Articles | Volume 20, issue 5
https://doi.org/10.5194/bg-20-1063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Tino Peplau
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Christopher Poeplau
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Edward Gregorich
Ottawa Research and Development Centre, Agriculture and
Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
Julia Schroeder
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Related authors
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Cited articles
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020.
Aphalo, P. J.: ggpmisc: Miscellaneous Extensions to “ggplot2”, Version 0.4.0, https://CRAN.R-project.org/package=ggpmisc (last access: 24 February 2023), 2021.
Arnold, J. B.: ggthemes: Extra Themes, Scales and Geoms for “ggplot2”,
Version 4.2.4,
https://CRAN.R-project.org/package=ggthemes (last access: 24 February 2023), 2021.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere-soil carbon transfer as a function
of soil depth, Nature, 559, 599–602, https://doi.org/10.1038/s41586-018-0328-3,
2018.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A.G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264–275, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Boysen, L. R., Brovkin, V., Warlind, D., Peano, D., Lanso, A. S., Delire, C., Burke, E., Poeplau, C., and Don, A.: Evaluation of soil carbon dynamics after forest cover change in CMIP6 land models using chronosequences, Environ. Res. Lett., 16, 1–12, https://doi.org/10.1088/1748-9326/ac0be1, 2021.
Byers, S. C., Mills, E. L., and Steward, P. L.: A comparison of methods of
determining organic carbon in marine sediments, with suggestions for a
standard method, Hydrobiologia, 58, 43–47, 1978.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J., Emmet, B., Frey, S. D., Heskel, M. A., Jiang, L.,
Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., Dato,
G. d., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson, A.,
Johnson, B. R., Larsen, K., S., Yiqi, L., Marhan, S., Melillo, J. M.,
Penuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA, 113, 13797–13802, https://doi.org/10.1073/pnas.1605365113, 2016.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M.,
Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton,
W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. A. M., and Bradford,
M. A.: Temperature and soil organic matter decomposition rates – synthesis
of current knowledge and a way forward, Glob. Change Biol., 17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J.
C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D.,
Blair, J. M., Bridgham, S. D., Burton, A. J., Carrilla, Y., Reich, P. B.,
Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmet, B. A.,
Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R.,
Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y.,
Lupascu, M., Ma, L. N., Marhan, S., Michelson, A., Mohan, J., Niu, S.,
Pendall, E., Penuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S.,
Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H.,
Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global soil
carbon losses in response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016.
Davidson, E. A., Trumbore, S. E., and Amundson, R.: Soil warming and
organic carbon content, Nature, 408, 789–790, 2000.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F.,
Aalto, J., Ashcroft, M., B., Christianse, D. M., Decocq, G., Pauw, K. d.,
Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H.,
Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., Meeussen, C., Ogée,
J., Tyystjärvi, V., Vangansbeke, P., and Hylander, K.: Forest microclimates
and climate change: Importance, drivers and future research agenda, Glob.
Change Biol., 27, 2279–2297. https://doi.org/10.1111/gcb.15569, 2021.
Djukic, I., Kepfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C.,
Berg, B., and Verheyen, K.: Early stage litter decomposition across biomes,
Sci. Total Environ., 628/629, 1369–1394, https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Environment Climate Change Canada: Canadian climate normal 1982–2010
station data, Temperature and Precipitation Graph for 1981 to 2010 Canadian
Climate Normals WHITEHORSE A, Government of Canada, https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=1618&autofwd=1 (last access: 24 February 2023), 2020.
Fierer, N., Craine, J. M., McLauchlan, K., and Schimel, J. P.: Litter quality
and the temperature sensitivity of decomposition, Ecology, 86, 320–326,
2005.
Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C.,
Gardner, C., Hank, T., Izaurralde, R., C., Jägermeyr, J., Jones, C. D.,
Liu, W., Olin, S., Pugh, T. A. M., Ruane, A. C., Stephens, H., Zabel, F.,
and Moyer, E. J.: Agricultural breadbaskets shift poleward given adaptive farmer
behavior under climate change, Glob. Change Biol., 28, 167–181, https://doi.org/10.1111/gcb.15868, 2022.
Gottschalk, P., Bellarby, J., Chenu, C., Foereid, B., Smith, P., Wattenbach, M., Zingore, S., and Smith, J.: Simulation of soil organic carbon response at forest cultivation sequences using 13C measurements, Org. Geochem., 41, 41–54, https://doi.org/10.1016/j.orggeochem.2009.04.017, 2010.
Graves, S., Piepho, H.-P., Selzer, L, and Dorai-Raj, S.: multcompView:
Visualizations of Paired Comparisons,
https://CRAN.R-project.org/package=multcompview (last access: 24 February 2023), 2019.
Gregorich, E. G., Janzen, H., Ellert, B. H., Helgason, B. L., Qian, B.,
Zebarth, B. J., Angers, D. A., Beyaert, R. P., Drury, C. F., Duguid, S.,
May, W. E., McConkey, B. G., and Dyck, M. F.: Litter decay controlled by
temperature, not soil properties, affecting future soil carbon, Glob.
