Articles | Volume 20, issue 5
https://doi.org/10.5194/bg-20-1063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1063-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Tino Peplau
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Christopher Poeplau
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Edward Gregorich
Ottawa Research and Development Centre, Agriculture and
Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
Julia Schroeder
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Related authors
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Christopher Poeplau, Páll Sigurðsson, and Bjarni D. Sigurdsson
SOIL, 6, 115–129, https://doi.org/10.5194/soil-6-115-2020, https://doi.org/10.5194/soil-6-115-2020, 2020
Short summary
Short summary
Global warming leads to increased mineralisation of soil organic matter, inducing a positive climate–carbon cycle feedback loop. Loss of organic matter can be associated with loss of soil structure. Here we use a strong geothermal gradient to investigate soil warming effects on soil organic matter and structural parameters in subarctic forest and grassland soils. Strong depletion of organic matter caused a collapse of aggregates, highlighting the potential impact of warming on soil function.
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
C. Poeplau, H. Marstorp, K. Thored, and T. Kätterer
SOIL, 2, 175–184, https://doi.org/10.5194/soil-2-175-2016, https://doi.org/10.5194/soil-2-175-2016, 2016
Short summary
Short summary
We compared two long-term contrasting systems of urban lawn management (frequently cut utility lawn vs. seldomly cut meadow-like lawn) regarding their effect on soil carbon in three Swedish cities. Biomass production was also measured during 1 year. The utility lawns had a significantly higher biomass production, which resulted in a higher soil carbon storage, since clippings were not removed. Soil carbon sequestration outweighed the higher management-related CO2 emissions of the utility lawns.
Christopher Poeplau, Martin A. Bolinder, Holger Kirchmann, and Thomas Kätterer
Biogeosciences, 13, 1119–1127, https://doi.org/10.5194/bg-13-1119-2016, https://doi.org/10.5194/bg-13-1119-2016, 2016
Short summary
Short summary
Nutrients determine the balance between inputs and outputs to and from the soil and thus exert a strong impact on the total soil organic carbon stock. However, for phosphorus, this impact has not been comprehensively addressed. Here we show in 10 different long-term experiments that phosphorus fertilisation can significantly deplete soil carbon stocks, despite a positive impact on plant growth and thus carbon inputs. Thus, soil carbon decay is most likely stimulated even more strongly.
C. Poeplau, M. A. Bolinder, J. Eriksson, M. Lundblad, and T. Kätterer
Biogeosciences, 12, 3241–3251, https://doi.org/10.5194/bg-12-3241-2015, https://doi.org/10.5194/bg-12-3241-2015, 2015
Short summary
Short summary
Soil carbon dynamics of the past 2 decades in Swedish agricultural soils were assessed using three consecutive soil inventories. We found a significant increase in country-wide soil carbon concentrations, which is in contrast to trends reported in neighbouring countries. We explained this by a significant rise of the proportion of leys in Swedish agriculture, which was found to be strongly related to the increase in horse population. Human lifestyle can affect soil carbon.
Related subject area
Biogeochemistry: Soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Soil priming effects and involved microbial community along salt gradients
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Global patterns and drivers of phosphorus pools in natural soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?
Estimating maximum fine-fraction organic carbon in UK grasslands
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge
Vertical mobility of pyrogenic organic matter in soils: a column experiment
Vertical partitioning of CO2 production in a forest soil
Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands
Reviews and syntheses: Ironing out wrinkles in the soil phosphorus cycling paradigm
Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation
Reviews and syntheses: The mechanisms underlying carbon storage in soil
Identification of lower-order inositol phosphates (IP5 and IP4) in soil extracts as determined by hypobromite oxidation and solution 31P NMR spectroscopy
Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-114, https://doi.org/10.5194/bg-2023-114, 2023
Revised manuscript accepted for BG
Short summary
Short summary
We conducted a 90 days of indoor incubation, and found soil microbial community was mainly controled by soil pH and EC. By O2PLS, we found Actinobacteria and Proteobacteria (Luteimonas, Hoeflea and Stenotrophomonas) dominant in these soils were the core microbial taxa that affecting the process of organic C mineralization. To clarify the priming effects and involved microbial groups would help us better understanding C sequestration potential and underlying mechanisms in saline soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-59, https://doi.org/10.5194/bg-2023-59, 2023
Revised manuscript accepted for BG
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among wetland, continental and marine ecosystems, and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in continents, but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-22, https://doi.org/10.5194/bg-2023-22, 2023
Revised manuscript accepted for BG
Short summary
Short summary
We identified total soil P as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH. We found soil pH is the most important predictor for proportions of all soil P pools, except for labile Pi proportion, which is primarily controlled by soil depth. We predicted soil P pools’ distributions in natural systems at a resolution of 0.5° × 0.5°.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Antonio Rodríguez, Rosa Maria Canals, Josefina Plaixats, Elena Albanell, Haifa Debouk, Jordi Garcia-Pausas, Leticia San Emeterio, Àngela Ribas, Juan José Jimenez, and M.-Teresa Sebastià
Biogeosciences, 17, 6033–6050, https://doi.org/10.5194/bg-17-6033-2020, https://doi.org/10.5194/bg-17-6033-2020, 2020
Short summary
Short summary
The novelty of our work is that it presents a series of potential interactions between drivers of soil organic carbon at broad scales in temperate mountain grasslands. The most relevant contribution of our work is that it illustrates the importance of grazing management for soil carbon stocks, indicating that interactions between grazing species and soil nitrogen and herbage quality may be promising paths in order to design further management policies for palliating climate change.
