Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-325-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-325-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Earth System Science, Stanford University, Stanford, CA 94305, USA
Colette L. Kelly
Earth System Science, Stanford University, Stanford, CA 94305, USA
Margaret R. Mulholland
Department of Ocean, Earth and Atmospheric Science, Old Dominion University,
Norfolk, VA 23529, USA
Karen L. Casciotti
Earth System Science, Stanford University, Stanford, CA 94305, USA
Related authors
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Cited articles
Al-Qutob, M., Häse, C., Tilzer, M. M., and Lazar, B.: Phytoplankton
drives nitrite dynamics in the Gulf of Aqaba, Red Sea, Mar. Ecol.-Prog. Ser.,
239, 233–239, https://doi.org/10.3354/meps239233, 2002.
Anderson, S. and Roels, O.: Effects of light intensity on nitrate and
nitrite uptake and excretion by Chaetoceros curvisetus, Mar. Biol., 62,
257–261, https://doi.org/10.1007/BF00397692, 1981.
Babbin, A. R., Boles, E. L., Mühle, J., and Weiss, R. F.: On the natural
spatio-temporal heterogeneity of South Pacific nitrous oxide, Nat. Commun.,
11, 1–9, https://doi.org/10.1038/s41467-020-17509-6, 2020.
Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical
evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of
California, ISME J., 2, 429–441,
https://doi.org/10.1038/ismej.2007.118, 2008.
Beman, J. M., Popp, B. N., and Alford, S. E.: Quantification of ammonia
oxidation rates and ammonia-oxidizing archaea and bacteria at high
resolution in the Gulf of California and eastern tropical North Pacific
Ocean, Limnol. Oceanogr., 57, 711–726,
https://doi.org/10.4319/lo.2012.57.3.0711, 2012.
Beman, J. M., Shih, J. L., and Popp, B. N.: Nitrite oxidation in the upper
water column and oxygen minimum zone of the eastern tropical North Pacific
Ocean, ISME J., 7, 2192–2205,
https://doi.org/10.1038/ismej.2013.96, 2013.
Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in
nitrate: new reference materials for 18O:17O:16O
measurements and observations on nitrate-water equilibration: Reference
materials for O-isotopes in nitrate, Rapid Commun. Mass Sp., 17,
1835–1846, https://doi.org/10.1002/rcm.1123, 2003.
Brandhorst, W.: Nitrite Accumulation in the North-East Tropical Pacific,
Nature, 182, 679–679, https://doi.org/10.1038/182679a0, 1958.
Bronk, D. A., Glibert, P. M., and Ward, B. B.: Nitrogen Uptake, Dissolved
Organic Nitrogen Release, and New Production, Science, 265, 1843–1846,
https://doi.org/10.1126/science.265.5180.1843, 1994.
Buchwald, C. and Casciotti, K. L.: Isotopic ratios of nitrite as tracers of
the sources and age of oceanic nitrite, Nat. Geosci., 6, 308–313,
https://doi.org/10.1038/NGEO1745, 2013.
Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y., and Peltier, G.:
Algal photosynthesis converts nitric oxide into nitrous oxide, P. Natl.
Acad. Sci. USA, 117, 2704–2709, https://doi.org/10.1073/pnas.1915276117,
2020.
Carlucci, A. F., Hartwig, E. O., and Bowes, P. M.: Biological production of
nitrite in seawater, Mar. Biol., 7, 161–166,
https://doi.org/10.1007/BF00354921, 1970.
Casciotti, K. L., Böhlke, J. K., McIlvin, M. R., Mroczkowski, S. J., and
Hannon, J. E.: Oxygen isotopes in nitrite: analysis, calibration, and
equilibration, Anal. Chem., 79, 2427–2436,
https://doi.org/10.1021/ac061598h, 2007.
Cline, J. D. and Richards, F. A.: Oxygen deficient conditions and nitrate
reduction in the eastern tropical North Pacific Ocean, Limnol. Oceanogr.,
17, 885–900, https://doi.org/10.4319/lo.1972.17.6.0885, 1972.
