Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Kevin W. Becker
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Arne Bendinger
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
(LEGOS), Université Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
Johannes Hahn
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Bundesamt für Seeschifffahrt und Hydrographie, Hamburg, Germany
Anja Engel
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
No articles found.
Amavi N. Silva, Surandokht Nikzad, Theresa Barthelmeß, Anja Engel, Hartmut Hermann, Manuela van Pinxteren, Kai Wirtz, Oliver Wurl, and Markus Schartau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4050, https://doi.org/10.5194/egusphere-2025-4050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We conducted the first meta-analysis combining marine and freshwater studies to understand organic matter enrichment in the surface microlayer. Nitrogen-rich, particulate compounds are often enriched, with patterns varying by multiple factors. We recommend tracking both absolute concentrations and normalized enrichment patterns to better assess ecological conditions. Our study also introduces improved statistical methods for analyzing and comparing surface microlayer data.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Lin Yang, Peiyi Bian, Jing Zhang, Anja Engel, Bin Yang, and Gui-Peng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2429, https://doi.org/10.5194/egusphere-2025-2429, 2025
Short summary
Short summary
CO, CDOM, and FDOM were more frequently enriched in the higher temperature and salinity off-shore regions. Marine-humic like CDOM tends to inhibit the sea-to-air flux of CO in the SML. The enrichment and photochemical process of CO in the SML were more active during the daytime. The photochemical production and microbial consumption rates of CO in the SML were more active than in the SSW.
Florian Schütte, Johannes Hahn, Ivy Frenger, Arne Bendinger, Fehmi Dilmahamod, Marco Schulz, and Peter Brandt
EGUsphere, https://doi.org/10.5194/egusphere-2025-2175, https://doi.org/10.5194/egusphere-2025-2175, 2025
Short summary
Short summary
We found extreme drops in oxygen levels in the tropical Atlantic linked to surprisingly long-lived, small subsurface eddies. These eddies are hidden beneath the surface (undetectable by satellites) and are unusually stable, even in the highly dynamic ocean near the equator. Using long-term measurements and computer models, we show that these features can strongly influence oxygen supply and potentially impact marine ecosystems.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Clément Vic, and Florent Lyard
EGUsphere, https://doi.org/10.5194/egusphere-2025-95, https://doi.org/10.5194/egusphere-2025-95, 2025
Short summary
Short summary
Temporal variability of the semidiurnal internal tide around New Caledonia is investigated using regional modeling. An important contribution to temporal variability not linked to the astronomically-forced spring-neap cycle is due to the presence of mesoscale eddies, both at the generation sites and in propagation direction. The incoherent tide has a widespread signature in sea surface height (SSH) challenging the SSH observability of mesoscale to submesoscale dynamics.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Lin Yang, Jing Zhang, Anja Engel, and Gui-Peng Yang
Biogeosciences, 19, 5251–5268, https://doi.org/10.5194/bg-19-5251-2022, https://doi.org/10.5194/bg-19-5251-2022, 2022
Short summary
Short summary
Enrichment factors of dissolved organic matter (DOM) in the eastern marginal seas of China exhibited a significant spatio-temporal variation. Photochemical and enrichment processes co-regulated DOM enrichment in the sea-surface microlayer (SML). Autochthonous DOM was more frequently enriched in the SML than terrestrial DOM. DOM in the sub-surface water exhibited higher aromaticity than that in the SML.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Cited articles
Agustí, S. and Duarte, C. M.: Phytoplankton lysis predicts dissolved
organic carbon release in marine plankton communities, Biogeosciences, 10,
1259–1264, https://doi.org/10.5194/bg-10-1259-2013, 2013.
Alonso-Sáez, L., Gasol, J. M., Arístegui, J., Vilas, J. C.,
Vaqué, D., Duarte, C. M., and Agustí, S.: Large-scale variability
in surface bacterial carbon demand and growth efficiency in the subtropical
northeast Atlantic Ocean, Limnol. Oceanogr., 52, 533–546,
https://doi.org/10.4319/lo.2007.52.2.0533, 2007.
Amon, R. M. W. and Benner, R.: Rapid cycling of high molecular weight
dissolved organic matter in the ocean, Nature 369, 549–552,
https://doi.org/10.1038/369549a0, 1994.
