Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient
Biogéosciences, CNRS, Université Bourgogne
Franche-Comté, 21000 Dijon, France
Christophe Thomazo
Biogéosciences, CNRS, Université Bourgogne
Franche-Comté, 21000 Dijon, France
Institut
Universitaire de France, 75005 Paris, France
Miguel Iniesto
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Didier Jézéquel
IPGP, CNRS, Université de Paris Cité, 75005 Paris, France
UMR CARRTEL, INRAE and USMB, 74200 Thonon-les-Bains, France
David Moreira
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Rosaluz Tavera
Departamento de Ecología y Recursos Naturales, Universidad
Nacional Autónoma de México, Mexico City,
México
Jeanne Caumartin
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Elodie Muller
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Purificación López-García
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Karim Benzerara
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Related authors
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Clémentin Bouquet, Hermine Billard, Cécile C. Bidaud, Jonathan Colombet, Young-Tae Chang, Joan Artigas, Isabelle Batisson, Karim Benzerara, Fériel Skouri-Panet, Elodie Duprat, and Anne-Catherine Lehours
Biogeosciences, 22, 1729–1744, https://doi.org/10.5194/bg-22-1729-2025, https://doi.org/10.5194/bg-22-1729-2025, 2025
Short summary
Short summary
In the context of the ecological sustainability of phosphorus, the ubiquitous presence of polyphosphate-accumulating bacteria in natural environments invites efforts to reveal their unknown roles in the biogeochemical cycle of phosphorus. In this study, we evaluated the potential of combining the staining of intracellular polyphosphate granules and their subsequent detection by flow cytometry for the detection, quantification and cell sorting of polyphosphate-accumulating bacteria.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Adame, M. F., Alcocer, J., and Escobar, E.: Size-fractionated phytoplankton
biomass and its implications for the dynamics of an oligotrophic tropical
lake, Freshw. Biol., 53, 22–31,
https://doi.org/10.1111/j.1365-2427.2007.01864.x, 2008.
Ader, M., Macouin, M., Trindade, R. I. F., Hadrien, M.-H., Yang, Z., Sun, Z.,
and Besse, J.: A multilayered water column in the Ediacaran Yangtze platform?
Insights from carbonate and organic matter paired δ13C, Earth
Planet. Sc. Lett., 288, 213–22,
https://doi.org/10.1016/j.epsl.2009.09.024, 2009.
Aharon, P.: Redox stratification and anoxia of the early Precambrian oceans:
Implications for carbon isotope excursions and oxidation events, Precambrian
Res., 173, 207–222, https://doi.org/10.1016/j.precamres.2005.03.008, 2005.
Alcocer, J.: Lake Alchichica Limnology, Springer Nature,
https://doi.org/10.1007/978-3-030-79096-7, 2021.
Alcocer, J., Ruiz-Fernández, A. C., Escobar, E., Pérez-Bernal, L. H.,
Oseguera, L. A., and Ardiles-Gloria, V.: Deposition, burial and sequestration
of
carbon in an oligotrophic, tropical lake, J. Limnol., 73, 223–235,
https://doi.org/10.4081/jlimnol.2014.783, 2014.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on
dissolved
organic carbon concentration and quality in lakes of SW Greenland, Freshw.
Biol., 52, 280–289, https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
Ardiles, V., Alcocer, J., Vilaclara, G., Oseguera, L. A., and Velasco, L.:
Diatom
fluxes in a tropical, oligotrophic lake dominated by large-sized
phytoplankton, Hydrobiologia, 679, 77–90,
https://doi.org/10.1007/s10750-011-0853-7, 2012.
Armienta, M. A., Vilaclara, G., De la Cruz-Reyna, S., Ramos, S., Ceniceros,
N., Cruz, O., Aguayo, A., and Arcega-Cabrera, F.: Water chemistry of lakes
related to active and inactive Mexican volcanoes, J. Volcanol. Geotherm.
Res., 178, 249–258, https://doi.org/10.1016/j.jvolgeores.2008.06.019, 2008.
Armstrong-Altrin, J. S., Madhavaraju, J., Sial, A. N., Kasper-Zubillaga, J.
J.,
Nagarajan, R., Flores-Castro, K., and Rodríguez, J. L.: Petrography and
stable isotope geochemistry of the cretaceous El Abra Limestones (Actopan),
Mexico: Implication on diagenesis, J. Geol. Soc. India, 77, 349–359,
https://doi.org/10.1007/s12594-011-0042-3, 2011.
Assayag, N., Rivé, K., Ader, M., Jézéquel, D., and Agrinier, P.:
Improved method for isotopic and quantitative analysis of dissolved
inorganic carbon in natural water samples, Rapid Commun. Mass Spectrom., 20,
2243–2251, https://doi.org/10.1002/rcm.2585, 2006.