Curt A. McConnell, Jason P. Kaye, and Armen R. Kemanian
Biogeosciences, 17, 5309–5333, https://doi.org/10.5194/bg-17-5309-2020, https://doi.org/10.5194/bg-17-5309-2020, 2020
Short summary
Short summary
Soil phosphorus (P) management is a critical challenge for agriculture worldwide; yet, simulation models of soil P processes lag those of other essential nutrients. In this review, we identify hindrances to measuring and modeling soil P pools and fluxes. We highlight the need to clarify biological and mineral interactions by defining P pools explicitly and using evolving techniques, such as tracing P in phosphates using oxygen isotopes.
Greta Formaglio, Edzo Veldkamp, Xiaohong Duan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, https://doi.org/10.5194/bg-17-5243-2020, 2020
Short summary
Short summary
The intensive management of large-scale oil palm plantations may result in high nutrient leaching losses which reduce soil fertility and potentially pollute water bodies. The reduction in management intensity with lower fertilization rates and with mechanical weeding instead of the use of herbicide results in lower nutrient leaching losses while maintaining high yield. Lower leaching results from lower nutrient inputs from fertilizer and from higher retention by enhanced cover vegetation.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Jolanda E. Reusser, René Verel, Daniel Zindel, Emmanuel Frossard, and Timothy I. McLaren
Biogeosciences, 17, 5079–5095, https://doi.org/10.5194/bg-17-5079-2020, https://doi.org/10.5194/bg-17-5079-2020, 2020
Short summary
Short summary
Inositol phosphates (IPs) are a major pool of organic P in soil. However, information on their diversity and abundance in soil is limited. We isolated IPs from soil and characterised them using solution nuclear magnetic resonance (NMR) spectroscopy. For the first time, we provide direct spectroscopic evidence for the existence of a multitude of lower-order IPs in soil extracts previously not detected with NMR. Our findings will help provide new insight into the cycling of IPs in ecosystems.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020.
Aphalo, P. J.: ggpmisc: Miscellaneous Extensions to “ggplot2”, Version 0.4.0, https://CRAN.R-project.org/package=ggpmisc (last access: 24 February 2023), 2021.
Arnold, J. B.: ggthemes: Extra Themes, Scales and Geoms for “ggplot2”,
Version 4.2.4,
https://CRAN.R-project.org/package=ggthemes (last access: 24 February 2023), 2021.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere-soil carbon transfer as a function
of soil depth, Nature, 559, 599–602, https://doi.org/10.1038/s41586-018-0328-3,
2018.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A.G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264–275, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Boysen, L. R., Brovkin, V., Warlind, D., Peano, D., Lanso, A. S., Delire, C., Burke, E., Poeplau, C., and Don, A.: Evaluation of soil carbon dynamics after forest cover change in CMIP6 land models using chronosequences, Environ. Res. Lett., 16, 1–12, https://doi.org/10.1088/1748-9326/ac0be1, 2021.
Byers, S. C., Mills, E. L., and Steward, P. L.: A comparison of methods of
determining organic carbon in marine sediments, with suggestions for a
standard method, Hydrobiologia, 58, 43–47, 1978.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J., Emmet, B., Frey, S. D., Heskel, M. A., Jiang, L.,
Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., Dato,
G. d., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson, A.,
Johnson, B. R., Larsen, K., S., Yiqi, L., Marhan, S., Melillo, J. M.,
Penuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA, 113, 13797–13802, https://doi.org/10.1073/pnas.1605365113, 2016.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M.,
Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton,
W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. A. M., and Bradford,
M. A.: Temperature and soil organic matter decomposition rates – synthesis
of current knowledge and a way forward, Glob. Change Biol., 17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J.