Amon, R. M. W. and Benner, R.: Bacterial utilization of different size classes of dissolved organic matter, Limnol. Oceanogr., 41, 41–51, https://doi.org/10.4319/lo.1996.41.1.0041, 1996.
Anderson, T. R. and Ducklow, H. W.: Microbial loop carbon cycling in ocean
environments studied using a simple steady-state model, Aquat. Microb.
Ecol., 26, 37–49, 2001.
Aranguren-Gassis, M., Teira, E., Serret, P., Martínez-García, S.,
and Fernández, E.: Potential overestimation of bacterial respiration
rates in oligotrophic plankton communities, Mar. Ecol. Prog. Ser., 453,
1–10, https://doi.org/10.3354/meps09707, 2012.
Arístegui, J., Tett, P., Hernández-Guerra, A., Basterretxea, G.,
Mon- tero, M. F., Wild, K., Sangrá, P., Hernández-León, S.,
Cantón, M., García-Braun, J. A., Pacheco, M., and Barton, E. D.:
The influence of island-generated eddies on Chl a distribution: a study of
mesoscale variation around Gran Canaria, Deep-Sea Res., 44, 71–96, 1997.
Arístegui, J., Barton, E. D., Álvarez-Salgado, X. A., Santos, A. M.
P., Figueiras, F. G., Kifani, S., Hernández-León, S., Mason, E.,
Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the
Canary Current upwelling, Prog. Oceanogr., 83, 33–48,
https://doi.org/10.1016/j.pocean.2009.07.031, 2009.
Arístegui, J., Montero, M. F., Hernández-Hernández, N.,
Alonso-González, I. J., Baltar, F., Calleja, M. L., and Duarte, C. M.:
Variability in Water-Column Respiration and Its Dependence on Organic Carbon
Sources in the Canary Current Upwelling Region, Front. Earth Sci., 8, 1–12,
2020.
Bachmann, J., Hassenrück, C., Gärdes, A., Iversen, M. H., Heimbach,
T., Kopprio, G. A., and Grossart, H. P.: Environmental Drivers of
Free-Living vs. Particle-Attached Bacterial Community Composition in the
Mauritania Upwelling System, Front. Microbiol., 9, 1–13,
https://doi.org/10.3389/fmicb.2018.02836, 2018.
Baltar, F., Arístegui, J., Gasol, J. M., Lekunberri, I., and Herndl, G.
J.: Mesoscale eddies: Hotspots of prokaryotic activity and differential
community structure in the ocean, ISME J., 4, 975–988,
https://doi.org/10.1038/ismej.2010.33, 2010.
Belkin, N., Guy-Haim, T., Rubin-Blum, M., Lazar, A., Sisma-Ventura, G., Kiko, R., Morov, A. R., Ozer, T., Gertman, I., Herut, B., and Rahav, E.: Influence of cyclonic and anticyclonic eddies on plankton in the southeastern Mediterranean Sea during late summertime, Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, 2022.
Benner, R. and Amon, R. M. W.: The size-reactivity continuum of major
bioelements in the ocean, Ann. Rev. Mar. Sci., 7, 185–205, https://doi.org/10.1146/annurev-marine-010213-135126, 2015.
Berggren, M., Laudon, H., Jonsson, A., and Jansson, M.: Nutrient constraints
on metabolism affect the temperature regulation of aquatic bacterial growth
efficiency, Microb. Ecol., 60, 894–902,
https://doi.org/10.1007/s00248-010-9751-1, 2010.
Borchard, C. and Engel, A.: Organic matter exudation by Emiliania huxleyi
under simulated future ocean conditions, Biogeosciences, 9, 3405–3423,
https://doi.org/10.5194/bg-9-3405-2012, 2012
Carlson, C. A.: Production and Removal Processes, chap. 4, in:
Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D.
A. and Carlson, C. A., Academic Press AP, 805, 91–151,
https://doi.org/10.1016/b978-012323841-2/50006-3, 2002.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.:
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic
Chlorophyll, Science, 334, 328–333, 2011.
Cheney, R. E. and Richardson, P. L.: Observed Decay of a Cyclonic Gulf
Stream Ring, Deep-Sea Res.-Oceanogr., 23, 143–155,
https://doi.org/10.1016/S0011-7471(76)80023-X, 1976.
Cherrier, J., Valentine, S. K., Hamill, B., Jeffrey, W. H., and Marra, J.