Assayag, N., Jézéquel, D., Ader, M., Viollier, E., Michard, G.,
Prévot, F., and Agrinier, P.: Hydrological budget, carbon sources and
biogeochemical processes in Lac Pavin (France): Constraints from
δ18O of water and δ13C of dissolved inorganic carbon,
Appl. Geochem., 23, 2800–2816,
https://doi.org/10.1016/j.apgeochem.2008.04.015, 2008.
Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C., and Hesslein, R.
H.:
Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism, and
morphometry, Limnol. Oceanogr., 49, 1160–1172,
https://doi.org/10.4319/lo.2004.49.4.1160, 2004.
Bekker, A., Holmden, C., Beukes, N. J., Kenig, F., Eglinton, B., and
Patterson,
W. P.: Fractionation between inorganic and organic carbon during the
Lomagundi (2.22–2.1 Ga) carbon isotope excursion, Earth Planet. Sc. Lett.,
271, 278–291, https://doi.org/10.1016/j.epsl.2008.04.021, 2008.
Birgel, D., Meister, P., Lundberg, R., Horath, T. D., Bontognali, T. R. R.,
Bahniuk, A. M., de Rezende, C. E., Vasconcelos, C., and McKenzie, J. A.:
Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa
Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites?,
Geobiology, 13, 245–266, https://doi.org/10.1111/gbi.12130, 2015.
Briones, E. E., Alcocer, J., Cienfuegos, E., and Morales, P.: Carbon stable
isotopes ratios of pelagic and littoral communities in Alchichica
crater-lake, Mexico, Int. J. Salt Lake Res., 7,
345–355, https://doi.org/10.1007/BF02442143, 1998.
Buchan, A., LeCleir, G. R., Gulvik, C. A., and González, J. M.: Master
recyclers: features and functions of bacteria associated with phytoplankton
blooms, Nat. Rev. Microbiol., 12, 686–698,
https://doi.org/10.1038/nrmicro3326, 2014.
Cadeau, P., Jézéquel, D., Leboulanger, C., Fouilland, E., Le Floc'h,
E., Chaduteau, C., Milesi, V., Guélard, J., Sarazin, G., Katz, A.,
d'Amore, S., Bernard, C., and Ader, M.: Carbon isotope evidence for large
methane emissions to the Proterozoic atmosphere, Sci. Rep., 10, 18186,
https://doi.org/10.1038/s41598-020-75100-x, 2020.
Cai, C., Li, K., Liu, D., John, C.M., Wang, D., Fu, B., Fakhraee, M., He,
H., Feng, L., and Jiang, L.: Anaerobic oxidation of methane by Mn oxides in
sulfate-poor environments, Geology, 49, 761–766,
https://doi.org/10.1130/G48553.1, 2021.
Carrasco-Núñez, G., Ort, M. H., and Romero, C.: Evolution and
hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico),
J. Volcanol. Geotherm. Res., 159, 179–197,
https://doi.org/10.1016/j.jvolgeores.2006.07.001, 2007.
Chako Tchamabé, B., Carrasco-Núñez, G., Miggins, D. P.,
and Németh, K.: Late Pleistocene to Holocene activity of Alchichica maar
volcano, eastern Trans-Mexican Volcanic Belt, J. South Am. Earth Sci., 97,
102404, https://doi.org/10.1016/j.jsames.2019.102404, 2020.
Cheng, C., Zhang, J., He, Q., Wu, H., Chen, Y., Xie, H., and Pavlostathis, S.
G.:
Exploring simultaneous nitrous oxide and methane sink in wetland sediments
under anoxic conditions, Water Res., 194, 116958,
https://doi.org/10.1016/j.watres.2021.116958, 2021.
Close, H. G. and Henderson, L. C.: Open-Ocean Minima in δ13C Values
of
Particulate Organic Carbon in the Lower Euphotic Zone, Front. Mar. Sci., 7,
540165, https://doi.org/10.3389/fmars.2020.540165, 2020.
Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S.,
Pack, M. A., Kessler, J. D., Reeburgh, W. S., Roberts, J. A., González,
L.,
Douglas Haffner, G., Mucci, A., Sundby, B., and Fowle, D. A.: The methane
cycle
in ferruginous Lake Matano: Methane cycle in ferruginous Lake Matano,
Geobiology, 9, 61–78, https://doi.org/10.1111/j.1472-4669.2010.00257.x,
2011.
Dean, W. E. and Gorham, E.: Magnitude and significance of carbon burial in
lakes, reservoirs, and peatlands, Geology, 26, 535–538,
https://doi.org/10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2, 1998.