C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D.,
Blair, J. M., Bridgham, S. D., Burton, A. J., Carrilla, Y., Reich, P. B.,
Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmet, B. A.,
Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R.,
Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y.,
Lupascu, M., Ma, L. N., Marhan, S., Michelson, A., Mohan, J., Niu, S.,
Pendall, E., Penuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S.,
Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H.,
Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global soil
carbon losses in response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016.
Davidson, E. A., Trumbore, S. E., and Amundson, R.: Soil warming and
organic carbon content, Nature, 408, 789–790, 2000.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F.,
Aalto, J., Ashcroft, M., B., Christianse, D. M., Decocq, G., Pauw, K. d.,
Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H.,
Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., Meeussen, C., Ogée,
J., Tyystjärvi, V., Vangansbeke, P., and Hylander, K.: Forest microclimates
and climate change: Importance, drivers and future research agenda, Glob.
Change Biol., 27, 2279–2297. https://doi.org/10.1111/gcb.15569, 2021.
Djukic, I., Kepfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C.,
Berg, B., and Verheyen, K.: Early stage litter decomposition across biomes,
Sci. Total Environ., 628/629, 1369–1394, https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Environment Climate Change Canada: Canadian climate normal 1982–2010
station data, Temperature and Precipitation Graph for 1981 to 2010 Canadian
Climate Normals WHITEHORSE A, Government of Canada, https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=1618&autofwd=1 (last access: 24 February 2023), 2020.
Fierer, N., Craine, J. M., McLauchlan, K., and Schimel, J. P.: Litter quality
and the temperature sensitivity of decomposition, Ecology, 86, 320–326,
2005.
Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C.,
Gardner, C., Hank, T., Izaurralde, R., C., Jägermeyr, J., Jones, C. D.,
Liu, W., Olin, S., Pugh, T. A. M., Ruane, A. C., Stephens, H., Zabel, F.,
and Moyer, E. J.: Agricultural breadbaskets shift poleward given adaptive farmer
behavior under climate change, Glob. Change Biol., 28, 167–181, https://doi.org/10.1111/gcb.15868, 2022.
Gottschalk, P., Bellarby, J., Chenu, C., Foereid, B., Smith, P., Wattenbach, M., Zingore, S., and Smith, J.: Simulation of soil organic carbon response at forest cultivation sequences using 13C measurements, Org. Geochem., 41, 41–54, https://doi.org/10.1016/j.orggeochem.2009.04.017, 2010.
Graves, S., Piepho, H.-P., Selzer, L, and Dorai-Raj, S.: multcompView:
Visualizations of Paired Comparisons,
https://CRAN.R-project.org/package=multcompview (last access: 24 February 2023), 2019.
Gregorich, E. G., Janzen, H., Ellert, B. H., Helgason, B. L., Qian, B.,
Zebarth, B. J., Angers, D. A., Beyaert, R. P., Drury, C. F., Duguid, S.,
May, W. E., McConkey, B. G., and Dyck, M. F.: Litter decay controlled by
temperature, not soil properties, affecting future soil carbon, Glob.
Change Biol., 23, 1725–1734, https://doi.org/10.1111/gcb.13502, 2017.
Grünzweig, J. M., Sparrow, S. D., and Chapin, F. S.: Impact of forest
conversion to agriculture on carbon and nitrogen mineralization in subarctic
Alaska, Biogeochemistry, 64, 271–296, https://doi.org/10.1023/A:1024976713243, 2003.
Grünzweig, J. M., Sparrow, S. D., Yakir, D., and Chapin, F. S.: Impact of
Agricultural Land-use Change on Carbon Storage in Boreal Alaska, Glob.
Change Biol., 10, 452–472, 2004.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta
analysis, Glob. Change Biol., 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Henry, L. and Wickham, H.: purrr: Functional Programming Tools, Version 0.3.4,
https://CRAN.R-project.org/package=purrr (last access: 24 February 2023), 2020.
Horthon, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 246–363,
https://doi.org/10.1002/bimj.200810425, 2008.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Intergovernmental Panel on Climate
Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, ISBN 978-1-107-66182-0, 2013.
