Articles | Volume 20, issue 13
https://doi.org/10.5194/bg-20-2671-2023
https://doi.org/10.5194/bg-20-2671-2023
Research article
 | 
06 Jul 2023
Research article |  | 06 Jul 2023

A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations

Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen

Related authors

Rapid Evaluation Framework for the CMIP7 Assessment Fast Track
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685,https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Improving Streamflow Simulation through Machine Learning-Powered Data Integration and Its Implications for Forecasting in the Western U.S.
Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph
EGUsphere, https://doi.org/10.5194/egusphere-2025-1708,https://doi.org/10.5194/egusphere-2025-1708, 2025
Short summary
From RNNs to Transformers: benchmarking deep learning architectures for hydrologic prediction
Jiangtao Liu, Chaopeng Shen, Fearghal O'Donncha, Yalan Song, Wei Zhi, Hylke E. Beck, Tadd Bindas, Nicholas Kraabel, and Kathryn Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1706,https://doi.org/10.5194/egusphere-2025-1706, 2025
Short summary
A novel hybrid fine-tuning method for supercharging deep learning model development for hydrological prediction
Mohammad Sina Jahangir, John Quilty, Chaopeng Shen, Andrea Scott, Scott Steinschneider, and Jan Adamowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-846,https://doi.org/10.5194/egusphere-2025-846, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Quantifying the soil sink of atmospheric hydrogen: a full year of field measurements from grassland and forest soils in the UK
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
Biogeosciences, 22, 3449–3461, https://doi.org/10.5194/bg-22-3449-2025,https://doi.org/10.5194/bg-22-3449-2025, 2025
Short summary
Potential of carbon uptake and local aerosol production in boreal and hemi-boreal ecosystems across Finland and in Estonia
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025,https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Altered seasonal sensitivity of net ecosystem exchange to controls driven by nutrient balances in a semi-arid savanna
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025,https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Peltigera lichen thalli produce highly potent ice-nucleating agents
Rosemary J. Eufemio, Galit Renzer, Mariah Rojas, Jolanta Miadlikowska, Todd L. Sformo, François Lutzoni, Boris A. Vinatzer, and Konrad Meister
Biogeosciences, 22, 2087–2096, https://doi.org/10.5194/bg-22-2087-2025,https://doi.org/10.5194/bg-22-2087-2025, 2025
Short summary
Mercury contamination in staple crops impacted by Artisanal Small-scale Gold Mining (ASGM): Stable Hg isotopes demonstrate dominance of atmospheric uptake pathway for Hg in crops
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402,https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary

Cited articles

Aboelyazeed, D., Xu, C., Hoffman, F. M., Liu, J., Jones, A. W., Rackauckas, C., Lawson, K. E., and Shen, C.: A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems, Zenodo [code], https://doi.org/10.5281/zenodo.8067204, 2023. 
Ali, A. A., Xu, C., Rogers, A., McDowell, N. G., Medlyn, B. E., Fisher, R. A., Wullschleger, S. D., Reich, P. B., Vrugt, J. A., Bauerle, W. L., Santiago, L. S., and Wilson, C. J.: Global-scale environmental control of plant photosynthetic capacity., Ecol. Appl., 25, 2349–2365, https://doi.org/10.1890/14-2111.1, 2015. 
Ali, A. A., Xu, C., Rogers, A., Fisher, R. A., Wullschleger, S. D., Massoud, E. C., Vrugt, J. A., Muss, J. D., McDowell, N. G., Fisher, J. B., Reich, P. B., and Wilson, C. J.: A global scale mechanistic model of photosynthetic capacity (LUNA V1.0), Geosci. Model Dev., 9, 587–606, https://doi.org/10.5194/gmd-9-587-2016, 2016. 
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.: Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18, 1–43, 2018. 
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10/ccx2ks, 2006. 
Download
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Share
Altmetrics
Final-revised paper
Preprint