F.: Light-mediated release of dissolved organic carbon by phytoplankton, J.
Mar. Syst., 147, 45–51, 2015.
Christaki, U., Gueneugues, A., Liu, Y., Blain, S., Catala, P., Colombet, J.,
Debeljak, P., Jardillier, L., Irion, S., Planchon, F., Sassenhagen, I.,
Sime-Ngando, T., and Obernosterer, I.: Seasonal microbial food web dynamics
in contrasting Southern Ocean productivity regimes, Limnol. Oceanogr.,
66, 108–122, https://doi.org/10.1002/lno.11591, 2021.
Couespel, D., Lévy, M., andand Bopp, L.: Oceanic primary production
decline halved in eddy-resolving simulations of global warming,
Biogeosciences, 18, 4321-4349, https://doi.org/10.5194/bg-18-4321-2021,
2021.
D'Asaro, E. A.: Generation of submesoscale vortices: A new mechanism, J.
Geophys. Res., 93, 6685–6693, https://doi.org/10.1029/JC093iC06p06685, 1988.
del Giorgio, P. A. and Cole, J. J.: Bacterial Growth Efficiency in Natural
Aquatic Systems, Annu. Rev. Ecol. Evol. Syst., 29, 503–541,
https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
del Giorgio, P. A., Condon, R., Bouvier, T., Longnecker, K., Bouvier, C.,
Sherr, E., and Gasol, J. M.: Coherent patterns in bacterial growth, growth
efficiency, and leucine metabolism along a northeastern Pacific inshore –
offshore transect, Limnol. Oceanogr., 56, 1–16,
https://doi.org/10.4319/lo.2011.56.1.0001, 2011.
Demarcq, H. and Somoue, L.: Phytoplankton and primary productivity off
Northwest Africa, in: Oceanographic and biological features in the Canary
Current Large Marine Ecosystem, edited by: Valdés, L. and Déniz-González,
I., IOC-UNESCO, Pari, IOC Technical Series, No. 115, 161–174,
http://hdl.handle.net/1834/9186, 2015.
Descy, J. P., Leporcq, B., Viroux, L., François, C., and Servais, P.:
Phytoplankton production, exudation and bacterial reassimilation in the
River Meuse (Belgium), J. Plank. Res., 24, 161–166,
https://doi.org/10.1093/plankt/24.3.161, 2002.
Devresse, Q., Becker, K. W., and Engel, A.: Microbial activity and nutrients measured from water bottle samples in a cyclonic eddy during METEOR cruise M156, off Mauritania, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.950510 (last access: 14 November 2022), 2022.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices
for Ocean CO2 measurements, PICES Special Publication, The North Pacific Marine Science Organization (PICES), 3, 191 pp., 2007.
Dittmar, T., Cherrier, J., and Ludwichowski, K. U.: The analysis of amino
acids in seawater, in: Practical guidelines for the analysis of seawater,
edited by: Wurl, O., CRC Press, Boca Raton, ISBN: 978-1-4200-7306-5,
2009.
Dray, S.: On the number of principal components: A test of dimensionality
based on measurements of similarity between matrices, Comput. Stat. Data
Anal., 52, 2228–2237, 2008.
Engel, A., Thoms, S., Riabesell, U., Rochelle-Newall, E., and Zondervan, I.:
Polysaccharide aggregation as a potential sink of marine dissolved organic
carbon, Nature, 428, 929–932,
https://doi.org/10.1038/nature02453, 2004.
Engel, A., Händel, N., Wohlers, J., Lunau, M., Grossart, H. P., Sommer,
U., and Riebesell, U.: Effects of sea surface warming on the production and
composition of dissolved organic matter during phytoplankton blooms: Results
from a mesocosm study, J. Plank. Res., 33, 357–372,
https://doi.org/10.1093/plankt/fbq122, 2011.
Engel, A., Borchard, C., Piontek, J., Schulz, K. G., Riebesell, U., and
Bellerby, R.: CO2 increases 14C primary production in an Arctic plankton
community, Biogeosciences, 10, 1291–1308.
https://doi.org/10.5194/bg-10-1291-2013, 2013.
Evans, C. A., O'Reily, J. E., and Thomas, J. P.: A handbook for measurement
of Chl a a and primary production, Texas A and M University, College Station, Tex., ISBN:
9780948277078, 0948277076,
1987.