Codispoti, L. A., Friederich, G. E., Murray, J. W., and Sakamoto, C. M.:
Chemical variability in the Black Sea: implications of continuous vertical
profiles that penetrated the oxic/anoxic interface, Deep-Sea Res. Pt.
A, 38, S691–S710,
https://doi.org/10.1016/S0198-0149(10)80004-4, 1991.
Collos, Y.: Transient situations in nitrate assimilation by marine diatoms.
2. Changes in nitrate and nitrite following a nitrate perturbation, Limnol.
Oceanogr., 27, 528–535, 1982a.
Collos, Y.: Transient situations in nitrate assimilation by marine diatoms.
III. Short-term uncoupling of nitrate uptake and reduction, J. Exp. Mar.
Biol. Ecol., 62, 285–295, https://doi.org/10.1016/0022-0981(82)90208-8,
1982b.
Collos, Y.: Nitrate uptake, nitrite release and uptake, and new production
estimates, Mar. Ecol.-Prog. Ser., 171, 293–301, https://doi.org/10.3354/meps171293, 1998.
Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A.,
D'Ortenzio, F., Gentili, B., and Schmechtig, C.: Deep Chlorophyll Maxima in
the Global Ocean: Occurrences, Drivers and Characteristics, Global
Biogeochem. Cy., 35, e2020GB006759, https://doi.org/10.1029/2020GB006759, 2021.
Dore, J. E. and Karl, D. M.: Nitrite distributions and dynamics at Station
ALOHA, Deep-Sea Res. Pt. II, 43,
385–402, https://doi.org/10.1016/0967-0645(95)00105-0, 1996.
Dugdale, R. and Goering, J.: Uptake of new and regenerated forms of nitrogen
in primary productivity, Limnol. Oceanogr, 12, 196–206, https://doi.org/10.4319/lo.1967.12.2.0196, 1967.
Dugdale, R. and Wilkerson, F.: The use of 15N to measure nitrogen uptake in
eutrophic oceans; experimental considerations1, 2, Limnol.
Oceanogr., 31, 673–689, https://doi.org/10.4319/lo.1986.31.4.0673, 1986.
Eppley, R. W. and Coatsworth, J. L.: Uptake of nitrate and nitrite by
Ditylum Brightwelli – Kinetics and mechanisms, J. Phycol., 4,
151–156, https://doi.org/10.1111/j.1529-8817.1968.tb04689.x, 1968.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B.
B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688,
https://doi.org/10.1073/pnas.0506625102, 2005.
Francis, C. A., Beman, J. M., and Kuypers, M. M. M.: New processes and
players in the nitrogen cycle: the microbial ecology of anaerobic and
archaeal ammonia oxidation, ISME J., 1, 19–27,
https://doi.org/10.1038/ismej.2007.8, 2007.
French, D. P., Furnas, M. J., and Smayda, T. J.: Diel changes in nitrite
concentration in the chlorophyll maximum in the Gulf of Mexico, Deep-Sea
Res. Pt. A, 30, 707–722,
https://doi.org/10.1073/pnas.0506625102, 1983.
Füssel, J., Lam, P., Lavik, G., Jensen, M. M., Holtappels, M.,
Günter, M., and Kuypers, M. M.: Nitrite oxidation in the Namibian oxygen
minimum zone, ISME J., 6, 1200–1209,
https://doi.org/10.1038/ismej.2011.178, 2012.
Glibert, P. M., Middelburg, J. J., McClelland, J. W., and Jake Vander
Zanden, M.: Stable isotope tracers: Enriching our perspectives and questions
on sources, fates, rates, and pathways of major elements in aquatic systems,
Limnol. Oceanogr., 64, 950–981, https://doi.org/10.1002/lno.11087, 2019.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid
Commun. Mass Sp., 23, 3753–3762,
https://doi.org/10.1002/rcm.4307, 2009.
Grömping, U.: relaimpo: Relative Importance of Regressors in Linear, R package version 2.2-6, CRAN [code], https://CRAN.R-project.org/package=relaimpo (last acess: 1 June 2022), 2006.