Change Biol., 23, 1725–1734, https://doi.org/10.1111/gcb.13502, 2017.
Grünzweig, J. M., Sparrow, S. D., and Chapin, F. S.: Impact of forest
conversion to agriculture on carbon and nitrogen mineralization in subarctic
Alaska, Biogeochemistry, 64, 271–296, https://doi.org/10.1023/A:1024976713243, 2003.
Grünzweig, J. M., Sparrow, S. D., Yakir, D., and Chapin, F. S.: Impact of
Agricultural Land-use Change on Carbon Storage in Boreal Alaska, Glob.
Change Biol., 10, 452–472, 2004.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta
analysis, Glob. Change Biol., 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Henry, L. and Wickham, H.: purrr: Functional Programming Tools, Version 0.3.4,
https://CRAN.R-project.org/package=purrr (last access: 24 February 2023), 2020.
Horthon, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 246–363,
https://doi.org/10.1002/bimj.200810425, 2008.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Intergovernmental Panel on Climate
Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, ISBN 978-1-107-66182-0, 2013.
Jiménez, C., Tejedor, M., and Rodríguez, M.: Influence of land use
changes on the soil temperature regime of Andosols on Tenerife, Canary
Islands, Spain, Eur. J. Soil Sci., 58, 445–449, https://doi.org/10.1111/j.1365-2389.2007.00897.x, 2007.
Jones, A., Stolbovoy, V., Tarnocai, C., Broll, G., Spaargaren, O., and
Montanarella, L. (Eds.): Soil Atlas of the Northern Circumpolar Region, European
Commission, Office for Official Publications of the European Communities,
Luxembourg, 142 pp., ISBN 978-92-79-09770-6, 2009.
Kaczynski, R., Siebielec, G., Hanegraaf, M. C., and Hein, K.: Modelling soil
carbon trends for agriculture development scenarios at regional level,
Geoderma, 286, 104–115, https://doi.org/10.1016/j.geoderma.2016.10.026, 2017.
Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H.,
Oinonen, M., Sonninen, E., Tuomi, M., Spetz, P., Kizunen, V., and Liski, J.:
Temperature sensitivity of soil carbon fractions in boreal forest soil,
Ecology, 91, 370–376, 2010.
Karhu, K., Wall, A., Vanhala, P., Liski, J., Esala, M., and Regina, K.: Effects
of afforestation and deforestation on boreal soil carbon stocks – Comparison
of measured C stocks with Yasso07 model results, Geoderma, 164, 33–45,
https://doi.org/10.1016/j.geoderma.2011.05.008, 2011.
Kassambra, A.: ggpubr: “ggplot2” Based Publication Ready Plots,
https://CRAN.R-project.org/package=ggpubr (last access: 24 February 2023), 2020.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting,
M. M.: Tea Bag Index: a novel approach to collect uniform decomposition data
across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Köhn, M.: Korngrößenanalyse vermittels Pipettanalyse,
Tonindustrie-Zeitung, 53, 729–731, 1929.
Kuznetsova, A., Brockhoff, P. B. M., and Christensen, R. H. B.: lmerTest Package:
Tests in Linear Mixed Effects Models, J. Stat. Softw., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., B.,
Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb,
T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R.,
Paw, K. T., Richardson, A. D., Schmidt, H. P., Staebler, R., Wofsy, S.,
and Zhao, L.: Observed increase in local cooling effect of deforestation at
higher latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588,
2011.
Lembrechts, J. J., van den Hoogen, J., Aalto, J., Ashcroft, M. B., De
Frenne, P., Kemppinen, J., Kopecký, M., Luoto, M., Maclean, I. M. D.,
Crowther, T. W., Bailey, J. J., Haesen, S., Klinges, D. H., Niittynen, P.,
Scheffers, B. R., Van Meerbeek, K., Aartsma, P., Abdalaze, O., Abedi, M.,
and Lenoir, J.: Global maps of soil temperature, Glob. Change
Biol., 28, 3110–3144, https://doi.org/10.1111/gcb.16060, 2022.
Lenth, R. V.: emmeans: Estimated Marginal Means, aka Least-Square Means,
https://CRAN.R-project.org/package=emmeans (last access: 24 February 2023), 2021.
Luo, Z., Feng, W., Luo, Y., Baldock, J., and Wang, E.: Soil organic carbon
dynamics jointly controlled by climate, carbon inputs, soil properties and
soil carbon fractions, Glob. Change Biol., 23, 4430–4439, https://doi.org/10.1111/gcb.13767, 2017.
Morecroft, M. D., Taylor, M. E., and Oliver, H. R.: Air and soil microclimates
of deciduous woodland compared to an open site, Agr. Forest
Meteorol., 90, 141–156, 1998.
Mueller, C. W., Rethemeyer, J., Kao-Kniffin, J., Löppmann, S., Hinkel,
K. M., and Bockheim, J. G.: Large amounts of labile organic carbon in permafrost
soils of northern Alaska, Glob. Change Biol., 21, 2804–2817, https://doi.org/10.1111/gcb.12876, 2015.