Descolas-Gros, C. and Fontungne, M.: Stable carbon isotope fractionation by
marine phytoplankton during photosynthesis, Plant Cell Environ., 13,
207–218, https://doi.org/10.1111/j.1365-3040.1990.tb01305.x, 1990.
Duarte, C. M., Prairie, Y. T., Montes, C., Cole, J. J., Striegl, R., Melack, J., and Downing, J. A.: CO2 emissions from saline lakes: A global estimate of a surprisingly large flux, J. Geophys. Res.-Biogeo., 113, G4, https://doi.org/10.1029/2007JG000637, 2008.
Emrich, K., Ehhalt, D. H., and Vogel, J. C.: Carbon isotope fractionation
during
the precipitation of calcium carbonate, Earth Planet. Sc. Lett., 8,
363–371, https://doi.org/10.1016/0012-821X(70)90109-3, 1970.
Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M.: The dynamic
history
of the Trans-Mexican Volcanic Belt and the Mexico subduction zone,
Tectonophysics, 522/523, 122–149,
https://doi.org/10.1016/j.tecto.2011.09.018, 2012.
Fogel, M. L. and Cifuentes, L. A.: Isotope Fractionation during Primary
Production, in: Organic Geochemistry,
Topics in Geobiology, edited by: Engel, M. H. and Macko, S. A., Springer US,
Boston, MA, 73–98,
https://doi.org/10.1007/978-1-4615-2890-6_3, 1993.
Friese, A., Bauer, K., Glombitza, C., Ordoñez, L., Ariztegui, D., Heuer,
V.B., Vuillemin, A., Henny, C., Nomosatryo, S., Simister, R., Wagner, D.,
Bijaksana, S., Vogel, H., Melles, M., Russell, J. M., Crowe, S. A., and
Kallmeyer,
J.: Organic matter mineralization in modern and ancient ferruginous
sediments, Nat. Commun., 12, 2216,
https://doi.org/10.1038/s41467-021-22453-0, 2021.
Fry, B.: 13C 12C fractionation by marine diatoms, Mar. Eco. Prog.
Ser., 134, 283–294, https://doi.org/10.3354/meps134283, 1996.
Fry, B., Jannasch, H. W., Molyneaux, S. J., Wirsen, C. O., Muramoto, J. A.,
and King, S.: Stable isotope studies of the carbon, nitrogen and sulfur
cycles
in the Black Sea and the Cariaco Trench, Deep-Sea Res., 38,
S1003–S1019,
https://doi.org/10.1016/S0198-0149(10)80021-4, 1991.
Fulton, J. M., Arthur, M. A., Thomas, B., and Freeman, K. H.: Pigment carbon
and
nitrogen isotopic signatures in euxinic basins, Geobiology, 16, 429–445,
https://doi.org/10.1111/gbi.12285, 2018.
Furian, S., Martins, E. R. C., Parizotto, T. M., Rezende-Filho, A. T.,
Victoria,
R. L., and Barbiero, L.: Chemical diversity and spatial variability in myriad
lakes in Nhecolândia in the Pantanal wetlands of Brazil, Limnol.
Oceanogr., 58, 2249–2261, https://doi.org/10.4319/lo.2013.58.6.2249, 2013.
Gérard, E., Ménez, B., Couradeau, E., Moreira, D., Benzerara, K.,
Tavera, R., and López-García, P.: Specific carbonate–microbe
interactions in the modern microbialites of Lake Alchichica (Mexico), ISME
J., 7, 1997–2009. https://doi.org/10.1038/ismej.2013.81, 2013.
Gonzales-Partida, E., Barragan-R, R. M., and Nieva-G, D.: Analisis
geoquimico-isotopico de las especies carbonicas del fluido geotermico de Los
Humeros, Puebla, México, Geofis. Int., 32, 299–309,
https://doi.org/10.22201/igeof.00167169p.1993.32.2.563, 1993.
Gröger, J., Franke, J., Hamer, K., and Schulz, H. D.: Quantitative
Recovery
of Elemental Sulfur and Improved Selectivity in a Chromium-Reducible Sulfur
Distillation, Geostand. Geoanal. Res., 33, 17–27,
https://doi.org/10.1111/j.1751-908X.2009.00922.x, 2009.
Gu, B., Schelske, C. L., and Hodell, D. A.: Extreme 13C enrichments in a
shallow hypereutrophic lake: Implications for carbon cycling, Limnol.
Oceanogr., 49, 1152–1159, https://doi.org/10.4319/lo.2004.49.4.1152, 2004.
Hassan, K. M.: Isotope geochemistry of Swan Lake Basin in the Nebraska
Sandhills, USA: Large 13C enrichment in sediment-calcite records,
Geochemistry, 74, 681–690, https://doi.org/10.1016/j.chemer.2014.03.004,
2014.