Gruber, N.: The marine nitrogen cycle: overview and challenges, Nitrogen in
the Marine Environment, 2, 1–50, https://doi.org/10.1038/nature06592, 2008.
Guerrero, M. A. and Jones, R. D.: Photoinhibition of marine nitrifying
bacteria. I. Wavelength-dependent response, Mar. Ecol.-Prog. Ser.,
141, 183–192, https://doi.org/10.3354/meps141183, 1996.
Hattori, A. and Wada, E.: Nitrite distribution and its regulating processes
in the equatorial Pacific Ocean, in: Deep Sea Research and Oceanographic
Abstracts, 18, 557–568, https://doi.org/10.1016/0011-7471(71)90122-7, 1971.
Herbland, A. and Voituriez, B.: Hydrological structure analysis for
estimating the primary production in the tropical Atlantic Ocean, J.
Marine Res., 37, 87–101, 1979.
Holligan, P. M., Balch, W. M., and Yentsch, C. M.: The significance of
subsurface chlorophyll, nitrite and ammonium maxima in relation to nitrogen
for phytoplankton growth in stratified waters of the Gulf of Maine, J. Marine Res., 42, 1051–1073,
https://doi.org/10.1357/002224084788520747, 1984.
Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B.
J.: A simple and precise method for measuring ammonium in marine and
freshwater ecosystems, Can. J. Fish. Aquat. Sci.,
56, 1801–1808, https://doi.org/10.1139/f99-128, 1999.
Horak, R. E. A., Qin, W., Bertagnolli, A. D., Nelson, A., Heal, K. R., Han,
H., Heller, M., Schauer, A. J., Jeffrey, W. H., Armbrust, E. V., Moffett, J.
W., Ingalls, A. E., Stahl, D. A., and Devol, A. H.: Relative impacts of
light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation
in the North Pacific Ocean, Limnol. Oceanogr., 63, 741–757,
https://doi.org/10.1002/lno.10665, 2018.
Kelly, C. L., Travis, N. M., Baya, P. A., and Casciotti, K. L.: Quantifying
Nitrous Oxide Cycling Regimes in the Eastern Tropical North Pacific Ocean
With Isotopomer Analysis, Global Biogeochem. Cy., 35, e2020GB006637,
https://doi.org/10.1029/2020GB006637, 2021.
Key, R. M., Olsen, A., Van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S.,
Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F. F., and Suzuki, T.: Global
Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093, GLODAP [data set],
http://hdl.handle.net/10013/epic.46499 (last access: 1 June 2022), 2015.
Kiefer, D., Olson, R., and Holm-Hansen, O.: Another look at the nitrite and
chlorophyll maxima in the central North Pacific, in: Deep Sea Research and
Oceanographic Abstracts, 23, 1199–1208,
https://doi.org/10.1016/0011-7471(76)90895-0, 1976.
Legendre-Fixx, M.: Drivers of phytoplankton community heterogeneity in the
Eastern Tropical North Pacific, Undergraduate Thesis, University of
Washington, http://hdl.handle.net/1773/39734 (last access: 1 June 2022), 2017.
Lomas, M. W. and Glibert, P. M.: Temperature regulation of nitrate uptake: A
novel hypothesis about nitrate uptake and reduction in cool-water diatoms,
Limnol. Oceanogr., 44, 556–572, https://doi.org/10.4319/lo.1999.44.3.0556,
1999.
Lomas, M. W. and Glibert, P. M.: Comparisons of nitrate uptake, storage, and
reduction in marine diatoms and flagellates, J. Phycol., 36,
903–913, https://doi.org/10.1046/j.1529-8817.2000.99029.x, 2000.
Lomas, M. W. and Lipschultz, F.: Forming the primary nitrite maximum:
Nitrifiers or phytoplankton?, Limnol. Oceanogr., 51, 2453–2467,
https://doi.org/10.4319/lo.2006.51.5.2453, 2006.
Lumley, T. based on F. code by A. Miller.: leaps: Regression Subset Selection, R package version 3.1, CRAN [code], https://CRAN.R-project.org/package=leaps (last access: 1 June 2022), 2020.
Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie,
B., Rattei, T., Damsté, J. S. S., Spieck, E., Le Paslier, D., and Daims,
H.: A Nitrospira metagenome illuminates the physiology and evolution of
globally important nitrite-oxidizing bacteria, P. Natl. Acad. Sci.
USA, 107, 13479–13484, https://doi.org/10.1073/pnas.1003860107, 2010.
Lücker, S., Nowka, B., Rattei, T., Spieck, E., and Daims, H.: The Genome
of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major
Marine Nitrite Oxidizer, Front. Microbiol., 4, 27,
https://doi.org/10.3389/fmicb.2013.00027, 2013.
Mackey, K. R., Bristow, L., Parks, D. R., Altabet, M. A., Post, A. F., and
Paytan, A.: The influence of light on nitrogen cycling and the primary
nitrite maximum in a seasonally stratified sea, Prog. Ocean., 91, 545–560,
https://doi.org/10.1016/j.pocean.2011.09.001, 2011.
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., and
Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of
nitrifying Archaea and Bacteria, Nature, 461, 976–979,
https://doi.org/10.1038/nature08465, 2009.
McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and
nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in
freshwater and seawater, Anal. Chem., 77, 5589–5595,
https://doi.org/10.1021/ac050528s, 2005.
McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial
method for nitrate isotopic analyses, Anal. Chem., 83, 1850–1856,
https://doi.org/10.1021/ac1028984, 2011.
Meeder, E., Mackey, K. R., Paytan, A., Shaked, Y., Iluz, D., Stambler, N.,
Rivlin, T., Post, A. F., and Lazar, B.: Nitrite dynamics in the open
ocean-clues from seasonal and diurnal variations, Mar. Ecol.-Prog.
Ser., 453, 11–26, https://doi.org/10.3354/meps09525, 2012.
Merbt, S. N., Stahl, D. A., Casamayor, E. O., Martí, E., Nicol, G. W.,
and Prosser, J. I.: Differential photoinhibition of bacterial and archaeal
ammonia oxidation, FEMS Microbiol. Lett., 327, 41–46,
https://doi.org/10.1111/j.1574-6968.2011.02457.x, 2012.
Miller, J. C. and Miller, J. N.: Basic Statistical Methods for Analytical Chemistry Part 1. Statistics of Repeated Measurements A Review, Analyst, 113, 1351–1356, https://doi.org/10.1039/AN9881301351, 1988.
Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., and
DeLong, E. F.: Quantitative distribution of presumptive archaeal and
bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre,
Environ. Microbiol., 9, 1162–1175,
https://doi.org/10.1111/j.1462-2920.2007.01239.x, 2007.
Monreal, P. J., Kelly, C. L., Travis, N. M., and Casciotti, K. L.:
Identifying the Sources and Drivers of Nitrous Oxide Accumulation in the
Eddy-Influenced Eastern Tropical North Pacific Oxygen-Deficient Zone, Global
Biogeochem. Cy., 36, e2022GB007310, https://doi.org/10.1029/2022GB007310, 2022.
Mulholland, M. and Lomas, M.: Nitrogen uptake and assimilation, in: Nitrogen in the Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M., and Carpenter, E. J., Elsevier, San Diego, https://doi.org/10.1016/B978-0-12-372522-6.00007-4, 2008.
Mulholland, M. R. and Jayakumar, A.: Dinitrogen fixation rates and diazotrophic communities in contrasting oxygen regimes of the Eastern Pacific Ocean.
Biological and Chemical Oceanography Data Management Office – BCO-DMO, Dataset version: Dec. 1 2017, [data set], https://www.bco-dmo.org/project/472492, last access: 1 December 2017.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
Olson, R. J.: Differential photoinhibition of marine nitrifying bacteria: a
possible mechanism for the formation of the primary nitrite maximum, J. Mar.
Res., 39, 227–238, 1981.
Peng, X., Fuchsman, C. A., Jayakumar, A., Oleynik, S., Martens-Habbena, W.,
Devol, A. H., and Ward, B. B.: Ammonia and nitrite oxidation in the Eastern
Tropical North Pacific: AMMONIA AND NITRITE OXIDATION IN ETNP, Global
Biogeochem. Cy., 29, 2034–2049, https://doi.org/10.1002/2015GB005278,
2015.