Jiménez, C., Tejedor, M., and Rodríguez, M.: Influence of land use
changes on the soil temperature regime of Andosols on Tenerife, Canary
Islands, Spain, Eur. J. Soil Sci., 58, 445–449, https://doi.org/10.1111/j.1365-2389.2007.00897.x, 2007.
Jones, A., Stolbovoy, V., Tarnocai, C., Broll, G., Spaargaren, O., and
Montanarella, L. (Eds.): Soil Atlas of the Northern Circumpolar Region, European
Commission, Office for Official Publications of the European Communities,
Luxembourg, 142 pp., ISBN 978-92-79-09770-6, 2009.
Kaczynski, R., Siebielec, G., Hanegraaf, M. C., and Hein, K.: Modelling soil
carbon trends for agriculture development scenarios at regional level,
Geoderma, 286, 104–115, https://doi.org/10.1016/j.geoderma.2016.10.026, 2017.
Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H.,
Oinonen, M., Sonninen, E., Tuomi, M., Spetz, P., Kizunen, V., and Liski, J.:
Temperature sensitivity of soil carbon fractions in boreal forest soil,
Ecology, 91, 370–376, 2010.
Karhu, K., Wall, A., Vanhala, P., Liski, J., Esala, M., and Regina, K.: Effects
of afforestation and deforestation on boreal soil carbon stocks – Comparison
of measured C stocks with Yasso07 model results, Geoderma, 164, 33–45,
https://doi.org/10.1016/j.geoderma.2011.05.008, 2011.
Kassambra, A.: ggpubr: “ggplot2” Based Publication Ready Plots,
https://CRAN.R-project.org/package=ggpubr (last access: 24 February 2023), 2020.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting,
M. M.: Tea Bag Index: a novel approach to collect uniform decomposition data
across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Köhn, M.: Korngrößenanalyse vermittels Pipettanalyse,
Tonindustrie-Zeitung, 53, 729–731, 1929.
Kuznetsova, A., Brockhoff, P. B. M., and Christensen, R. H. B.: lmerTest Package:
Tests in Linear Mixed Effects Models, J. Stat. Softw., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., B.,
Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb,
T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R.,
Paw, K. T., Richardson, A. D., Schmidt, H. P., Staebler, R., Wofsy, S.,
and Zhao, L.: Observed increase in local cooling effect of deforestation at
higher latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588,
2011.
Lembrechts, J. J., van den Hoogen, J., Aalto, J., Ashcroft, M. B., De
Frenne, P., Kemppinen, J., Kopecký, M., Luoto, M., Maclean, I. M. D.,
Crowther, T. W., Bailey, J. J., Haesen, S., Klinges, D. H., Niittynen, P.,
Scheffers, B. R., Van Meerbeek, K., Aartsma, P., Abdalaze, O., Abedi, M.,
and Lenoir, J.: Global maps of soil temperature, Glob. Change
Biol., 28, 3110–3144, https://doi.org/10.1111/gcb.16060, 2022.
Lenth, R. V.: emmeans: Estimated Marginal Means, aka Least-Square Means,
https://CRAN.R-project.org/package=emmeans (last access: 24 February 2023), 2021.
Luo, Z., Feng, W., Luo, Y., Baldock, J., and Wang, E.: Soil organic carbon
dynamics jointly controlled by climate, carbon inputs, soil properties and
soil carbon fractions, Glob. Change Biol., 23, 4430–4439, https://doi.org/10.1111/gcb.13767, 2017.
Morecroft, M. D., Taylor, M. E., and Oliver, H. R.: Air and soil microclimates
of deciduous woodland compared to an open site, Agr. Forest
Meteorol., 90, 141–156, 1998.
Mueller, C. W., Rethemeyer, J., Kao-Kniffin, J., Löppmann, S., Hinkel,
K. M., and Bockheim, J. G.: Large amounts of labile organic carbon in permafrost
soils of northern Alaska, Glob. Change Biol., 21, 2804–2817, https://doi.org/10.1111/gcb.12876, 2015.
Olsen, S. R., Cole, C. V., Watanabe, F. S., and Dean, L. A.: Department of
Agriculture, United States: Estimation of available phosphorus in soils by
extraction with sodium bicarbonate, Colorado Agricultural Experiment Station Scientific journal series no. 418., https://openlibrary.org/books/OL25604885M/Estimation_of_available_phosphorus_in_soils_by_extraction_with_sodium_bicarbonate (last access: 24 February 2023), 1954.
