi.org/10.5194/bg-21-4717-2024,https://doi.org/10.5194/bg-21-4717-2024, 2024
Short summary
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023,https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Ideas and perspectives: Errors associated with the gross nitrification rates in forested catchments calculated from the triple oxygen isotopic composition (Δ17O) of stream nitrate
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-236,https://doi.org/10.5194/bg-2022-236, 2023
Revised manuscript not accepted
Short summary

Related subject area

Biogeochemistry: Stable Isotopes & Other Tracers
How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025,https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
No increase is detected and modeled for the seasonal cycle amplitude of δ13C of atmospheric carbon dioxide
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
Biogeosciences, 22, 19–39, https://doi.org/10.5194/bg-22-19-2025,https://doi.org/10.5194/bg-22-19-2025, 2025
Short summary
Sea ice and mixed layer depth influence on nitrate depletion and associated isotopic effects in the Drake Passage – Weddell Sea region, Southern Ocean
Aymeric Pierre Marie Servettaz, Yuta Isaji, Chisato Yoshikawa, Yanghee Jang, Boo-Keun Khim, Yeongjun Ryu, Daniel M. Sigman, Nanako O. Ogawa, Francisco J. Jiménez-Espejo, and Naohiko Ohkouchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3687,https://doi.org/10.5194/egusphere-2024-3687, 2024
Short summary
Fungi present distinguishable isotopic signals when grown on glycolytic versus tricarboxylic acid cycle intermediates
Stanislav Jabinski, Vítězslav Kučera, Marek Kopáček, Jan Jansa, and Travis B. Meador
EGUsphere, https://doi.org/10.5194/egusphere-2024-3153,https://doi.org/10.5194/egusphere-2024-3153, 2024
Short summary
Bias in calculating gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ17O) of stream nitrate
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences, 21, 4717–4722, https://doi.org/10.5194/bg-21-4717-2024,https://doi.org/10.5194/bg-21-4717-2024, 2024
Short summary

Cited articles

Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen Saturation in Northern Forest Ecosystems, Bioscience, 39, 378–386, https://doi.org/10.2307/1311067, 1989. 
Aguilera, R. and Melack, J. M.: Concentration-Discharge Responses to Storm Events in Coastal California Watersheds, Water Resour. Res., 54, 407–424, https://doi.org/10.1002/2017WR021578, 2018. 
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009. 
Buda, A. R. and DeWalle, D. R.: Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA, Hydrol. Process., 23, 3292–3305, https://doi.org/10.1002/hyp.7423, 2009. 
Burns, D. A. and Kendall, C.: Analysis of δ15N and δ18O to differentiate NO3- sources in runoff at two watersheds in the Catskill Mountains of New York, Water Resour. Res., 38, 91–912, https://doi.org/10.1029/2001wr000292, 2002. 
Download
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Share
Altmetrics
Final-revised paper
Preprint