Plouviez, M., Shilton, A., Packer, M. A., and Guieysse, B.: Nitrous oxide
emissions from microalgae: potential pathways and significance, J. Appl.
Phycol., 31, 1–8, https://doi.org/10.1007/s10811-018-1531-1, 2019.
Raimbault, P.: Effect of temperature on nitrite excretion by three marine
diatoms during nitrate uptake, Mar. Biol., 92, 149–155, 1986.
Rajaković, L. V., Marković, D. D., Rajaković-Ognjanović, V.
N., and Antanasijević, D. Z.: The approaches for estimation of limit of
detection for ICP-MS trace analysis of arsenic, Talanta, 102, 79–87, 2012.
Sakamoto, C. M., Friederich, G. E., and Codispoti, L. A.: MBARI procedures for automated nutrient analyses using a modified Alpkem Series 300 Rapid Flow Analyzer, Technical Report No. 90-2, Monterey Bay Aquarium Research Institute, Monterey Bay, CA, http://hdl.handle.net/1834/19792 (last access: 1 June 2022), 1990.
Santoro, A. E., Casciotti, K. L., and Francis, C. A.: Activity, abundance
and diversity of nitrifying archaea and bacteria in the central California
Current, Environ. Microbiol., 12, 1989–2006, 2010.
Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic
signature of N2O produced by marine ammonia-oxidizing archaea, Science, 333,
1282–1285, 2011.
Santoro, A. E., Sakamoto, C. M., Smith, J. M., Plant, J. N., Gehman, A. L., Worden, A. Z., Johnson, K. S., Francis, C. A., and Casciotti, K. L.: Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, Biogeosciences, 10, 7395–7410, https://doi.org/10.5194/bg-10-7395-2013, 2013.
Schaefer, S. C. and Hollibaugh, J. T.: Temperature Decouples Ammonium and
Nitrite Oxidation in Coastal Waters, Environ. Sci. Technol.,
51, 3157–3164, https://doi.org/10.1021/acs.est.6b03483, 2017.
Schleper, C., Jurgens, G., and Jonuscheit, M.: Genomic studies of
uncultivated archaea, Nat. Rev. Microbiol., 3, 479–488,
https://doi.org/10.1038/nrmicro1159, 2005.
Shiozaki, T., Ijichi, M., Isobe, K., Hashihama, F., Nakamura, K., Ehama, M.,
Hayashizaki, K., Takahashi, K., Hamasaki, K., and Furuya, K.: Nitrification
and its influence on biogeochemical cycles from the equatorial Pacific to
the Arctic Ocean, ISME J., 10, 2184, https://doi.org/10.1038/ismej.2016.18, 2016.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Böhlke, J. K.: A Bacterial Method for the Nitrogen Isotopic Analysis
of Nitrate in Seawater and Freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Smith, J. M., Chavez, F. P., and Francis, C. A.: Ammonium uptake by
phytoplankton regulates nitrification in the sunlit ocean, PloS one, 9,
e108173, https://doi.org/10.1371/journal.pone.0108173, 2014.
Strickland, J. D. and Parsons, T. R.: A practical handbook of seawater analysis, 2nd ed., Fisheries Research Board of Canada, Ottowa, Canada, 310 pp., https://doi.org/10.25607/OBP-1791, 1972.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,
J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara,
T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.,
Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Travis, N., Kelly, C., Mullholland, M., and Casciotti, K.: Pump cast data from R/V Ron Brown 2016 cruise (RB1603), Stanford Digital Repository, [data set], https://doi.org/10.25740/gd152nx8149, 2023.
Trimmer, M., Chronopoulou, P.-M., Maanoja, S. T., Upstill-Goddard, R. C.,
Kitidis, V., and Purdy, K. J.: Nitrous oxide as a function of oxygen and
archaeal gene abundance in the North Pacific, Nat. Commun., 7, 13451,
https://doi.org/10.1038/ncomms13451, 2016.