Havig, J. R., Hamilton, T. L., McCormick, M., McClure, B., Sowers, T.,
Wegter,
B., and Kump, L. R.: Water column and sediment stable carbon isotope
biogeochemistry of permanently redox-stratified Fayetteville Green Lake, New
York, USA, Limnol. Oceanogr., 63, 570–587,
https://doi.org/10.1002/lno.10649, 2018.
Havig, J. R., McCormick, M. L., Hamilton, T. L., and Kump, L. R.: The
behavior of
biologically important trace elements across the oxic/euxinic transition of
meromictic Fayetteville Green Lake, New York, USA, Geochim. Cosmochim. Ac.,
165, 389–406, https://doi.org/10.1016/j.gca.2015.06.024, 2015.
Havas, R., Thomazo, C., Iniesto, M., Jézéquel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., López-García, P., and Benzerara, K.: The hidden role of dissolved organic carbon in the biogeochemical cycle of carbon in modern redox-stratified lakes, Biogeosciences, in press, 10.5194/egusphere-2023-23, 2023a.
Havas, R., Thomazo, C., Iniesto, M., Jezequel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., Lopez Garcia, P., and Benzerara, K.: Carbon isotopes and alkalinity gradient for biogeochemical processes in modern stratified lakes v. 2, Version 1.0., Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112943, 2023b.
Hayes, J. M., Popp, B. N., Takigiku, R., and Johnson, M. W.: An isotopic
study of
biogeochemical relationships between carbonates and organic carbon in the
Greenhorn Formation, Geochim. Cosmochim. Ac., 53, 2961–2972,
https://doi.org/10.1016/0016-7037(89)90172-5, 1989.
Hayes, J. M., Strauss, H., and Kaufman, A. J.: The abundance of 13C in
marine
organic matter and isotopic fractionation in the global biogeochemical cycle
of carbon during the past 800 Ma, Chem. Geol., 161, 103–125,
https://doi.org/10.1016/S0009-2541(99)00083-2, 1999.
Henkel, J. V., Dellwig, O., Pollehne, F., Herlemann, D. P. R., Leipe, T.,
and Schulz-Vogt, H. N.: A bacterial isolate from the Black Sea oxidizes
sulfide
with manganese(IV) oxide, P. Natl. Acad. Sci. USA, 116, 12153–12155,
https://doi.org/10.1073/pnas.1906000116, 2019.
Hurley, S. J., Wing, B. A., Jasper, C. E., Hill, N. C., and Cameron, J. C.:
Carbon
isotope evidence for the global physiology of Proterozoic cyanobacteria,
Sci. Adv., 7, eabc8998, https://doi.org/10.1126/sciadv.abc8998, 2021.
Iniesto, M., Moreira, D., Benzerara, K., Muller, E., Bertolino, P., Tavera,
R., and López-García, P.: Rapid formation of mature microbialites in
Lake Alchichica, Mexico, Environ. Microbiol. Rep., 13, 600–605,
https://doi.org/10.1111/1758-2229.12957, 2021a.
Iniesto, M., Moreira, D., Reboul, G., Deschamps, P., Benzerara, K.,
Bertolino, P., Saghaï, A., Tavera, R., and López-García, P.:
Core
microbial communities of lacustrine microbialites sampled along an
alkalinity gradient, Environ. Microbiol., 23, 51–68,
https://doi.org/10.1111/1462-2920.15252, 2021b.
Iniesto, M., Moreira, D., Benzerara, K., Reboul, G., Bertolino, P., Tavera,
R., and López-García, P.: Planktonic microbial communities from
microbialite-bearing lakes sampled along a salinity-alkalinity gradient,
Limnol. Oceanogr. lno., 67, 12233,
https://doi.org/10.1002/lno.12233, 2022.
Iñiguez, C., Capó-Bauçà, S., Niinemets, Ü., Stoll, H.,
Aguiló-Nicolau, P., and Galmés, J.: Evolutionary trends in RuBisCO
kinetics and their co-evolution with CO2 concentrating mechanisms,
Plant J., 101, 897–918, https://doi.org/10.1111/tpj.14643, 2020.
Javoy, M., Pineau, F., and Delorme, H.: Carbon and nitrogen isotopes in the
mantle, Chem. Geol., 57, 41–62,
https://doi.org/10.1016/0009-2541(86)90093-8, 1986.