Ewart, C. S., Meyers, M. K., Wallner, E. R., McGillicuddy, D. J., and
Carlson, C. A.: Microbial dynamics in cyclonic and anticyclonic mode-water
eddies in the northwestern Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1334–1347,
https://doi.org/10.1016/j.dsr2.2008.02.013, 2008.
Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang P. K.: Role of eddy
pumping in enhancing primary production in the ocean, Nature,
352, 55–58, https://doi.org/10.1038/352055a0, 1991.
Feng, M., Majewski, L. J., Fandry, C. B., and Waite, A. M.: Characteristics
of two counter-rotating eddies in the Leeuwin Current system off the Western
Australian coast, Deep-Sea Res. Pt. II, 54, 961–980,
https://doi.org/10.1016/j.dsr2.2006.11.022, 2007.
Gargas, E.: A Manual for Phytoplankton Primary Production Studies in the
Baltic, The Baltic Marine Biologists, edited by: Gargas, E., Hørsholm, Denmark: Water Quality Institute, 2, 88 pp., 1975.
Gasol, J. M. and del Giorgio, P. A.: Using flow cytometry for counting natural
planktonic bacteria and understanding the structure of planktonic bacterial
communities, Sci. Mar., 64, 197–224, 2000.
Gattuso, J. P., Epitalon, J. M., Lavigne, H., and Orr, J.: seacarb: seawater
carbonate chemistry, R package version 3.2.13,
http://CRAN.R-project.org/package=seacarb (last access: 23 February 2021), 2020.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, edited by: Grasshoff, K., Klaus, K., and Ehrhardt, M., John Wiley, Hoboken, NJ, 159–229, https://doi.org/10.1002/9783527613984.ch10, 1999.
Hansell, D. A., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved
organic matter in the ocean a controversy stimulates new insights,
Oceanogr., 22, 202–211,
https://doi.org/10.5670/oceanog.2009.109, 2009.
Hernández-Hernández, N., Arístegui, J., Montero, M. F.,
Velasco-Senovilla, E., Baltar, F., Marrero-Díaz, Á.,
Martínez-Marrero, A., and Rodríguez-Santana, Á.: Drivers of
Plankton Distribution Across Mesoscale Eddies at Submesoscale Range, Front.
Mar. Sci., 7, 1–13, https://doi.org/10.3389/fmars.2020.00667, 2020.
Ihaka, R. and Gentleman, R.: R: a language for data analysis and graphics, J.
Comput. Graph. Stat., 5, 299, https://doi.org/10.2307/1390807, 1996.
Jansson, M., Bergström, A. K., Lymer, D., Vrede, K., and Karlsson, J.:
Bacterioplankton growth and nutrient use efficiencies under variable organic
carbon and inorganic phosphorus ratios, Microb. Ecol., 52, 358–364,
https://doi.org/10.1007/s00248-006-9013-4, 2006.
Jiao, N., Robinson, C., Azam, F., Thomas, H., Baltar, F., Dang, H.,
Hardman-Mountford, N. J., Johnson, M., Kirchman, D. L., Koch, B. P.,
Legendre, L., Li, C., Liu, J., Luo, T., Luo, Y. W., Mitra, A., Romanou, A.,
Tang, K., Wang, X., and Zhang, R.: Mechanisms of microbial carbon sequestration
in the ocean – Future research directions, Biogeosciences, 11,
5285–5306, https://doi.org/10.5194/bg-11-5285-2014, 2014.
Karstensen, J., Fiedler, B., Schütte, F., Brandt, P., Körtzinger,
A., Fischer, G., Zantopp, R., Hahn, J., Visbeck, M., and Wallace, D.: Open
ocean dead zones in the tropical North Atlantic Ocean, Biogeosciences, 12,
2597–2605, https://doi.org/10.5194/bg-12-2597-2015, 2015.
Kelley, D. E.: Oceanographic Analysis with R, New York, Springer-Verlag, https://doi.org/10.1007/978-1-4939-8844-0, 2018.
Kim, B., Kim, S. H., Kwak, J. H., Kang, C. K., Lee, S. H., and Hyun, J. H.:
Heterotrophic bacterial production, respiration, and growth efficiency
associated with upwelling intensity in the Ulleung Basin, East Sea, Deep-Sea
Res. Pt. II, 143, 24–35,
https://doi.org/10.1016/j.dsr2.2017.07.002, 2017.