Vaccaro, R. F. and Ryther, J. H.: Marine Phytoplankton and the Distribution
of Nitrite in the Sea*, ICES J. Mar. Sci., 25, 260–271,
https://doi.org/10.1093/icesjms/25.3.260, 1960.
Wada, E. and Hattori, A.: Nitrite metabolism in the euphotic layer of the
central North Pacific Ocean, Limnol. Oceanogr., 16, 766–772, 1971.
Wada, E. and Hattori, A.: Nitrite distribution and nitrate reduction in deep
sea waters, Deep Sea Research and Oceanographic Abstracts, 19, 123–132,
https://doi.org/10.1016/0011-7471(72)90044-7, 1972.
Wan, X. S., Sheng, H.-X., Dai, M., Zhang, Y., Shi, D., Trull, T. W., Zhu,
Y., Lomas, M. W., and Kao, S.-J.: Ambient nitrate switches the ammonium
consumption pathway in the euphotic ocean, Nat. Commun., 9, 915,
https://doi.org/10.1038/s41467-018-03363-0, 2018.
Wan, X. S., Sheng, H., Dai, M., Church, M. J., Zou, W., Li, X., Hutchins, D.
A., Ward, B. B., and Kao, S.: Phytoplankton-nitrifier interactions control
the geographic distribution of nitrite in the upper ocean, Global Biogeochem.
Cy., 35, e2021GB007072, https://doi.org/10.1029/2021GB007072, 2021.
Ward, B. and Carlucci, A.: Marine ammonia-and nitrite-oxidizing bacteria:
serological diversity determined by immunofluorescence in culture and in the
environment, Appl. Environ. Microbiol., 50, 194–201,
https://doi.org/10.1128/aem.50.2.194-201.1985, 1985.
Ward, B. B.: Temporal variability in nitrification rates and related
biogeochemical factors in Monterey Bay, California, USA, Mar. Ecol.-Prog. Ser.,
292, 97–109, https://doi.org/10.3354/meps292097, 2005.
Ward, B. B., Olson, R. J., and Perry, M. J.: Microbial nitrification rates
in the primary nitrite maximum off southern California, Deep-Sea Res.
Pt. A, 29, 247–255,
https://doi.org/10.1016/0198-0149(82)90112-1, 1982.
Ward, B. B., Kilpatrick, K. A., Renger, E. H., and Eppley, R. W.: Biological
nitrogen cycling in the nitracline, Limnol. Oceanogr., 34,
493–513, https://doi.org/10.4319/lo.1989.34.3.0493, 1989.
Watson, S. W. and Waterbury, J. B.: Characteristics of two marine nitrite
oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus
mobilis nov. gen. nov. sp., Arch. Mikrobiol., 77, 203–230,
1971.
Xu, M. N., Li, X., Shi, D., Zhang, Y., Dai, M., Huang, T., Glibert, P. M.,
and Kao, S.: Coupled effect of substrate and light on assimilation and
oxidation of regenerated nitrogen in the euphotic ocean, Limnol. Oceanogr.,
64, 1270–1283, https://doi.org/10.1002/lno.11114, 2019.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, https://doi.org/10.1038/nature05885, 2007.
Zafiriou, O. C., Ball, L. A., and Hanley, Q.: Trace nitrite in oxic waters,
Deep Sea Res., 39, 1329–1347, https://doi.org/10.1016/0198-0149(92)90072-2,
1992.
Zakem, E. J., Al-Haj, A., Church, M. J., van Dijken, G. L., Dutkiewicz, S.,
Foster, S. Q., Fulweiler, R. W., Mills, M. M., and Follows, M. J.:
Ecological control of nitrite in the upper ocean, Nat. Commun., 9, 1206,
https://doi.org/10.1038/s41467-018-03553-w, 2018.
Zehr, J. P. and Ward, B. B.: Nitrogen Cycling in the Ocean: New Perspectives
on Processes and Paradigms, AEM, 68, 1015–1024,
https://doi.org/10.1128/AEM.68.3.1015-1024.2002, 2002.
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but...
Altmetrics
Final-revised paper
Preprint