Jézéquel, D., Michard, G., Viollier, E., Agrinier, P., Albéric,
P., Lopes, F., Abril, G., and Bergonzini, L.: Carbon Cycle in a Meromictic
Crater Lake: Lake Pavin, France, in: Lake Pavin: History, Geology,
Biogeochemistry, and Sedimentology of a Deep Meromictic Maar Lake, edited by:
Sime-Ngando, T., Boivin, P., Chapron,
E., Jezequel, D., and Meybeck, M., Springer
International Publishing, Cham, 185–203,
https://doi.org/10.1007/978-3-319-39961-4_11, 2016.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm,
S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: long-term
carbon storage in the global ocean, Nat. Rev. Microbiol., 8, 593–599,
https://doi.org/10.1038/nrmicro2386, 2010.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed—the
role of sulphate reduction, Nature, 296, 643–645,
https://doi.org/10.1038/296643a0, 1982.
Karhu, J. A. and Holland, H. D.: Carbon isotopes and the rise of atmospheric
oxygen, Geology, 24, 867,
https://doi.org/10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2, 1996.
Klawonn, I., Van den Wyngaert, S., Parada, A. E., Arandia-Gorostidi, N.,
Whitehouse, M. J., Grossart, H.-P., and Dekas, A. E.: Characterizing the
“fungal
shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial
communities in aquatic microbial food webs, P. Natl. Acad. Sci. USA, 118,
e2102225118, https://doi.org/10.1073/pnas.2102225118, 2021.
Knossow, N., Blonder, B., Eckert, W., Turchyn, A. V., Antler, G., and
Kamyshny,
A.: Annual sulfur cycle in a warm monomictic lake with sub-millimolar
sulfate concentrations, Geochem. Trans., 16, 7,
https://doi.org/10.1186/s12932-015-0021-5, 2015.
Krissansen-Totton, J., Buick, R., and Catling, D. C.: A statistical analysis
of
the carbon isotope record from the Archean to Phanerozoic and implications
for the rise of oxygen, Am. J. Sci., 315, 275–316.
https://doi.org/10.2475/04.2015.01, 2015.
Kuntz, L. B., Laakso, T. A., Schrag, D. P., and Crowe, S. A.: Modeling the
carbon
cycle in Lake Matano, Geobiology, 13, 454–461,
https://doi.org/10.1111/gbi.12141, 2015.
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.:
Preservation
of organic matter and alteration of its carbon and nitrogen isotope
composition during simulated and in situ early sedimentary diagenesis,
Geochim. Cosmochim. Ac., 66, 3573–3584,
https://doi.org/10.1016/S0016-7037(02)00968-7, 2002.
Lehmann, M. F., Bernasconi, S. M., McKenzie, J. A., Barbieri, A., Simona, M.,
and Veronesi, M.: Seasonal variation of the δC and δN of particulate
and
dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical
cycling in a eutrophic lake, Limnol. Oceanogr, 49, 415–429.
https://doi.org/10.4319/lo.2004.49.2.0415, 2004.
Lelli, M., Kretzschmar, T. G., Cabassi, J., Doveri, M., Sanchez-Avila, J. I.,
Gherardi, F., Magro, G., and Norelli, F.: Fluid geochemistry of the Los
Humeros
geothermal field (LHGF – Puebla, Mexico): New constraints for the conceptual
model, Geothermics, 90, 101983,
https://doi.org/10.1016/j.geothermics.2020.101983, 2021.
Li, H.-C. and Ku, T.-L.: δ13C–δ18C covariance as a
paleohydrological indicator for closed-basin lakes, Palaeogeogr.
Palaeocl., 133, 69–80,
https://doi.org/10.1016/S0031-0182(96)00153-8, 1997.
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E.: Terminal
Proterozoic reorganization of biogeochemical cycles, Nature, 376, 53–56,
https://doi.org/10.1038/376053a0, 1995.
Lorenz, V.: On the growth of maars and diatremes and its relevance to the
formation of tuff rings, Bull. Volcanol., 48, 265–274.
https://doi.org/10.1007/BF01081755, 1986.
Lugo, A., Alcocer, J., Sanchez, M. R., and Escobar, E.: Trophic status of
tropical lakes indicated by littoral protozoan assemblages, Internationale
Vereinigung für theoretische und angewandte Limnologie: Verhandlungen,
25, 4441–443, https://doi.org/10.1080/03680770.1992.11900159, 1993.
Lugo, A., Alcocer, J., Sánchez, M. del R., Escobar, E., and Macek, M.:
Temporal and spatial variation of bacterioplankton abundance in a tropical,
warm-monomictic, saline lake: Alchichica, Puebla, Mexico, Internationale
Vereinigung für theoretische und angewandte Limnologie: Verhandlungen,
27, 2968–2971, https://doi.org/10.1080/03680770.1998.11898217, 2000.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in
Earth's
early ocean and atmosphere, Nature, 506, 307–315,
https://doi.org/10.1038/nature13068, 2014.