Olsen, S. R., Cole, C. V., Watanabe, F. S., and Dean, L. A.: Department of
Agriculture, United States: Estimation of available phosphorus in soils by
extraction with sodium bicarbonate, Colorado Agricultural Experiment Station Scientific journal series no. 418., https://openlibrary.org/books/OL25604885M/Estimation_of_available_phosphorus_in_soils_by_extraction_with_sodium_bicarbonate (last access: 24 February 2023), 1954.
Peplau, T., Schroeder, J., Gregorich, E., and Poeplau, C.: Long-term geothermal
warming reduced stocks of carbon but not nitrogen in a subarctic forest
soil, Glob. Change Biol., 27, 5341–5355, https://doi.org/10.1111/gcb.15754,
2021.
Peplau, T., Schroeder, J., Gregorich, E., and Poeplau, C.: Subarctic soil carbon
losses after deforestation for agriculture depend on permafrost abundance,
Glob. Change Biol., 28, 5227–5242, https://doi.org/10.1111/gcb.16307, 2022a.
Peplau, T., Poeplau, C., Gregorich, E., and Schroeder, J.: Dataset to: Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils, Zenodo [data set], https://doi.org/10.5281/zenodo.7219753, 2022b.
Petraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano,
D., Abeli, T., Orsenigo, S., and Carbognani, M.: Litter decomposition: effects
of temperature driven by soil moisture and vegetation type, Plant Soil, 435, 187–200, https://doi.org/10.1007/s11104-018-3889-x, 2019.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B. A.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon after
land-use change in the temperate zone – carbon response functions as a model
approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C., Kätterer, T., Leblans, N. I. W., and Sigurdsson, B. D.:
Sensitivity of soil carbon fractions and their specific stabilization
mechanisms to extreme soil warming in a subarctic grassland, Glob. Change
Biol., 23, 1316–1327, https://doi.org/10.1111/gcb.13491, 2017.
Qian, B., Gregorich, E. G., Gameda, S., Hopkins, D. W., and Wang, X. L.:
Observed soil temperature trends associated with climate change in Canada,
J. Geophys. Res., 116, D02106, https://doi.org/10.1029/2010JD015012, 2011.
R Core Team: R: A language and environment for statistical computing,
Version 4.0.4, R Foundation for Statistical computing, https://www.r-project.org/ (last access: 24 February 2023), 2021.
Six, J., Elliott, E. T., and Paustian, K.: Soil macroaggregate turnover and
microaggregate formation: a mechanism for C sequestration under no-tillage
agriculture, Soil Biol. Biochem., 32, 2099–2103, 2000.
Tchebakova, N. M., Parfenova, E. I., Lysanova, G. I., and Soja, A. J.:
Agroclimatic potential across central Siberia in an altered twenty-first
century, Environ. Res. Lett., 6, 45207, https://doi.org/10.1088/1748-9326/6/4/045207, 2011.
Verbrigghe, N., Leblans, N. I. W., Sigurdsson, B. D., Vicca, S., Fang, C., Fuchslueger, L., Soong, J. L., Weedon, J. T., Poeplau, C., Ariza-Carricondo, C., Bahn, M., Guenet, B., Gundersen, P., Gunnarsdóttir, G. E., Kätterer, T., Liu, Z., Maljanen, M., Marañón-Jiménez, S., Meeran, K., Oddsdóttir, E. S., Ostonen, I., Peñuelas, J., Richter, A., Sardans, J., Sigurðsson, P., Torn, M. S., Van Bodegom, P. M., Verbruggen, E., Walker, T. W. N., Wallander, H., and Janssens, I. A.: Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil, Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, 2022.
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail, V.:
A second generation of homogenized Canadian monthly surface air temperature
for climate trend analysis, J. Geophys. Res., 117, D18110, https://doi.org/10.1029/2012JD017859, 2012.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation
Matrix, Version 0.90, Github,
https://github.com/taiyun/corrplot (last access: 24 February 2023), 2021.
Wei, X., Shao, M., Gale, W., and Li, L.: Global pattern of soil carbon losses
due to the conversion of forests to agricultural land, Sci. Rep.,
4, 4062, https://doi.org/10.1038/srep04062, 2014.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag
New York, https://ggplot2.tidyverse.org (last access: 24 February 2023), 2016.
Wickham, H. and Bryan, J.: readxl: Read Excel Files, Version 1.3.1, https://CRAN.R-project.org/package=readxl (last access: 24 February 2023), 2019.
Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L.,
Francois, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinsons, D., Seidel, D. P., Spine, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Sour.
Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A Grammar
of Data Manipulation, Version R package version 1.0.0,
https://CRAN.R-project.org/package=dplyr (last access: 24 February 2023), 2020.
Zhang, Y., Chen, W., Smith, S. L., Riseborough, D. W., and Cihlar, J.: Soil
temperature in Canada during the twentieth century: Complex responses to
atmospheric climate change, J. Geophys. Res., 110, D03112, https://doi.org/10.1029/2004JD004910, 2005.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007.
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and...
Altmetrics
Final-revised paper
Preprint