Kirchman, D., K'nees, E., and Hodson, R.: Leucine incorporation and its
potential as a measure of protein synthesis by bacteria in natural aquatic
systems, Appl. Environ. Microbiol., 49, 599–607,
https://doi.org/10.1128/aem.49.3.599-607.1985, 1985.
Lasternas, S. and Agustí, S.: The percentage of living bacterial cells
related to organic carbon release from senescent oceanic phytoplankton,
Biogeosciences, 11, 6377–6387, https://doi.org/10.5194/bg-11-6377-2014,
2014.
Lasternas, S., Piedeleu, M., Sangrà, P., Duarte, C. M., and Agustí,
S.: Forcing of dissolved organic carbon release by phytoplankton by
anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean,
Biogeosciences, 10, 2129–2143, https://doi.org/10.5194/bg-10-2129-2013,
2013.
Lathuilière, C., Echevin, V., and Lévy, M.: Seasonal and
intraseasonal surface Chl a – a variability along the northwest African Coast,
J. Geophys. Res.-Ocean., 113, C05007, https://doi.org/10.1029/2007JC004433,
2008.
Le Vu, B., Stegner, A., and Arsouze, T.: Angular momentum eddy detection and
tracking algorithm (AMEDA) and its application to coastal eddy formation, J.
Atmos. Ocean. Technol., 35, 739–762,
https://doi.org/10.1175/JTECH-D-17-0010.1, 2018.
Levitus, S.: Climatological atlas of the World Ocean, NOAA Prof. Pap., 13,
1–41, 1982.
Lévy, M., Klein, P., and Treguier, A. M.: Impact of submesoscale physics
on production and subduction of phytoplankton in an oligotrophic regime, J.
Mar. Res., 59, 535–565, 2001.
Lindroth, P. and Mopper, K.: High performance liquid chromatographic
determination of subpicomole amounts of amino acids by precolumn
fluorescence derivatization with o-phthaldialdehyde, Anal. Chem., 51,
1667–1674, https://https://doi.org/10.1021/ac50047a019, 1979.
Lipson, D. A.: The complex relationship between microbial growth rate and
yield and its implications for ecosystem processes, Front. Microbiol., 6, 615,
https://doi.org/10.3389/fmicb.2015.00615, 2015.
Lochte, K. and Pfannkuche, O.: Cyclonic cold-core eddy in the eastern North
Atlantic, II. Nutrients, phytoplankton and bacterioplankton, Mar. Ecol.
Prog. Ser., 39, 153–164, https://doi.org/10.3354/meps039153, 1987.
Lønborg, C., Martínez-García, S., Teira, E., and
Álvarez-Salgado, X. A.: Bacterial carbon demand and growth efficiency in
a coastal upwelling system, Aquat. Microb. Ecol., 63, 183–191,
https://doi.org/10.3354/ame01495, 2011.
López-Urrutia, Á. and Morán, X. A. G.: Resource limitation of
bacterial production distorts the temperature dependence of oceanic carbon
cycling, Ecology, 88, 817–822, https://doi.org/10.1890/06-1641, 2007.
Löscher, C. R., Fischer, M. A., Neulinger, S. C., Fiedler, B., Philippi,
M., Schütte, F., Singh, A., Hauss, H., Karstensen, J., Körtzinger,
A., Künzel, S., and Schmitz, R. A.: Hidden biosphere in an
oxygen-deficient Atlantic open-ocean eddy: Future implications of ocean
deoxygenation on primary production in the eastern tropical North Atlantic,
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015,
2015.
Lovecchio, E., Gruber, N., Münnich, M., and Lachkar, Z.: On the long-range offshore transport of organic carbon from the Canary Upwelling System to the open North Atlantic, Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, 2017.
Lovecchio, E., Gruber, N., and Münnich, M: Mesoscale contribution to the
long-range offshore transport of organic carbon from the Canary Upwelling
System to the open North Atlantic, Biogeosciences, 15, 5061–5091,
https://doi.org/10.5194/bg-15-5061-2018, 2018.
Mahadevan, A.: The Impact of
Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar.
Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912,
2016.