Macek, M., Medina, X. S., Picazo, A., Peštová, D., Reyes, F. B.,
Hernández, J. R. M., Alcocer, J., Ibarra, M. M., and Camacho, A.:
Spirostomum
teres: A Long Term Study of an Anoxic-Hypolimnion Population Feeding upon
Photosynthesizing Microorganisms, Acta Protozool., 59, 13–38,
https://doi.org/10.4467/16890027AP.20.002.12158, 2020.
Mason, E., Edmonds, M., and Turchyn, A. V.: Remobilization of crustal carbon
may
dominate volcanic arc emissions, Science, 357, 290–294,
https://doi.org/10.1126/science.aan5049, 2017.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P.,
Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and
reservoirs, Nat. Commun., 8, 1694,
https://doi.org/10.1038/s41467-017-01789-6, 2017.
Mercedes-Martín, R., Ayora, C., Tritlla, J., and Sánchez-Román,
M.:
The hydrochemical evolution of alkaline volcanic lakes: a model to
understand the South Atlantic Pre-salt mineral assemblages, Earth-Sci. Rev.,
198, 102938, https://doi.org/10.1016/j.earscirev.2019.102938, 2019.
Milesi, V. P., Debure, M., Marty, N. C. M., Capano, M., Jézéquel, D.,
Steefel, C., Rouchon, V., Albéric, P., Bard, E., Sarazin, G., Guyot, F.,
Virgone, A., Gaucher, É. C., and Ader, M.: Early Diagenesis of Lacustrine
Carbonates in Volcanic Settings: The Role of Magmatic CO2 (Lake Dziani
Dzaha, Mayotte, Indian Ocean), ACS Earth Space Chem., 4, 363–378,
https://doi.org/10.1021/acsearthspacechem.9b00279, 2020.
Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon isotope
fractionation
between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sc.
Lett., 22, 169–176, https://doi.org/10.1016/0012-821X(74)90078-8, 1974.
Mulholland, P. J. and Elwood, J. W.: The role of lake and reservoir sediments
as
sinks in the perturbed global carbon cycle, Tellus A, 34, 490–499,
https://doi.org/10.1111/j.2153-3490.1982.tb01837.x, 1982.
O'Leary, M. H.: Carbon Isotopes in Photosynthesis, BioScience, 38, 328–336,
https://doi.org/10.2307/1310735, 1988.
Pardue, J. W., Scalan, R. S., Van Baalen, C., and Parker, P. L.: Maximum
carbon
isotope fractionation in photosynthesis by blue-green algae and a green
alga, Geochim. Cosmochim. Ac., 40, 309–312,
https://doi.org/10.1016/0016-7037(76)90208-8, 1976.
Peiffer, L., Carrasco-Núñez, G., Mazot, A., Villanueva-Estrada,
R. E., Inguaggiato, C., Bernard Romero, R., Rocha Miller, R.,
and Rojas, J. H.: Soil degassing at the Los Humeros geothermal field (Mexico),
J.
Volcanol. Geotherm. Res., 356, 163–174,
https://doi.org/10.1016/j.jvolgeores.2018.03.001, 2018.
Petrash, D. A., Steenbergen, I. M., Valero, A., Meador, T. B., Paèes, T.,
and Thomazo, C.: Aqueous system-level processes and prokaryote assemblages in
the ferruginous and sulfate-rich bottom waters of a post-mining lake,
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022,
2022.
Pimenov, N. V., Lunina, O. N., Prusakova, T. S., Rusanov, I. I., and Ivanov,
M. V.:
Biological fractionation of stable carbon isotopes at the aerobic/anaerobic
water interface of meromictic water bodies, Microbiology, 77, 751–759,
https://doi.org/10.1134/S0026261708060131, 2008.
Posth, N. R., Bristow, L. A., Cox, R. P., Habicht, K. S., Danza, F., Tonolla,
M., Frigaard, N.-U., and Canfield, D. E.: Carbon isotope fractionation by
anoxygenic phototrophic bacteria in euxinic Lake Cadagno, Geobiology, 15,
798–816, https://doi.org/10.1111/gbi.12254, 2017.
Rendon-Lopez, M. J.: Limnologia fisica del lago crater los Espinos,
Municipio de Jiménez Michoacan, Universidad Michoacana de San Nicolas de Hidalgo, INIRENA-UMSNH, 1–107, 2008.
Ridgwell, A. and Arndt, S.: Chap. 1 – Why Dissolved Organics Matter: DOC in
Ancient Oceans and Past Climate Change, in: Biogeochemistry of Marine
Dissolved Organic Matter, 2nd Edn., edited by: Hansell, D. A. and Carlson, C.
A.,
Academic Press, Boston, 1–20,
https://doi.org/10.1016/B978-0-12-405940-5.00001-7, 2015.
Sackett, W. M., Eckelmann, W. R., Bender, M. L., and Bé, A. W. H.:
Temperature
Dependence of Carbon Isotope Composition in Marine Plankton and Sediments,
Science, 148, 235–237, https://doi.org/10.1126/science.148.3667.235, 1965.