Peplau, T., Schroeder, J., Gregorich, E., and Poeplau, C.: Long-term geothermal
warming reduced stocks of carbon but not nitrogen in a subarctic forest
soil, Glob. Change Biol., 27, 5341–5355, https://doi.org/10.1111/gcb.15754,
2021.
Peplau, T., Schroeder, J., Gregorich, E., and Poeplau, C.: Subarctic soil carbon
losses after deforestation for agriculture depend on permafrost abundance,
Glob. Change Biol., 28, 5227–5242, https://doi.org/10.1111/gcb.16307, 2022a.
Peplau, T., Poeplau, C., Gregorich, E., and Schroeder, J.: Dataset to: Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils, Zenodo [data set], https://doi.org/10.5281/zenodo.7219753, 2022b.
Petraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano,
D., Abeli, T., Orsenigo, S., and Carbognani, M.: Litter decomposition: effects
of temperature driven by soil moisture and vegetation type, Plant Soil, 435, 187–200, https://doi.org/10.1007/s11104-018-3889-x, 2019.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B. A.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon after
land-use change in the temperate zone – carbon response functions as a model
approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C., Kätterer, T., Leblans, N. I. W., and Sigurdsson, B. D.:
Sensitivity of soil carbon fractions and their specific stabilization
mechanisms to extreme soil warming in a subarctic grassland, Glob. Change
Biol., 23, 1316–1327, https://doi.org/10.1111/gcb.13491, 2017.
Qian, B., Gregorich, E. G., Gameda, S., Hopkins, D. W., and Wang, X. L.:
Observed soil temperature trends associated with climate change in Canada,
J. Geophys. Res., 116, D02106, https://doi.org/10.1029/2010JD015012, 2011.
R Core Team: R: A language and environment for statistical computing,
Version 4.0.4, R Foundation for Statistical computing, https://www.r-project.org/ (last access: 24 February 2023), 2021.
Six, J., Elliott, E. T., and Paustian, K.: Soil macroaggregate turnover and
microaggregate formation: a mechanism for C sequestration under no-tillage
agriculture, Soil Biol. Biochem., 32, 2099–2103, 2000.
Tchebakova, N. M., Parfenova, E. I., Lysanova, G. I., and Soja, A. J.:
Agroclimatic potential across central Siberia in an altered twenty-first
century, Environ. Res. Lett., 6, 45207, https://doi.org/10.1088/1748-9326/6/4/045207, 2011.
Verbrigghe, N., Leblans, N. I. W., Sigurdsson, B. D., Vicca, S., Fang, C., Fuchslueger, L., Soong, J. L., Weedon, J. T., Poeplau, C., Ariza-Carricondo, C., Bahn, M., Guenet, B., Gundersen, P., Gunnarsdóttir, G. E., Kätterer, T., Liu, Z., Maljanen, M., Marañón-Jiménez, S., Meeran, K., Oddsdóttir, E. S., Ostonen, I., Peñuelas, J., Richter, A., Sardans, J., Sigurðsson, P., Torn, M. S., Van Bodegom, P. M., Verbruggen, E., Walker, T. W. N., Wallander, H., and Janssens, I. A.: Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil, Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, 2022.
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail, V.:
A second generation of homogenized Canadian monthly surface air temperature
for climate trend analysis, J. Geophys. Res., 117, D18110, https://doi.org/10.1029/2012JD017859, 2012.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation
Matrix, Version 0.90, Github,
https://github.com/taiyun/corrplot (last access: 24 February 2023), 2021.
Wei, X., Shao, M., Gale, W., and Li, L.: Global pattern of soil carbon losses
due to the conversion of forests to agricultural land, Sci. Rep.,
4, 4062, https://doi.org/10.1038/srep04062, 2014.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag
New York, https://ggplot2.tidyverse.org (last access: 24 February 2023), 2016.
Wickham, H. and Bryan, J.: readxl: Read Excel Files, Version 1.3.1, https://CRAN.R-project.org/package=readxl (last access: 24 February 2023), 2019.
Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L.,
Francois, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinsons, D., Seidel, D. P., Spine, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Sour.
Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A Grammar
of Data Manipulation, Version R package version 1.0.0,
https://CRAN.R-project.org/package=dplyr (last access: 24 February 2023), 2020.
Zhang, Y., Chen, W., Smith, S. L., Riseborough, D. W., and Cihlar, J.: Soil
temperature in Canada during the twentieth century: Complex responses to
atmospheric climate change, J. Geophys. Res., 110, D03112, https://doi.org/10.1029/2004JD004910, 2005.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007.
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and...
Altmetrics
Final-revised paper
Preprint