Maixandeau, A., Lefevre, D., Karayanni, H., Christaki, U., VanWambeke, F.,
Thyssen, M., Denis, M., Fernandez, C. I., Uitz, J., Leblanc, K., and Queguiner,
B.: Microbial community production, respiration, and structure of the
microbial food web of an ecosystem in the northeastern Atlantic Ocean, J.
Geophys. Res.-Ocean., 110, C07S17, https://doi.org/10.1029/2004JC002694, 2005.
Malinsky-Mushansky, Z. N. and Legrand, C.: Excretion of dissolved organic carbon
by phytoplankton of different sizes and subsequent bacterial uptake, Mar.
Ecol. Prog. Ser., 132, 249–255, 1996.
Maßmig, M., Lüdke, J., Krahmann, G., and Engel, A.: Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone, Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, 2020.
McGillicuddy Jr., D. J., Anderson, L. A., Doney S. C., and Maltrud, M. E.:
Eddy-driven sources and sinks of nutrients in the upper ocean: Results from
a 0.1∘ resolution model of the North Atlantic, Global
Biogeochem. Cy., 17, 1035, https://doi.org/10.1029/2002GB001987,
2003.
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci.,
8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606, 2016.
Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale
generation of mesoscale anticyclones near a separation of the California
Undercurrent, J. Phys. Oceanogr., 45, 613–629,
https://doi.org/10.1175/JPO-D-13-0225.1, 2015.
Mouriño-Carballido, B. and McGillicuddy, D. J.: Mesoscale variability
in the metabolic balance of the Sargasso Sea, Limnol. Oceanogr., 51,
2675–2689, https://doi.org/10.4319/lo.2006.51.6.2675, 2006.
Mouriño-Carballido, B.: Eddy-driven pulses of respiration in the
Sargasso Sea, Deep-Sea Res. Pt. I, 56, 1242–1250,
https://doi.org/10.1016/j.dsr.2009.03.001, 2009.
Mühlenbruch, M., Grossart, H. P., Eigemann, F., and Voss, M.:
Mini-review: Phytoplankton-derived polysaccharides in the marine environment
and their interactions with heterotrophic bacteria, Environ. Microbiol.,
20, 2671–2685, https://doi.org/10.1111/1462-2920.14302, 2018.
Neijssel, O. M. and De Mattos, M. J. T.: Micro Review The energetics of
bacterial growth: a reassessment, Mol. Microbiol., 13, 179–182, 1994.
Nielsen, E. S.: The use of radio-active carbon (c14) for measuring organic
production in the sea, ICES Mar. Sci., 18, 117–140,
https://doi.org/10.1093/icesjms/18.2.117, 1952.
Noyon, M., Morris, T., Walker, D., and Huggett, J.: Plankton distribution
within a young cyclonic eddy off south-western Madagascar, Deep-Sea Res.
Pt. II, 166, 141–150,
https://doi.org/10.1016/j.dsr2.2018.11.001, 2019.
Obernosterer, I. and Herndl, G. J.: Phytoplankton extracellular release and
bacterial growth: Dependence on the inorganic N : P ratio, Mar. Ecol. Prog.
Ser., 116, 247–258, https://doi.org/10.3354/meps116247, 1995.
Pegliasco, C., Chaigneau, A., and Morrow, R.: Main eddy vertical structures
observed in the four major Eastern Boundary Upwelling Systems, J. Geophys.
Res.-Ocean., 120, 6008–6033, https://doi.org/10.1002/2015JC010950, 2015.
Pelegrí, J. L. and Peña-Izquierdo, J.: Eastern boundary currents
off North-West Africa, in: Oceanographic and biological features in the
Canary Current Large Marine Ecosystem, edited by: Valdés, L. and
Déniz-González, I., IOC-UNESCO, Paris, IOC Technical Series,
No. 115, 81–92, http://hdl.handle.net/1834/9179 (last access: 4 March 2019), 2015.
Piontek, J., Endres, S., Le Moigne, F. A. C., Schartau, M., and Engel, A.:
Relevance of Nutrient-Limited Phytoplankton Production and Its Bacterial
Remineralization for Carbon and Oxygen Fluxes in the Baltic Sea, Front. Mar.
Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00581, 2019.
Rao, D. N., Chopra, M., Rajula, G. R., Durgadevi, D. S. L., and Sarma, V. V.