Saghaï, A., Zivanovic, Y., Moreira, D., Benzerara, K., Bertolino, P.,
Ragon, M., Tavera, R., López-Archilla, A. I., and López-García,
P.:
Comparative metagenomics unveils functions and genome features of
microbialite-associated communities along a depth gradient: Comparative
metagenomics of microbialites from Lake Alchichica, Environ. Microbiol., 18,
4990–5004, https://doi.org/10.1111/1462-2920.13456, 2016.
Saini, J.S., Hassler, C., Cable, R., Fourquez, M., Danza, F., Roman, S., Tonolla, M., Storelli, N., Jacquet, S., Zdobnov, E. M., and Duhaime, M. B.: Microbial loop of a Proterozoic ocean analogue, bioRxiv, 2021-08, https://doi.org/10.1101/2021.08.17.456685, 2021.
Satkoski, A. M., Beukes, N. J., Li, W., Beard, B. L., and Johnson, C. M.: A
redox-stratified ocean 3.2 billion years ago, Earth Planet. Sc. Lett., 430,
43–53, https://doi.org/10.1016/j.epsl.2015.08.007, 2015.
Schidlowski, M.: Carbon isotopes as biogeochemical recorders of life over
3.8 Ga of Earth history: evolution of a concept, Precambrian Res., 106,
117–134, https://doi.org/10.1016/S0301-9268(00)00128-5, 2001.
Schiff, S. L., Tsuji, J. M., Wu, L., Venkiteswaran, J. J., Molot, L. A.,
Elgood,
R. J., Paterson, M. J., and Neufeld, J. D.: Millions of Boreal Shield Lakes
can be
used to Probe Archaean Ocean Biogeochemistry, Sci. Rep., 7, 46708,
https://doi.org/10.1038/srep46708, 2017.
Siebe, C., Guilbaud, M.-N., Salinas, S., and Chédeville-Monzo, C.:
Eruption
of Alberca de los Espinos tuff cone causes transgression of Zacapu lake ca.
25,000 yr BP in Michoacán, México, Presented at the IAS 4IMC
Conference, Auckland, New Zeland, 74–75, https://www.researchgate.net/publication/283927123 (last access: 8 June 2023), 2012.
Siebe, C., Guilbaud, M.-N., Salinas, S., Kshirsagar, P., Chevrel, M. O.,
Jiménez, A. H., and Godínez, L.: Monogenetic volcanism of the
Michoacán-Guanajuato Volcanic Field: Maar craters of the Zacapu basin
and domes, shields, and scoria cones of the Tarascan highlands
(Paracho-Paricutin region), Presented at the Pre-meeting field guide for the
5th international Maar Conference, Querétaro, México,
1–37, https://www.researchgate.net/profile/Pooja_Kshirsagar/publication/275951848 (last access: 8 June 2023),
2014.
Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S.,
Vázquez, G., Pérez, L., and Zawisza, E.: Basic limnology of 30
continental waterbodies of the Transmexican Volcanic Belt across climatic
and environmental gradients, Bol. Soc. Geológica Mex., 69, 313–370,
https://doi.org/10.18268/BSGM2017v69n2a3, 2017.
Silva Aguilera, R. A.: Análisis del descenso del nivel de agua del Lago
Alchichica, Puebla, México (Tesis de Maestría), Universidad
Nacional Autónoma de México, Coordinación General de Estudios de
Posgrado, UNAM,
https://repositorio.unam.mx/contenidos/3534827 (last access: 6 June 2023), 2019.
Sirevag, R., Buchanan, B. B., Berry, J. A., and Troughton, J. H.: Mechanisms
of
C02 Fixation in Bacterial Photosynthesis Studied by the Carbon Isotope
Fractionation Technique, Arch. Microbiol., 112, 35–38,
https://doi.org/10.1007/BF00446651, 1977.
Sobek, S., Durisch-Kaiser, E., Zurbrügg, R., Wongfun, N., Wessels, M.,
Pasche, N., and Wehrli, B.: Organic carbon burial efficiency in lake
sediments
controlled by oxygen exposure time and sediment source, Limnol. Oceanogr.,
54, 2243–2254, https://doi.org/10.4319/lo.2009.54.6.2243, 2009.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and
Greenwood,
J.: The effect of biogeochemical processes on pH, Mar. Chem., 105, 30–51,
https://doi.org/10.1016/j.marchem.2006.12.012, 2007.
Talbot, M. R.: A review of the palaeohydrological interpretation of carbon
and oxygen isotopic ratios in primary lacustrine carbonates, Chem. Geol.