S. S.: Release of significant fraction of primary production as dissolved
organic carbon in the Bay of Bengal, Deep-Sea Res. Pt. I,
168, 1–27, https://doi.org/10.1016/j.dsr.2020.103445, 2021.
Regaudie-De-Gioux, A. and Duarte, C. M.: Temperature dependence of
planktonic metabolism in the ocean, Global Biogeochem. Cy., 26, GB1015,
https://doi.org/10.1029/2010GB003907, 2012.
Reinthaler, T., Bakker, K., Manuels, R., van Ooijen, J., and Herndl, G. J.:
Erratum to Fully automated spectrophotometric approach to determine oxygen
concentrations in seawater via continuous-flow analysis, Limnol. Oceanogr.
Method., 5, 72–72, https://doi.org/10.4319/lom.2007.5.72, 2006.
Robinson C.: Heterotrophic bacterial respiration, in:
Microbial ecology of the oceans, edited by: Kirchman, D. L., 2nd Edn., 299–334, Wiley, 2008.
Russell, J. B. and Cook, M. G.: Energetics of Bacterial Growth: Balance of
Anabolic and Catabolic Reactions, Microbiol Rev., 59, 48–62, 1995.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 21 April 2022), 2020.
Schütte, F., Brandt, P., and Karstensen, J.: Occurrence and
characteristics of mesoscale eddies in the tropical northeastern Atlantic
Ocean, Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016,
2016.
Simon, M. and Azam, F.: Protein content and protein synthesis rates of
planktonic marine bacteria, Mar. Ecol. Prog. Ser., 51, 201–213, 1989.
Singh, A., Gandhi, N., Ramesh, R., and Prakash, S.: Role of cyclonic eddy in
enhancing primary and new production in the Bay of Bengal, J. Sea Res., 97,
5–13, https://doi.org/10.1016/j.seares.2014.12.002, 2015.
Smith, D. and Azam, F.: A simple, economical method for measuring bacterial
protein synthesis rates in seawater using, Mar. Microb. Food Webs, 6,
107–114, 1992.
Solórzano, L.: Determination of Ammonia in Natural Waters by the
Phenolhypochlorite Method, Limnol. Oceanogr., 14, 799–801, 1969.
Strickland, J. D. H. and Parsons, T. R.: A Practical Handbook of Seawater
Analysis, Bull. Fish. Res. Board Can., 167, 1–311, 1968.
Thingstad, T. F., Hagström, Å., and Rassoulzadegan, F.: Accumulation
of degradable DOC in surface waters: Is it caused by a malfunctioning
microbial loop?, Limnol. Oceanogr., 42, 398–404, https://doi.org/10.4319/lo.1997.42.2.0398, 1997.
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, J. R., Dengler, M., and Lavik, G. S.: The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions, J. Geophys. Res.-Ocean., 121, 476–501, https://doi.org/10.1002/2015JC010878, 2016.
Vaqué, D., Alonso-Sáez, L., Arístegui, J., Agustí, S.,
Duarte, C. M., Montserrat Sala, M., Vázquez-Domínguez, E., and
Gasol, J. M.: Bacterial production and losses to predators along an Open
ocean productivity gradient in the Subtropical North East Atlantic Ocean, J.
Plank. Res., 36, 198–213, https://doi.org/10.1093/plankt/fbt085, 2014.
Wear, E. K., Carlson, C. A., and Church, M. J.: Bacterioplankton metabolism
of phytoplankton lysates across a cyclone-anticyclone eddy dipole impacts
the cycling of semi-labile organic matter in the photic zone, Limnol.
Oceanogr., 65, 1608–1622, https://doi.org/10.1002/lno.11409, 2020.
Wickham, H.: tidyverse: Easily Install and Load “Tidyverse” Packages, See
https://cran.r-project.org/package=tidyverse (last access: 4 May 2022), 2016.
Wilhelm, W. L.: Die Bestimmung des im Wasser gelösten Sauerstoffes,
Ber. Dtsch. Chem. Ges., 21, 2843–2854, 1888.
Xu, G., Dong, C., Liu, Y., Gaube, P., and Yang, J.: Chl a Rings around Ocean
Eddies in the North Pacific, Sci. Rep., 9, 1–8,
https://doi.org/10.1038/s41598-018-38457-8, 2019.
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes....
Altmetrics
Final-revised paper
Preprint