Isot. Geosci., Sect. 80, 261–279,
https://doi.org/10.1016/0168-9622(90)90009-2, 1990.
Thomas, P. J., Boller, A. J., Satagopan, S., Tabita, F. R., Cavanaugh, C. M.,
and Scott, K. M.: Isotope discrimination by form IC RubisCO from
Ralstonia eutropha and
Rhodobacter sphaeroides, metabolically versatile members of
“Proteobacteria” from aquatic and soil habitats,
Environ. Microbiol., 21, 72–80, https://doi.org/10.1111/1462-2920.14423,
2019.
Ussiri, D. A. N. and Lal, R.: Carbon Sequestration for Climate Change
Mitigation
and Adaptation, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-53845-7, 2017.
Van Mooy, B. A. S., Keil, R. G., and Devol, A. H.: Impact of suboxia on
sinking
particulate organic carbon: Enhanced carbon flux and preferential
degradation of amino acids via denitrification, Geochim. Cosmochim. Ac., 66,
457–465, https://doi.org/10.1016/S0016-7037(01)00787-6, 2002.
van Vliet, D. M., Meijenfeldt, F. A. B., Dutilh, B. E., Villanueva, L.,
Sinninghe
Damsté, J. S., Stams, A. J. M., and Sánchez-Andrea, I.: The bacterial
sulfur cycle in expanding dysoxic and euxinic marine waters, Environ.
Microbiol., 23, 2834–2857, https://doi.org/10.1111/1462-2920.15265, 2021.
Vilaclara, G., Chávez, M., Lugo, A., González, H., and Gaytán,
M.:
Comparative description of crater-lakes basic chemistry in Puebla State,
Mexico, Internationale Vereinigung für theoretische und angewandte
Limnologie: Verhandlungen, 25, 435–440,
https://doi.org/10.1080/03680770.1992.11900158, 1993.
Vuillemin, A., Friese, A., Alawi, M., Henny, C., Nomosatryo, S., Wagner, D.,
Crowe, S. A., and Kallmeyer, J.: Geomicrobiological features of ferruginous
sediments from Lake Towuti, Indonesia, Front. Microbiol., 7, 1007,
https://doi.org/10.3389/fmicb.2016.01007, 2016.
Wang, S., Yeager, K. M., and Lu, W.: Carbon isotope fractionation in
phytoplankton as a potential proxy for pH rather than for
[CO2(aq)]:
Observations from a carbonate lake, Limnol. Oceanogr., 61, 1259–1270,
https://doi.org/10.1002/lno.10289, 2016.
Werne, J. P. and Hollander, D. J.: Balancing supply and demand: controls on
carbon isotope fractionation in the Cariaco Basin (Venezuela) Younger Dryas
to present, Mar. Chem., 92, 275–293,
https://doi.org/10.1016/j.marchem.2004.06.031, 2004.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine
and freshwater environments: CO2 reduction vs. acetate
fermentation – Isotope evidence, Geochim. Cosmochim. Ac., 50, 693–709,
https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Williams, P. M. and Gordon, L. I.: Carbon-13: carbon-12 ratios in dissolved
and
particulate organic matter in the sea, Deep-Sea Res. Oceanogr., 17,
19–27, https://doi.org/10.1016/0011-7471(70)90085-9, 1970.
Wittkop, C., Teranes, J., Lubenow, B., and Dean, W. E.: Carbon- and
oxygen-stable
isotopic signatures of methanogenesis, temperature, and water column
stratification in Holocene siderite varves, Chem. Geol., 389, 153–166,
https://doi.org/10.1016/j.chemgeo.2014.09.016, 2014.
Zeyen, N., Benzerara, K., Beyssac, O., Daval, D., Muller, E., Thomazo, C.,
Tavera, R., López-García, P., Moreira, D., and Duprat, E.:
Integrative
analysis of the mineralogical and chemical composition of modern
microbialites from ten Mexican lakes: What do we learn about their
formation?, Geochim. Cosmochim. Ac., 305, 148–184,
https://doi.org/10.1016/j.gca.2021.04.030, 2021.
Zohary, T., Erez, J., Gophen, M., Berman-Frank, I., and Stiller, M.:
Seasonality
of stable carbon isotopes within the pelagic food web of Lake Kinneret,
Limnol. Oceanogr., 39, 1030–1043,
https://doi.org/10.4319/lo.1994.39.5.1030, 1994.
Zyakun, A. M., Lunina, O. N., Prusakova, T. S., Pimenov, N. V., and Ivanov,
M. V.:
Fractionation of stable carbon isotopes by photoautotrophically growing
anoxygenic purple and green sulfur bacteria, Microbiology, 78, 757–768,
https://doi.org/10.1134/S0026261709060137, 2009.
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to...
Altmetrics
Final-revised paper
Preprint